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Abstract 
 
The standardization of CPU multi-core processing units in the last years has made 
parallel computing methods the main path to improve computing performances. The 
contemporary rapidly evolving graphical card GPU systems, offering cost-effective 
general purpose calculation possibilities, are a strong additional resource for parallel 
computing. In this note, we perform a desktop comparison study of computing 
performances between GPU and CPU multi-core processing units, using most recent 
computing methods. 
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III. Acronyms and package meaning 
 
CPU      : Central Processing Unit 
GPU        : Graphical Processing Unit 
GPGPU   : General-purpose computing on graphics processing units 
CUDA      : Compute Unified Device Architecture 
FFT        : Fast Fourier Transform 
Matlab      : Technical computing software for engineers and scientists 
MPI          : Message Passing Interface 
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OpenMP  : Open Multi-Processing 
OpenCL   : Open Computing Language 
API           : Application Programming Interface 
GFLOP     : Giga FLoating point Operations Per Second 
Pthreads   : POSIX threads library for C 
POSIX      : Portable Operating System Interface (for UNIX systems) 
BLAS        : Basic Linear Algebra Subprogram 
ATLAS      : Automatically Tuned Linear Algebra Software 
CUBLAS   : Implementation of BLAS  on top of the NVIDIA CUDA 
CTM         : Close To Metal 
MAGMA   : Matrix Algebra For GPU AND Multicore Architectures 
 
 

1. Introduction 
 

Until the mid 2000, the continuous miniaturization of the semiconductor industry 
has allowed the computation power to linearly increase up to a few Ghz, 
corresponding to less than 100 nanometer size micro-processors. The last year’s 
improvements in calculation performances are due principally to the parallelization of 
computing architectures in so called multi-core CPUs. Until recently, it was not easy 
to handle parallelization techniques which were restricted to super-computing 
clusters. Multi-core CPUs are now equipping the standard desktop computers. 
Recent compilators have integrated multi-core parallelization standard coding 
methods [1]. In parallel, graphics cards, originally designed for parallel computation 
in 3D graphics domain, have given rise to a growing interest to exploit their 
capabilities for general purpose calculations. Today, graphical and multi-core 
processor units are viewed as complementary resources to build up powerful 
modern super-computers. In this note we give an introduction on CPU multi-core and 
GPU from the point of view of coding techniques and existing libraries. In the first 
section we introduce what is becoming the standard code method for multi-core 
parallelization on CPUs and GPUs. In the second section we provide a performance 
comparative study using different available high level open source libraries. In 
particular we will show some practical code examples for matrix and FFT 1D 
calculations. 
 

2. Parallel Computing Techniques 
 

There are two main paths to parallelization: CPU and GPU. GPU are traditionally 
small multi-core processors. They have been originally designed to parallelize big 
matrix calculation for 3D graphical applications. To increase CPU computing power, 
the idea has been to expand the CPU architecture to a multi-core one. In this 
section, we introduce some recent promising coding techniques which are becoming 
a standard in multi-core parallel code development. 
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2.1 Multi-Core CPU  

There are several ways to benefit from a multi-core processor CPU. The POSIX 
threads (Pthreads) is maybe the most known by c programmers. More recently, 
compilators starting from gcc 4.1 integrate a new option to use another shared-
memory based API: OpenMP [4]. There are arguments to be inclined to favor the 
use of OpenMP instead of Pthreads: 

1) Easier way to migrate serial to parallelized code 
2) Overall simplification of the development process (debugging, tuning) 

 Using OpenMP doesn’t require rewriting an application. Only the specific areas of 
code involving calculation loops need to be rearranged. OpenMP provides a set of 
pragmas, runtime routines, and environment variables that programmers can use to 
specify shared-memory parallelism. When OpenMP pragmas are used in a program, 
they direct an OpenMP aware compiler to generate an executable that will run in 
parallel using multiple threads.  To compile the parallelized code, we just need to add 
the option ‘–fopenmp’ for gcc, to make it understand the pragma  omp parallel. Note 
that an older gcc compiler that does not understand this pragma will simply ignore it. 
Also note that OpenMP has extensions for C++ and FORTRAN. 

 

2.2 GPU 
 

Graphic cards are the other path to parallelize an application over multi-cores. 
Most of 3D graphics computations involve basic matrix and vector operations. 
Recently, GPU have been increasingly studied also for general purpose calculations. 
The advantage over multi-core CPU is the number of cores available which is about 
2 orders of magnitude above (see Table 1). GPUs of the most powerful class simply 
interface with the motherboard by means of an expansion slot such as PCI express 
(PCIe) and can power up a machine with hundreds of additional cores. We observe 
two major bottlenecks of GPUs respect to CPU in the literature: 

 
1) The data transfer latencies introduced by CPU and GPU communication 

through the PCIe bus, because the main program is always CPU based. 
2) The limitation of GPU 32-bit processors having only single-precision data 

capabilities. However last generations of GPUs are able to handle double-
precision floating-point data compliant with IEEE 754 standard, but according 
to literature, the double-precision operations are less efficient compared to 
single-precision operations (see table 1).  
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Processor Type Clock speed # cores GFLops 64 GFlops 32 Price 
CPU Xeon W5590 3.33 GHz 4 (x2) 53.28 - $1600 
GPU Nvidia GTX 480 700MHz 480 168 1344.96 $500 

 
Table 1: Main characteristics and performances comparison between last generation 
CPU and GPU processors taken from constructors’ literature using Linpack 
benchmark for both CPU [2] and CUDA-Z for GPU [3]. 
 
One of the first development framework dedicated to 3D graphics applications for 
GPU is OpenGL. Nowadays, constructors like NVIDIA and ATI have released their 
own software development kits for general purpose and graphical calculations. They 
are called CUDA [5] and Stream, respectively (Stream was originally called CTM). A 
More general coding standard has emerged with the advent of the open source 
framework OpenCL [6] managed by the Khronos Group. It is now supported by both 
NVIDIA and ATI for GPU systems, but aims at becoming a standard for parallel 
programming of heterogeneous systems in general, including multi-core CPU and 
GPU systems collaboratively.  
Code using GPU resources requires some learning. However the code sequence is 
quite easy to understand. The piece of code for the function to be executed on GPU 
is called a kernel. Prior to calling the kernel, memory must be copied from host 
(CPU) to device. There are methods to copy memory from host to device and vice 
versa. After calling the kernel, the result is copied back from device to host. 
 
The typical code sequence is: 
 
// 1. Allocate all inputs and outputs host and device memory 
 
// 2. Copy input host memory to input device 
 
// 3. Call the kernel function with inputs and outputs as arguments 
 
// 6. Copy output device memory to output host   
 

Fortunately, there are already some high level libraries which give the possibility 
to take advantage of GPU computing power without entering the details of the low 
level coding aspects. For instance, CUFFT [7] is the FFT specialized library for 
CUDA. It presents the same functionalities as the well known FFTW library [8], so it 
is very easy to handle for those who already know FFTW. Another important 
available library is CUBLAS for basic algebraic operations [7]. There are also 
projects to port these libraries to Matlab, like GPUmat [9,10]. Using GPUmat allows 
running interactively equivalent Matlab operations on GPU. 
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3. Comparative Study GPU versus CPU 
 

In this section we present some results from tests we performed on a multi-core 
CPU machine integrating a GPU system, using various techniques. We tried to verify 
what is been currently said in the literature, about advantages and disadvantages of 
using one or another methods. We perform some basic model operations, i.e, a 
matrix product and a 1D FFT, using a set of selected open source libraries available 
for C language. We also have tested Matlab performances on CPU multi-cores. This 
study does not include the collaborative one CPU + GPU, but it should be noted that 
there are concrete projects like MAGMA [11] which aims at unifying CPU multi-cores 
and GPU computational power for the BLAS calculation toolkit [12]. 

3.1 Experimental Set-Up 
 

We use a Dell desktop computer T3500 host a last generation Xeon quadri-core 
CPU, on which we mounted a last generation NVIDIA GTX470 graphics card on the 
PCIe slot. Both CPU and GPU processors are of 40 nanometer size technology. 
Their characteristics are reported on Table 2. The Linux platform used is the 
Scientific Linux 5.4, kernel 2.6.18, 64-bit (x86_64), gcc version 4.1.2. 

 
 

 
Processor  Clock speed # cores GFLops 64 GFlops 32 Price 
CPU  
Xeon E5530 

2.4 GHz 4 (x2) 38.4  - $530 

GPU Nvidia  
GTX 470 

1.2GHz 448 136.1 1088.64 $350 

 
Table 2: Main characteristics and performances comparison between last generation 
CPU and GPU processors taken from constructors’ literature, using Linpack 
benchmark for CPU and CUDA-Z for GPU. 
 
With the present set-up, we checked that the best context for calculations are single-
precision for GPU, while they are double-precision for CPU. 
 

3.2 Matrix Operation 

In a first approach, we perform a matrix multiplication using the following 
calculation:  

#pragma omp parallel for shared(array, ncols, nrows) private(i, j, k)  
for (i = 0; i < nrows; i++) {  
 for (j = 0; j < ncols; j++) {  
  for (k = 0; k < nrows; k++) {  
   array[i][j] = array[i][k] * array[k][j];  
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  } } } 
  

 We make use of OpenMP pragma to automatically parallelize the code on CPU. In 
the loop, variables array, ncols and nrows are shared among the threads, while 
variables i, j, and k are private to each thread. Of course, performances can be 
greatly improved by using a better algorithm. For instance, using the matrix 
multiplication from CBLAS [13], the C version of BLAS, we obtain a much better 
result event without parallelization. We greatly improve the performances by using a 
parallelized version of CBLAS on CPU multi-cores. This is what we have done using 
ATLAS [14], an optimized library for linear algebra especially compiled on our 
experimental platform. ATLAS is a parallelized version of CBLAS library. The piece 
of code for ATLAS (or CBLAS) is a unique call to the function cblas_dgemm, used 
for matrix multiplication.  

A second interesting method is provided by Matlab. We use the straightforward 
vectorized matrix multiplication C = AxB from Matlab 2009A, which is automatically 
parallelized for CPU multi-cores.  

We compared these methods with CUBLAS [14], the BLAS version adapted for 
Nvidia GPU system. From CUBLAS, we used the functions cublasSetMatrix, 
cublasGetMatrix to set and get the matrixes before and after calculation. We 
performed the calculation using either cublasSgemm and cublasDgemm, the matrix 
multiplication functions in single and double precision mode, respectively. 

3.3 FFT 1D 
 

The 1D FFT calculations have been performed using three different methods. 
The first two methods perform the calculation on CPU and the third one on GPU. 
The first method uses FFTW [8], a famous FFT library for C. We use the 
multithreaded capabilities of FFTW in our test. This requires an initialization and 
routine: 
 
fftw_init_threads(); 
fftw_plan_with_nthreads(nth); 

 
Where nth is the number of threads to run. 
 
The piece of code implemented for the FFT 1D calculation is the following: 
 
fftw_plan plan;   
plan = fftw_plan_dft_1d(nIn,in,out,FFTW_FORWARD,FFTW_ESTIMATE); 
fftw_execute(plan); 
fftw_destroy_plan(plan); 

 
Where nIn represent the vector size, in,out the input and output vectors. Since it is a 
multithreaded version of FFTW, the application must terminate with the cleanup 
routine: 
 
fftw_cleanup_threads(); 
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The second method uses the fft Matlab function. It is coded in the most efficient 
manner, making fully use of the vectorization technique. In most recent versions, 
Matlab automatically take advantage of the multi-core CPU by instantiating multiple 
threads. 
The third method uses CUFFT for Nvidia GPU calculations. The piece of code is 
very similar to the FFTW one: 
 
cufftHandle plan; 
cudaMemcpy(din,hin,sizeof(cufftComplex)*nIn,cudaMemcpyHostToDevice); 
cufftResult planer; 
cufftPlan1d(&plan, nIn,CUFFT_C2C,1); 
cufftExecC2C(plan,din,dout, CUFFT_FORWARD); 
cudaMemcpy(hout,dout,sizeof(cufftComplex)*nIn, cudaMemcpyDeviceToHost); 
cufftDestroy(plan); 
 

Where nIn represent the vector size, hin,hout the host input and output vectors, and 
din,dout, the device input and output vectors. Note that before and after executing 
the plan, a memory copy from host to device and vice versa is done. 
 

3.4 Results 
 

3.4.1 Matrix results 
 

The results of computation time for a matrix multiplication are shown in Fig. 1. 
The biggest size computed is a 6000 x 6000 matrix size. Beyond this size, some 
computation errors appear in the GPU system either in double or single precision, 
certainly due to memory limitations (The GTX 470 card host 1280 MB GDDR5 
onboard memory). The first observation is that the Matlab method seems the less 
efficient one, especially at small sizes. We observe two main regimes between 
ATLAS and CUBLAS methods. Below about 800 x 800 matrix size, the ATLAS 
computation appears to be the best method. Beyond this value, the CUBLAS 
methods appears to be the best one whatever precision used, by more then a factor 
2 for double, and nearly a factor 10 for float.  
To understand better how is distributed the calculation time for GPU, we report in 
Fig. 2 the latency contribution from the PCIe bus transfer. A general observation is 
that latencies from device GPU to host CPU are always bigger than from host CPU 
to device GPU. Moreover, double precision bus latencies are always bigger than 
single precision ones. This may be directly correlated with the size of data 
transferred. We see that the bigger the matrix size, the more the bus latencies 
contribute to the total time of computation. It goes from at least 50% for very small 
sizes to up to 90 % for the biggest size. For low matrix sizes (< 800 x 800), the bus 
transfer latencies are responsible for the worse performances of the GPU. Clearly, 
one may pay a lot of attention to the data transfers between CPU and GPU not to 
loose the GPU gain of computation. This requires considering the data size and the 
serialization of operations to be done on the GPU. However, despite this bottleneck, 
GPU computation appears as the best cost-effective method, even in double 
precision. 
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Fig. 1: Matrix multiplication parallel computation performances from Matlab 
(2009A) and ATLAS on CPU multi-core, compared to CUBLAS single and double 
precision on GPU. 
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Fig. 2: PCIe bus data transfer latencies in both directions using CUBLAS on GPU 
using single and double precision. 
 

 
 

3.4.2 FFT 1D results 
 

The results of computation time for a FFT 1D are shown in Fig. 3. The biggest 
number of point computed is 8 millions. This limit is imposed by the CUFFT library. 
Note that for a FFT 2D and FFT 3D, the limit imposed is [2, 16384] points in any 
dimension. We observed data transfer and computation errors beyond this limit 
either in double or single precision. As illustrated in Fig. 3, We first note that in FFT 
1D computations using multi-threaded FFTW, the optimal number of threads does 
not increase linearly as a function of the number of points in the FFT 1D. Using multi-
threading appears interesting above 1 millions points, and the number of threads 
may be carefully adjusted each time, as the number of thread used may penalize the 
efficiency of FFTW. The results of computation times for all techniques used are 
reported in Fig. 4. Again we note that Matlab is globally the less efficient method, 
while CUFFT, the CUDA method for GPU, is the most powerful either in single and 
double precision. However, we note that the difference between FFTW and double 
precision CUFFT is reduced to only a factor 2 for 8 millions points used, while in 
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single precision, CUFFT is always about 10 times better than FFTW whatever the 
number of points used. Looking at bus latencies in Fig. 5, we see that contrary to 
matrix operations its contribution stays rather constant and does not exceed 50 % of 
the total computation time. 

 
 
 
 

 
 

 
 

Fig. 3: FFT 1D computation performances of multi-threaded FFTW (on CPU) as a 
function of the number of threads used. 
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Fig. 4: FFT 1D performance comparison between CPU and GPU. For FFTW, the 
number of threads is adjusted manually to get the best result (between 1 and 10 
threads). For GPU we use the CUFFT library from CUDA framework. 
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Fig. 5: PCIe bus data transfer latencies contribution to the FFT 1D calculation 
using CUFFT single-precision from CUDA. 
 
 

4 Conclusion 
 

We have presented a comparison between calculation performances on multi-
core CPU and graphics cards GPU, using advanced computing methods. Our 
conclusion is that GPU systems are very promising calculation systems and may 
even become competitive in the super-computing area. We note that they are now 
breaking the TeraFlop barrier (in single precision), and we expect it to increase in the 
coming years. This leads us to think that super-computers scaling from desktop to 
cluster shall integrate more and more GPU systems collaboratively with CPUs in the 
future. Projects like OpenCL and MAGMA are interesting frameworks composing 
with such heterogeneous systems. 
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