### Status of Advanced Virgo



#### On behalf of the Virgo Collaboration

APC Paris, ARTEMIS Nice, EGO Cascina, INFN Firenze-Urbino INFN Genova, INFN Napoli, INFN Perugia, INFN Pisa, INFN Roma La Sapienza, INFN Roma Tor Vergata, INFN Trento-Padova, LAL Orsay – ESPCI Paris, LAPP Annecy, LKB Paris, LMA Lyon, NIKHEF Amsterdam, POLGRAW(Poland), RADBOUD Uni. Nijmegen, RMKI Budapest

December 19th 2013

#### GWPAW 2013, Pune, India



# ((O)) 1<sup>st</sup> generation achievements



AdV status, GWPAW2013



Advanced Virgo

- Goal: increase sensitivity by a factor 10
- Need to fight thermal, quantum, "technical" noises, increase power
- How?
  - Heavier mirrors PR, 25W BNS range: 107 Mpc Dual rec., 125W, tuned SR. Range: 126 Mpc 10<sup>-21</sup> Upgrade monolithic suspension Dual rec., 125W, detuned SR. Range: 142 Mpc » Virgo+ : a useful learning experience Virgo+ (Sept 13, 2011): BNS range: 13 Mpc Use larger beam » Vacuum modification 10<sup>-22</sup>[ High quality optics » Low absorption » Coating thermal noise » 0.2nm rms surfaces 10<sup>-23</sup> » Thermal compensation All sensing devices under vacuum » New suspended benches » Need more lab space Add signal recycling 10<sup>-24</sup>  $10^{2}$  $10^{3}$  $10^{4}$  $10^{1}$ » Not used right away



## AdV Sensitivity tunability



- Signal recycling: sensitivity could be adjusted
  Within some limits...
- Can be tuned to detect/study various sources

Require signal recycling, not scheduled for the first AdV science run



### AdV construction status

- AdV approved end 2009 ~ 2 years after aLIGO
  - AdV budget ~ 23 M€ (investments)
- Committed budget: more than 50% since last October



5/10



### Prototyping & tests: examples

AdA &

### • Examples of integration tests:

- New payload geometry,
- New seismic isolation + chamber for new in-vacuum optical benches





### Parts production

### • Production is on going for many parts

Examples with vacuum part, seismic isolation for new benches, telescopes, optics...









# **Site infrastructure modifications**

### Laser and detection lab have been enlarged

- Dusty work (cutting concrete) completed
- New air conditioning machine installed
- And more changes like scaffoldings, LN2 supply...





### Starting the installation

• Laser and injection system installation started



• Target: begin input mode cleaner commissioning mid-2014



## Collecting data with AdVirgo?

2014 2015 2016 6 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 Planning: AdV: Input mode cleaner ready for commissioning AdV: Beam available on detection system 13/02 Main AdV milestones unchanged AdV: One arm available for commissioning AdV: Assembly & Integration finished over last year 30/10 🍐 AdV: First 1 hour lock Advanced Virgo 10<sup>-21</sup> Early (2016-17, 20 - 60 Mpc) Some guesses made for Mid (2017-18, 60 - 85 Mpc) phing strain noise amplitude (Hz<sup>-1/2</sup>) Late (2018-20, 65 - 115 Mpc) sensitivity progresses Design (2021, 130 Mpc) 10<sup>-22</sup> BNS-optimized (145 Mpc) EITE But commissioning is difficult to predict.  $10^{-23}$ Looking forward to the exciting physics with the advanced detectors! 10<sup>-24</sup>  $10^{2}$ 10<sup>3</sup> 10 frequency (Hz)