

Advanced Virgo Calibration Monitoring during the Observing Run O3

D. Verkindt, L. Rolland, D. Estevez, B. Mours, P. Lagabbe, M. Seglar-Arroyo

May 28, 2021

$\label{eq:VIR-0544A-21} \\ https://tds.virgo-gw.eu/ql/?c{=}16792$

Contents

1	Introduction	2
2	Permanent calibration lines injected during O3	3
3	The TFMoni monitoring process	4
4	Calibration lines for optical gain and finesse monitoring	6
5	Monitoring with Photon Calibrator lines	7
6	Monitoring of the EM actuators coils	8
7	Monitoring of the reconstructed $h(t)$ channel bias via hardware injections	12
8	Details about the SNR and statistical uncertainty computations	15
A	Monitoring of Hrec/Hinj during O3: all plots	18
A	Monitoring of coils voltage during O3: all plots	27
Α	TFMoni configuration used during O3	44

DRAFT- May 28, 2021

1 Introduction

Over all the O3 run, from April 1st 2019 to March 27th 2020, a permanent monitoring has been performed on the modulus and phase of the reconstructed gravitational wave strain h(t)or on the phase and modulus of transfer functions of various signals used for the calibration of the Advanced Virgo detector [1].

Such monitoring has been done by injecting sinusoidal excitations (calibration lines) through the Photon Calibrator (PCal) [2][4][3] or through the Electromagnetic (EM) actuators that control the interferometer's mirrors longitudinal motion. Part of this monitoring was done by the online running process TFMoni [5] and provided useful information about the accuracy of the EM actuators response and useful checks of the h(t) reconstruction uncertainties.

This note summarizes the main results obtained and provides details about the computations and procedures that allowed to get those results.

Most of the systematic uncertainties on h(t) phase and modulus have been obtained by looking at the variation in time of the calibration parameters or, more globally, the variation in time of the reconstructed h(t) with respect to a modeled value h_{ini} .

Such variations were correlated to changes of the interferometer working point during the O3 time period. Figure 1 shows the time evolution of the BNS range over the O3 observation run and illustrates the time scale and amplitude of those changes.

V1:Hrec Range BNS max TIME

 $\mathbf{2}$

Figure 1: Evolution of the BNS range over the O3 time period.

2 Permanent calibration lines injected during O3

During O3, permanent lines (sine wave signals) were injected continuously on the WE, NE, PR and BS mirrors and marionette electromagnetic actuators and on the WE and NE mirrors Photon Calibrators (PCal). The table 1 gives the full list of those permanent lines. Two paths for injections have been used:

- 1. **CORR**: calibration signal is added to the control signal (Z_CORR on the EM actuators). This type of injection can be done on all mirrors and marionettes, and the calibration lines are naturally subtracted in the h(t) reconstruction process, along with the control signal: hence they are already subtracted at the level of the h_{raw} signal.
- 2. HI: calibration signal is added as hardware injection on NE and WE (Z_NOISE on EM actuators or photon calibrators). Such injections are done via NE and WE mirrors and are not subtracted in the first step of the h(t) reconstruction. They are specifically subtracted as hardware injections (HI) in the last step of the reconstruction (after the noise subtraction) when going from h_{clean} to the final h(t) signal.

The h(t) reconstruction process requires four lines sent to the four mirrors EM actuators (BS, PR, NE, WE) to monitor the optical gain and arm cavity finesse (see section 4). Those four lines are part of the CORR lines.

Both CORR and HI injections can be used to monitor the actuator responses (see section 6). In addition, the HI injections have been used to monitor the h(t) reconstruction (see section 7) and to estimate the O3 h(t) uncertainties.

The lines at 2012.5 Hz sent onto all the mirror's and marionette's actuators were well below the Virgo sensitivity. However, since the control signals are very low at this frequency, they were strong enough to be seen in the correction signal sent back by the actuator DSP. Thus, the transfer functions between the correction signal Sc_MIR_Z_CORR and the injected signal CAL_MIR_Z_CORR have been used to monitor the data transfer from the real-time PC to the DSPs and to highlight any change in the DSP digital processing.

Type	Frequency (Hz)	Mirror	Actuator
	15.8	WE mar.	EM
	16.3	BS mar.	$\mathbf{E}\mathbf{M}$
	16.8	NE mar.	$\mathbf{E}\mathbf{M}$
	61.0	BS mir.	EM
	61.5	WE mir.	EM
	62.5	NE mir.	$\mathbf{E}\mathbf{M}$
COBB	63.0	PR mir.	$\mathbf{E}\mathbf{M}$
COM	353.0	PR mir.	EM
	356.0	BS mir.	$\mathbf{E}\mathbf{M}$
	356.5	WE mir.	$\mathbf{E}\mathbf{M}$
	357.5	NE mir.	$\mathbf{E}\mathbf{M}$
	2012.5	PR, BS, NE, WE mir	EM
	2012.5	NI, WI mir	$\mathbf{E}\mathbf{M}$
	2012.5	BS, NE, WE mar	$\mathbf{E}\mathbf{M}$
	34.5	NE mir.	PCal
	36.5	WE mir.	PCal
	37.5	NE mir.	$\mathbf{E}\mathbf{M}$
	56.5	WE mir.	$\mathbf{E}\mathbf{M}$
	60.5	WE mir.	PCal
ш	63.5	NE mir.	PCal
m	77.5	NE mir.	$\mathbf{E}\mathbf{M}$
	106.5	WE mir.	$\mathbf{E}\mathbf{M}$
	107.5	NE mir.	EM
	136.5	NE mir.	$\mathbf{E}\mathbf{M}$
	206.5	WE mir.	EM
	406.5	WE mir.	EM

Table 1: List of all permanent calibration lines injected during O3 through the mirror and marionetta EM actuators or through the Pcal actuators.

3 The TFMoni monitoring process

An online process, named TFMoni, has been used during all the O3 run to compute various Transfer Functions (TF) in order to monitor the electromagnetic actuators, the photon calibrator and the h(t) reconstruction.

TFMoni computed all the TF values with an average of 12 FFTs (or 24 FFTs in case of PCal), each FFT being computed over 10 s of data, with an overlap of 50%. It used a moving averaging, thus for a given TF, one output value was computed every 5 s. The TFMoni output

channels were sampled at 1 Hz and thus contained five times the same value every 5 s.

TFMoni uses the library Frv which has a convention in the binning of the FFTs. The version of TFMoni that ran online during O3 was not aligned with this convention and the bin chosen in the FFT for a given frequency was not the correct one. As a result, the TF was computed one bin lower, a bin where the line signal is still present but reduced in amplitude by a factor $\sqrt{2}$ in the FFTs. The estimated TF modulus and phase being ratio and difference of two FFTs, the measured values were correct, but the associated uncertainties were higher than expected by a factor $\sqrt{2}$. We have thus reprocessed the TFs used for monitoring the reconstructed h(t) bias (section 7) over all O3b (using data on Virgo site) and over all O3a (using data at CCin2p3) to provide the correct TFMoni values used to get the results shown in this note and in the O3 calibration paper. Note that we did not reprocess the TFs used for coil monitoring (section 6), so the width of the distributions shown for these are overestimated by a factor $\sqrt{2}$.

In addition to this problem of FFT binning, the configuration used online during O3 had wrong frequencies for the monitoring of the TF between BS (PR) coil voltages and BS (PR) control signals. No reprocessing has been done to fix this problem. Just be aware that in the cases of BS and PR actuators, the TFMoni results for the coil voltages (VOUT signals) monitoring are not provided at the frequencies where the permanent lines were injected.

The TFMoni configuration used online during O3 is available in the appendix A. Figure 2 shows an example of input signals used in this configuration.

Figure 2: Examples of signals used by TFMoni. Left is for NE mirror, right is for PR mirror. Each time, the FFT of the signals, their coherence and their transfer function are shown, for two dates of O3b. We can see the injected lines used by TFMoni at 357.5 HZ (for NE) and 358 Hz (for PR).

4 Calibration lines for optical gain and finesse monitoring

Four lines were injected on WE, NE, PR and BS mirrors around 60 Hz, through the control signals via electromagnetic actuators. They were used in the h(t) reconstruction process to monitor the optical gains and finesse of each arm's cavity. The lines were injected permanently and this monitoring was done at the pace of h(t) reconstruction, that is once every 4 s.

The lines were injected at well defined frequencies and with a Signal-to-Noise Ratio (SNR) of the order of 100 above the background noise, as summarized in the table 2 (see section 8 for details about the SNR computation). They were naturally subtracted in the h(t) reconstruction algorithm since they were present in the longitudinal control signals. Figure 3 shows those calibration lines in the spectrum of the dark fringe signal and in the spectrum of the reconstructed h(t).

Injection source	Line frequency	Line SNR
NE mirror actuator	$62.5~\mathrm{Hz}$	117
WE mirror actuator	$61.5~\mathrm{Hz}$	103
BS mirror actuator	$61.0~\mathrm{Hz}$	125
PR mirror actuator	$63.0~\mathrm{Hz}$	3

Table 2: Permanent calibration lines injected during O3 through the EM actuators to monitor the optical gain and finesse of the arm cavities in the h(t) reconstruction processing. The given SNR has been estimated in the Hrec_hoft_raw_20000Hz channel (i.e. before noise subtraction) for GPS=1264636818 (O3b).

Figure 3: Calibration lines in the spectrum of h(t), before h reconstruction (blue, B1 spectrum normalized to match h spectrum around 60 Hz), after h reconstruction (orange) and in the final h(t) delivered to data analyses (green) with calibration lines subtracted.

5 Monitoring with Photon Calibrator lines

In addition, a set of permanent lines were injected on NE and WE as hardware injections (HI lines of table 1) via the EM and Pcal actuators, at various frequencies and SNRs. They were used to monitor the PCal and the EM actuators as well as the h(t) reconstruction stability (see tables 6 and 7 of section 7). These hardware injections were subtracted in the last step of the h(t) reconstruction process. An example is seen in figure 3, where the two hardware injections sent via the PCal at 60.5 Hz and 63.5 Hz are subtracted in the final h(t) channel (green curve).

Among those lines, four lines were injected at the Photon Calibrator level, with a high SNR of about 40 around 60 Hz in O3b. They are listed in the table 3 and their subtraction in the h(t) reconstruction process is illustrated by the Figure 4.

Injection source	Line frequency	Line SNR
NE PCal	$34.5~\mathrm{Hz}$	12
WE PCal	$36.5~\mathrm{Hz}$	14
NE PCal	$60.5~\mathrm{Hz}$	47
WE PCal	$63.5~\mathrm{Hz}$	41

Table 3: Permanent calibration lines injected during O3 through the Photon Calibrator to monitor the h(t) reconstruction process. The given SNR has been estimated in the Hrec_hoft_raw_20000Hz channel (i.e. before noise subtraction) for GPS=1264636818 (O3b). Lower values were obtained for O3a.

Figure 4: PCal calibration lines in the spectrum of $Hrec_hoft_raw_20000Hz$ (blue) and in the spectrum of $Hrec_hoft_20000Hz$ (orange), which is the final h(t) delivered to data analyses, with the four PCal calibration lines (and other) subtracted.

6 Monitoring of the EM actuators coils

In order to monitor the EM longitudinal actuator responses (NE, WE, BS and PR), the transfer functions from the correction signals to the current flowing in the actuator coils have been computed and monitored (i.e. transfer functions like Sc_NE_MIR_VOUTDL / Sc_NE_MIR_Z_CORR). Such monitoring include the analog part of the actuators.

The computation was done online with the TFMoni process described briefly in section 3. The transfer functions were computed at frequencies around 60 Hz and 355 Hz.

The fluctuations of the transfer function modulus and phase, at a given frequency, between each of these coil voltages and the corresponding longitudinal control loop signal allowed to estimate the stability of the EM actuators response used for the h(t) reconstruction. As an example, the modulus and phase of those transfer functions for NE and WE VOUTDL coils (VOUTDL is for Voltage in Down Left coil) are shown on figure 5. The full set of plots is available in appendix A and full results for NE, WE, BS and PR coils, around 60 Hz and around 355 Hz, are shown in tables 4 and 5.

The plots show variations that are quite stable all along the run, despite the fact that between O3a and O3b the SNR of the injected lines has changed a lot in the control loop signals as can be seen in table 4 and figure 6. This is a hint that the uncertainty on the TF is limited by the VOUT signals and not by the control signals.

The variation of the SNR between O3a and O3b in tables 4 and 5 is mainly due to a reduction of the noise in the control loop correction signals Sc_XX_MIR_Z_CORR (XX=BS,PR,NE or WE) at the frequencies where are estimated the lines SNR. This is illustrated by the plots of Figure 6.

In general, the distributions of the modulus and phase over O3a and O3b are Gaussian with statistical errors of the order of 0.4% in modulus and 3 mrad in phase. Except for NE and WE around 355 Hz (see for example figures 24 and 32) where the statistical errors are much lower and the distribution not Gaussian. Indeed, the SNR being ten times higher at these frequencies, some systematic time variations are clearly highlighted, at the level of 0.04% in modulus and 0.1 mrad in phase (see figures and table 4).

Overall, except some modifications done during the run and described within the caption of the figures, the observed variations of the TF between VOUT signals and control loop signals are within around 0.5% in modulus and 3 mrad in phase, mainly limited by statistical errors.

Figure 5: TFMoni Modulus and Phase near 60 Hz of the transfer function between NE (WE) coil voltages VOUT_DL and the longitudinal control loop signals $Sc_NE_MIR_Z_CORR$ ($Sc_WE_MIR_Z_CORR$). For each plot, time evolution and fitted distribution are shown. Plots for all actuators and all frequencies are available in appendix A.

Figure 6: O3a and O3b superposed spectra of the longitudinal control loop signals $Sc_XX_MIR_Z_CORR$ (XX=BS,PR,NE and WE) around 60 Hz (left) and around 355 Hz (right).

Actuator Coil	Line freq.	O3a SNR	O3b SNR	σ_{mod}	σ_{phi}
NE VOUTUL_60	62.5 Hz	3	20	0.37%	2.8 mrad
NE VOUTUR_60	$62.5~\mathrm{Hz}$	3	20	0.39%	$3.1 \mathrm{mrad}$
NE VOUTDL_60	$62.5~\mathrm{Hz}$	3	20	0.36%	$3.0 \mathrm{mrad}$
NE VOUTDR_60	$62.5~\mathrm{Hz}$	3	20	0.37%	$3.0 \mathrm{mrad}$
NE VOUTUL_355	$357.5~\mathrm{Hz}$	220	260	0.034%	$0.09 \mathrm{mrad}$
NE VOUTUR_355	$357.5~\mathrm{Hz}$	220	260	0.036%	$0.08 \mathrm{\ mrad}$
NE VOUTDL_355	$357.5~\mathrm{Hz}$	220	260	0.027%	$0.06 \mathrm{mrad}$
NE VOUTDR_355	$357.5~\mathrm{Hz}$	220	260	0.035%	$0.08 \mathrm{mrad}$
WE VOUTUL_60	61.5 Hz	3	18	0.37%	3.2 mrad
WE VOUTUR_60	$61.5~\mathrm{Hz}$	3	18	0.40%	$3.5 \mathrm{mrad}$
WE VOUTDL_60	$61.5~\mathrm{Hz}$	3	18	0.40%	$3.3 \mathrm{mrad}$
WE VOUTDR_60	$61.5~\mathrm{Hz}$	3	18	0.43%	$3.7 \mathrm{mrad}$
WE VOUTUL_355	$356.5~\mathrm{Hz}$	260	340	0.028%	$0.06 \mathrm{mrad}$
WE VOUTUR_355	$356.5~\mathrm{Hz}$	260	340	0.037%	$0.05 \mathrm{mrad}$
WE VOUTDL_355	$356.5~\mathrm{Hz}$	260	340	0.060%	$0.17 \mathrm{mrad}$
WE VOUTDR_355	$356.5~\mathrm{Hz}$	260	340	0.027%	$0.06 \mathrm{mrad}$

Table 4: The SNR of the lines used to monitor the modulus and phase of the transfer functions between the longitudinal control loop signals and XX coil voltages (XX=NE,WE), around 60 Hz and around 355 Hz, have been estimated at GPS=1251317018 (O3a) and GPS=1264636818 (O3b), in the $Sc_XX_MIR_Z_CORR$ channel. Are shown also the statistical fluctuations over the full O3 run taken as the width provided by a Gaussian fit of the distribution of the module or phase values. Such TFMoni values were not reprocessed (unlike in section 7) and the uncertainties on modulus and phase are thus a factor $\sqrt{2}$ larger than what they should be.

Actuator Coil	Line freq.	O3a SNR	O3b SNR	σ_{mod}	σ_{phi}
BS VOUTUL_60	62.8 Hz	3	17	0.18%	1.9 mrad
BS VOUTUR_60	$62.8~\mathrm{Hz}$	3	17	0.19%	4.3 mrad
BS VOUTDL_60	$62.8~\mathrm{Hz}$	3	17	0.19%	1.8 mrad
BS VOUTDR_60	$62.8~\mathrm{Hz}$	3	17	0.19%	4.3 mrad
BS VOUTUL_355	$357.8~\mathrm{Hz}$	147	750	0.53%	$5.3 \mathrm{mrad}$
BS VOUTUR_355	357.8 Hz	147	750	0.35%	$9.0 \mathrm{mrad}$
BS VOUTDL_355	357.8 Hz	147	750	0.42%	4.8 mrad
BS VOUTDR_355	$357.8~\mathrm{Hz}$	147	750	0.49%	$10.2 \mathrm{mrad}$
PR VOUTUL_60	62.3 Hz	3	11	1.03%	10.4 mrad
PR VOUTUR_60	$62.3~\mathrm{Hz}$	3	11	0.98%	9.8 mrad
PR VOUTDL_60	$62.3~\mathrm{Hz}$	3	11	1.13%	11.0 mrad
PR VOUTDR_60	$62.3~\mathrm{Hz}$	3	11	1.03%	$10.3 \mathrm{mrad}$
PR VOUTUL_355	357.3 Hz	18	52	0.23%	2.2 mrad
PR VOUTUR_355	$357.3~\mathrm{Hz}$	18	52	0.20%	$2.0 \mathrm{mrad}$
PR VOUTDL_355	$357.3~\mathrm{Hz}$	18	52	0.26%	$2.5 \mathrm{mrad}$
PR VOUTDR_355	$357.3~\mathrm{Hz}$	18	52	0.24%	2.3 mrad

Table 5: The SNR of the lines used to monitor the modulus and phase of the transfer functions between the longitudinal control loop signals and XX coil voltages (XX=BS,PR), around 60 Hz and around 355 Hz, have been estimated at GPS=1251317018 (O3a) and GPS=1264636818 (O3b), in the $Sc_XX_MIR_Z_CORR$ channel. Are shown also the statistical fluctuations over the full O3 run taken as the width provided by a Gaussian fit of the distribution of the module or phase values. CAUTION: BS and PR measurements were done by TFMoni at frequencies where injected lines were not present (62.8 Hz instead of 61 Hz, 357.8 Hz instead of 356 Hz, 62.3 HZ instead of 63 Hz, and 357.3 Hz instead of 358 Hz), so the numbers for BS and PR are not at the frequencies of the injected lines. Such TFMoni values were not reprocessed (unlike in section 7) and the uncertainties on modulus and phase are thus a factor $\sqrt{2}$ larger than what they should be.

7 Monitoring of the reconstructed h(t) channel bias via hardware injections

The set of twelve permanent sinusoidal signals, listed in tables 6 and 7, were injected during O3 on the end mirrors via the different PCal and electromagnetic actuators. They allow a continuous comparison of the reconstructed strain data h_{rec} with the injected equivalent strain h_{inj} in the most sensitive band of the detector, between 35 Hz and 400 Hz. Some signals are in the regions where the bias of the strain channel is the highest, i.e. 100 to 200 Hz for the amplitude and 60 to 90 Hz for the phase. Hence they have been used to monitor possible time variations of this bias.

The modulus and phase of the h_{rec}/h_{inj} transfer functions at the twelve injected frequencies were computed online using a moving average of 12 (24 for the PCal) 10 s-long FFTs and provided in the online data stream as channels sampled at 1 Hz. The h_{inj} signals were estimated with online models set at the beginning of O3 and they were not updated in this processing during O3. As such, the monitoring of these channels is a witness of the possible variations of the reconstructed strain data, as well as of the small variations of the actuator responses as described earlier, but they are not precise witness of the absolute value of the strain data bias.

The distributions of the online modulus and phase have been built over O3a and O3b and are shown in the plots of appendix A. Their standard deviations are reported in tables 6 and 7. For every injected signal, the typical SNR during O3a and O3b is also given, as well as the expected standard deviation of the modulus in case of statistical fluctuations only. The measured variations during O3a and O3b (Fig. 7) are all slightly larger than the expected statistical fluctuations only: it indicates that these monitoring channels indeed highlight time variations of the h_{rec}/h_{inj} ratio. These variations can be considered as systematic uncertainty and are estimated by subtracting quadratically the expected statistical fluctuations from the measured one. They are shown, for O3a and O3b, in the two plots of figure 8.

For O3a and O3b, the h_{rec}/h_{inj} modulus systematic uncertainty is estimated to be of 0.9%, at 137.5 Hz, while the phase systematic uncertainty is estimated to be of 9 mrad. These variations include both h(t) bias variations and variations of the actuator responses. They have been used as conservative estimate of the uncertainty on h(t) bias.

Actuator	Line freq.	Line SNR	σ_{stat}	O3 a σ_{mod}	O3 a σ_{phi}
NE EM	37.5 Hz	3	1.06%	1.57%	15.8 mrad
NE EM	$77.5~\mathrm{Hz}$	4.5	0.70%	1.58%	$15.5 \mathrm{mrad}$
NE EM	$107.5~\mathrm{Hz}$	13	0.25%	0.60%	6.8 mrad
NE EM	$137.5~\mathrm{Hz}$	7.5	0.43%	1.00%	10.1 mrad
NE PCal	34.5 Hz	6	0.37%	0.95%	9.1 mrad
NE PCal	$63.5~\mathrm{Hz}$	25	0.09%	0.32%	2.3 mrad
WE EM	56.5 Hz	5	0.66%	1.40%	13.9 mrad
WE EM	$106.5~\mathrm{Hz}$	11	0.29%	0.71%	7.3 mrad
WE EM	$206.5~\mathrm{Hz}$	11	0.29%	0.71%	6.2 mrad
WE EM	$406.5~\mathrm{Hz}$	9.5	0.34%	0.79%	7.6 mrad
WE PCal	36.5 Hz	5	0.44%	0.90%	8.4 mrad
WE PCal	60.5 Hz	22	0.10%	0.35%	$2.5 \mathrm{mrad}$

Table 6: Sinusoidal permanent hardware injections used during O3a to monitor the accuracy of h(t) reconstruction. For the four different end test mass actuators, the injected line frequency is given with the typical signal-to-noise ratio estimated during O3a, the expected standard deviation of the h_{rec}/h_{inj} modulus in case of statistical fluctuations only, and the standard deviations measured on the TFMoni distributions of the modulus and phase of h_{rec}/h_{inj} during O3a.

Actuator	Line freq.	Line SNR	σ_{stat}	O3b σ_{mod}	O3b σ_{phi}
NE EM	37.5 Hz	11	0.29%	0.77%	8.9 mrad
NE EM	77.5 Hz	7	0.46%	1.20%	12.0 mrad
NE EM	$107.5~\mathrm{Hz}$	16	0.20%	0.55%	6.4 mrad
NE EM	$137.5~\mathrm{Hz}$	9	0.36%	0.91%	$10.0 \mathrm{mrad}$
NE PCal	34.5 Hz	12	0.18%	0.53%	5.5 mrad
NE PCal	$63.5~\mathrm{Hz}$	41	0.06%	0.34%	1.8 mrad
WE EM	56.5 Hz	7	0.46%	1.05%	10.6 mrad
WE EM	$106.5~\mathrm{Hz}$	14	0.23%	0.62%	7.1 mrad
WE EM	$206.5~\mathrm{Hz}$	15	0.22%	0.73%	$5.8 \mathrm{mrad}$
WE EM	$406.5~\mathrm{Hz}$	12	0.27%	0.77%	7.4 mrad
WE PCal	36.5 Hz	14	0.16%	0.54%	6.7 mrad
WE PCal	60.5 Hz	47	0.04%	0.34%	2.0 mrad

Table 7: Sinusoidal permanent hardware injections used during O3b to monitor the accuracy of h(t) reconstruction. For the four different end test mass actuators, the injected line frequency is given with the typical signal-to-noise ratio estimated during O3b, the expected standard deviation of the h_{rec}/h_{inj} modulus in case of statistical fluctuations only, and the standard deviations measured on the TFMoni distributions of the modulus and phase of h_{rec}/h_{inj} during O3b.

Figure 7: Upper left: SNR of the permanent injected lines used for hrec/hinj monitoring and the statistical uncertainties on modulus deduced from SNR (SNR were estimated at GPS=1251525400 for O3a and GPS=1265000000 for O3b). Upper right: same for the statistical uncertainties on phase of hrec/hinj. Lower left: widths of the hrec/hinj modulus distributions obtained from TFMoni. Lower right: widths of the hrec/hinj phase distributions obtained from TFMoni.

Figure 8: Left: systematic uncertainties on hrec/hinj module computed as the quadratic difference between the measured width and the expected statistical uncertainties (blue for O3a and red for O3b). Statistical uncertainties have been estimated using a SNR computed at GPS=1251525400 for O3a and GPS=1265000000 for O3b. Right: systematic uncertainties on hrec/hinj phase computed as the quadratic difference between the measured width and the computed statistical uncertainties (blue for O3a and red for O3b). Details about statistical uncertainties estimation are provided in section 8.

8 Details about the SNR and statistical uncertainty computations

The SNR of the injected lines is estimated using the calisnr.C ROOT script of the CaliSimu package. This script uses 3 bins of the spectrum around the line frequency and uses the following formula:

$$SNR^{2} = \frac{s_{i-1}^{2} + s_{i}^{2} + s_{i+1}^{2}}{b_{i-1}^{2} + b_{i}^{2} + b_{i+1}^{2}} \times \frac{1}{T} = \frac{(1 + 1/4 + 1/4) \times s_{i}^{2}}{3 \times b_{i}^{2}} \times \frac{1}{T} = 0.5 \times \frac{s_{i}^{2}}{b_{i}^{2}} \times \frac{1}{T}$$

where T is the duration of the FFT, s_i is the FFT amplitude at the frequency of the injected line (that is the rms of the sinusoidal excitation signal), b_i is the estimated noise level at the frequency of the injected line. Finally, the SNR of the injected line is:

$$SNR = \frac{1}{\sqrt{2}} \times \frac{s_i}{b_i} \times \sqrt{\frac{1}{T}}$$

Then, the estimation of the relative statistical uncertainty $\sigma_{modulus}$ on the modulus is done by considering that the injected line is within a stationary Gaussian noise whose spectrum has, in each frequency bin, a Gaussian random variable whose rms value is 0.5 time its mean value (which is the level of the amplitude spectral density).

$$\sigma = 0.5 \times b(i) \times \sqrt{\frac{1}{N_{fft}}}$$

where N_{fft} is the number of averaged FFTs. Then, by replacing b_i by its expression with s_i and SNR, we get the relative statistical uncertainty:

$$\sigma_{modulus} = \frac{\sigma}{s_i} = 0.5 \times \frac{1}{\sqrt{2}} \times \frac{1}{SNR} \times \sqrt{\frac{1}{N_{fft}}}$$

The values of $\sigma_{modulus}$ estimations are provided in tables 6, 7 or 4.

The statistical uncertainty on the phase in mrad is computed on the basis of the following formula, deduced from the uncertainties on TF modulus and phase based on the coherence value in [10].

$$\sigma_{phase}(mrad) = 10 \times 0.88/0.85 \times \sigma_{modulus}$$

The computation of $\sigma_{modulus}$ is done using an estimation of the SNR at a given time. Figure 9 shows an example of the time evolution of the SNR over the run O3, for four calibration lines in the channel Hrec_hoft_raw_20000Hz. Except some drops due to the presence of glitches, the SNR value fluctuations are below 20%, thus all the statistical uncertainties deduced from the SNR value does not fluctuates more than 20% over the O3 run.

Figure 9: Time evolution over the O3b run of the SNR of calibration lines (and corresponding statistical uncertainty) at 56.5 Hz (upper left), 77.5 Hz (upper right), 60.5 Hz (lower left) and 63.5 Hz (lower right; warning: this line was injected via the NE Pcal, which was not working between October 2019 and end January 2020, this explains the close to zero SNR of the line in this time period).

References

- F Acernese et al., Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical Quantum Grav. 32, (2):024001 (2015)
- [2] Estevez et al., The Advanced Virgo Photon Calibrators, Classical Quantum Grav. 38, (1):075007 (2021), arXiv:2009.08103
- [3] Virgo note VIR-0013A-15, https://tds.virgo-gw.eu/ql/?c=10722
- [4] Virgo note VIR-0466A-19, https://tds.virgo-gw.eu/ql/?c=14294
- [5] TFMoni Documentation, Virgo note VIR-0459A-21, https://tds.virgo-gw.eu/ql/?c=16707
- [6] The Frame Vector library (Frv): https://lappweb.in2p3.fr/virgo/FrameL/, https://git.ligo.org/virgo/virgoapp/Frv
- [7] CaliSimu documentation, Virgo note VIR-0037B-21, https://tds.virgo-gw.eu/ql/?c=16285
- [8] F. Acernese et al., Calibration of Advanced Virgo and Reconstruction of the Gravitational Wave Signal h(t) during the Science Run O2, Classical and Quantum Gravity, vol.35 no 20 (2018), arXiv:1807.03275
- [9] Hrec package documentation, Virgo note VIR-0590A-20 , https://tds.virgo-gw.eu/ql/?c=17373
- [10] Calibration and sensitivity of the Virgo detector during its second science run, 2011, https://arxiv.org/pdf/1009.5190.pdf

A Monitoring of Hrec/Hinj during O3: all plots

The O3 run was done in two parts: O3a (from 2020-04-01 to 2020-09-30) and O3b (from 2020-11-01 to 2021-03-27). For each of those parts, an estimation of the h(t) uncertainty has been done using the transfer functions hrec/hinj computed by TFMoni.

O3a: Plots for the modulus of the transfer function between the reconstructed h(t) and NE or WE hinj, at various frequencies, during O3a are shown in Figures 10 and 11.

Plots for the phase of the transfer function between the reconstructed h(t) and NE or WE hinj, at various frequencies, during O3a are shown in Figures 12 and 13. The TFMoni data used to do these plots have been reprocessed at CCin2p3 and a few days of data are missing. This does not change the result.

O3b: Plots for the modulus of the transfer function between the reconstructed h(t) and NE or WE hinj, at various frequencies, during O3b are shown in Figures 14 and 15.

Plots for the phase of the transfer function between the reconstructed h(t) and NE or WE hinj, at various frequencies, during O3b are shown in Figures 16 and 17. The TFMoni data used to do these plots have been reprocessed on Virgo site.

The following data samples have been excluded from the plots:

- 1. coherence associated to the transfer function is below 0.98
- 2. Virgo interferometer is not in science mode
- 3. Virgo interferometer is in science mode since less than 1200 s. This very conservative window excludes start of averaging of TF by TFMoni after the relock.
- 4. Virgo interferometer is 300 s before the end of science mode. This cut allows to exclude possible noisier interferometer before an unlock.
- 5. PCal channel is used by TFMoni but PCal power is below 1.8 W (PCal not working)
- 6. In the previous 900 seconds, the BNS range was, at least one time, below 30 Mpc (a glitch occured). This allow to exclude TFMoni recovering period after a large glitch occured that corrupted the averaged FFTs.
- 7. TFMoni data is missing
- 8. The modulus value provided by TFMoni is below 0.01 (which means that it was not computed)
- 9. The phase value provided by TFMoni is below -3.2 rad (which means that it was not computed)

Figure 10: TFMoni Modulus of the transfer function between reconstructed h(t) and NE hinj or NE PCal (last two plots), during O3a, at the frequencies of the NE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

 $\mathbf{20}$

Figure 11: TFMoni Modulus of the transfer function between reconstructed h(t) and WE hinj or WE PCal (last two plots), during O3a, at the frequencies of the WE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

Figure 12: TFMoni Phase of the transfer function between reconstructed h(t) and NE hinj or NE PCal (last two plots), during O3a, at the frequencies of the NE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

Figure 13: TFMoni Phase of the transfer function between reconstructed h(t) and WE hinj or WE PCal (last two plots), during O3a, at the frequencies of the WE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

Figure 14: TFMoni Modulus of the transfer function between reconstructed h(t) and NE hinj or NE PCal (last two plots), during O3a, at the frequencies of the NE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

Figure 15: TFMoni Modulus of the transfer function between reconstructed h(t) and WE hinj or WE PCal (last two plots), during O3a, at the frequencies of the WE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

 $\mathbf{24}$

Figure 16: TFMoni Phase of the transfer function between reconstructed h(t) and NE hinj or NE PCal (last two plots), during O3a, at the frequencies of the NE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

Figure 17: TFMoni Phase of the transfer function between reconstructed h(t) and WE hinj or WE PCal (last two plots), during O3a, at the frequencies of the WE injected permanent lines. For each plot, time evolution and fitted distribution are shown.

A Monitoring of coils voltage during O3: all plots

Plots for the Modulus near 60 Hz of the transfer function between the coil voltage and the control loop signal are shown in Figures 18, 19, 20 and 21. Plots for the Modulus near 355 Hz of the transfer function between the coil voltage and the control loop signal are shown in Figures 22, 23, 24 and 25.

Plots for the Phase near 60 Hz of the transfer function between the coil voltage and the control loop signal are shown in Figures 26, 27, 28 and 29. Plots for the Phase near 355 Hz of the transfer function between the coil voltage and the control loop signal are shown in Figures 30, 31, 32 and 33.

Figure 18: TFMoni Modulus near 60 Hz of the transfer function between BS coil voltages VOUT_DL, VOUT_DR, VOUT_UL and VOUT_UR and the longitudinal control loop signals Sc_BS_MIR_Z_CORR. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF

 $\mathbf{28}$

increased.

Figure 19: TFMoni Modulus near 60 Hz of the transfer function between PR coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_PR_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF increased.

Figure 20: TFMoni Modulus near 60 Hz of the transfer function between NE coil voltages VOUT_UL, VOUT_UR, VOUT_DL and VOUT_DR and the longitudinal control loop signals Sc NE MIR_Z_CORR. For each plot, time evolution and fitted distribution are shown.

Figure 21: TFMoni Modulus near 60 Hz of the transfer function between WE coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_WE_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. On February 18th 2020, some cabling was rearranged on WE mirror actuator and the driving matrix was updated accordingly in the DSP (see https://logbook.virgo-gw.eu/virgo/?r=48483). This explains why the values were suddenly exchanged between UL and DR. However, this added no impact on the WE actuator's response.

Figure 22: TFMoni Modulus near 355 Hz of the transfer function between BS coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_BS_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF increased.

Figure 23: TFMoni Modulus near 355 Hz of the transfer function between PR coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_PR_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF increased.

DRAFT- May 28, 2021

Figure 24: TFMoni Modulus near 355 Hz of the transfer function between NE coil voltages VOUT_UL, VOUT_UR, VOUT_DL and VOUT_DR and the longitudinal control loop signals Sc_NE_MIR_Z_CORR. For each plot, time evolution and fitted distribution are shown. Around 355 Hz, the fluctuations on the modulus of NE, even small, are not Gaussian and show various trends over days or weeks.

Figure 25: TFMoni Modulus near 355 Hz of the transfer function between WE coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_WE_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. On February 18th 2020, some cabling was rearranged on WE mirror actuator and the driving matrix was updated accordingly in the DSP (see https://logbook.virgo-gw.eu/virgo/?r=48483). But maybe the sensing was not changed, which explains why the values were exchanged between UL and DR. This added no impact on the actuator's response. Around 355 Hz, the fluctuations on the modulus of WE, even small, are not Gaussian and show various trends over days or weeks.

Below are the plots for the Phase near 60 Hz and near 355 Hz of the TF between the coil voltages and the longitudinal control signals.

Figure 26: TFMoni Phase near 60 Hz of the transfer function between BS coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_BS_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF increased.

Figure 27: TFMoni Phase near 60 Hz of the transfer function between PR coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_PR_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF increased.

Figure 28: TFMoni Phase near 60 Hz of the transfer function between NE coil voltages VOUT_UL, VOUT_UR, VOUT_DL and VOUT_DR and the longitudinal control loop signals Sc NE MIR_Z_CORR. For each plot, time evolution and fitted distribution are shown.

Figure 29: TFMoni Phase near 60 Hz of the transfer function between WE coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_WE_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF increased.

Figure 30: TFMoni Phase near 355 Hz of the transfer function between BS coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_BS_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown. By mistake in TFMoni configuration, for BS and PR, the online TF was not computed at the frequency of the injected line. Thus, the uncertainty on modulus and phase may differ from the one that would have been measured at the line frequency. Moreover, during O3b, the control signals were reduced, low enough so that the coils current monitoring was close to the sensing noise. As a consequence, the coherence between the two signals involved in the TF was reduced, hence the statistical fluctuations of the TF increased.

Figure 31: TFMoni Phase near 355 Hz of the transfer function between PR coil voltages $VOUT_UL$, $VOUT_UR$, $VOUT_DL$ and $VOUT_DR$ and the longitudinal control loop signals $Sc_PR_MIR_Z_CORR$. For each plot, time evolution and fitted distribution are shown.

Figure 32: TFMoni Phase near 355 Hz of the transfer function between NE coil voltages VOUT_UL, VOUT_UR, VOUT_DL and VOUT_DR and the longitudinal control loop signals Sc_NE_MIR_Z_CORR. For each plot, time evolution and fitted distribution are shown. Around 355 Hz, the phase fluctuations, even small, are not gaussian and show various trends over days or weeks, in a similar way as what is observed for the modulus.

Figure 33: TFMoni Phase near 355 Hz of the transfer function between WE coil voltages VOUT_UL, VOUT_UR, VOUT_DL and VOUT_DR and the longitudinal control loop signals Sc_WE_MIR_Z_CORR. For each plot, time evolution and fitted distribution are shown. Around 355 Hz, the phase fluctuations, even small, are not gaussian and show various trends over days or weeks, in a similar way as what is observed for the NE phase.

TFMoni configuration used during O3 Α

Server /virgoApp/TFMoni/v1r0p1/Linux-x86_64-CL7/TFMoni.exe

CFG PRIO 19 # Main priority; 0 means no change (nice(0)) CFG_SCHEDAFFINITY 13-31 CFG_NOFILESAVE CFG_PWD /virgoLog/VirgoOnline # Current logfile path <path>/<cmName>

Fd IN and OUT

FDIN_FRAME_MERGER 40 "/dev/shm/VirgoOnline/FbmAlp /dev/shm/VirgoOnline/HRec " FDIN_TAG "V1:META_ITF_LOCK* V1:Sc_* V1:CAL* V1:PCAL* V1:Hrec_* V1:LSC_DARM"

FDOUT_ADD_PREFIX "V1:" "*" FDOUT_COMPRESSION -1 0 FDOUT STAT

FDOUT_FILE /dev/shm/VirgoOnline/TFMoniToSt/V1-TFMoni 1 "V1:TFMoni_* " FDOUT_FILE_CHECKSUM 0 FDOUT_CLEAN_DIR /dev/shm/VirgoOnline/TFMoniToSt 1 0 0.0 60

/dev/shm/VirgoOnline/TFMoni/V1-TFMoni 1 "V1:TFMoni_* V1:PCAL_*_PD*_power #SER V1:META_ITF_LOCK" FDOUT_FILE FDOUT_FILE_CHECKSUM 0 FDOUT CLEAN DIR /dev/shm/VirgoOnline/TFMoni 1 0 0.0 60

Transfer Functions and Ratios

NE Mirror

keyword fftduration (sec) maxaverage CALI_TF_FFT_DEFAULT 10 12 # keyword coherence min threshold CALI_TF_COHEMIN 0.01

keyword chname1 chname2 freq (Hz) fftduration (sec) maxaverage gain delay (ms) outname (optional)
gain = the value multiplied to the result of the TF modulus # delay = the time delay to be added (phase which will be subtracted to the TF phase is 2*pi*freq*delay) # The results are TFMoni_outname_Modulus , TFMoni_outname_Phase and TFMoni_outname_Cohe
computed at the frequency freq from the TF chname2/chname1

CALI_TF_ADD	NEMIR_ZCORR_VOUTDL_60	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_DL	62.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORR_VOUTUL_60	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_UL	62.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORR_VOUTDR_60	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_DR	62.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORR_VOUTUR_60	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_UR	62.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORRLN_ZCORR_60	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_Z_CORR_LN	62.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORR_VOUTDL_355	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_DL	357.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORR_VOUTUL_355	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_UL	357.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORR_VOUTDR_355	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_DR	357.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORR_VOUTUR_355	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_VOUT_UR	357.5	0	0	0
CALI_TF_ADD	NEMIR_ZCORRLN_ZCORR_355	V1:Sc_NE_MIR_Z_CORR	V1:Sc_NE_MIR_Z_CORR_LN	357.5	0	0	0
# WE Mirror							
CALI_TF_ADD	WEMIR_ZCORR_VOUTDL_60	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_DL	61.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORR_VOUTUL_60	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_UL	61.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORR_VOUTDR_60	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_DR	61.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORR_VOUTUR_60	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_UR	61.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORRLN_ZCORR_60	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_Z_CORR_LN	61.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORR_VOUTDL_355	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_DL	356.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORR_VOUTUL_355	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_UL	356.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORR_VOUTDR_355	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_DR	356.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORR_VOUTUR_355	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_VOUT_UR	356.5	0	0	0
CALI_TF_ADD	WEMIR_ZCORRLN_ZCORR_355	V1:Sc_WE_MIR_Z_CORR	V1:Sc_WE_MIR_Z_CORR_LN	356.5	0	0	0
# BS Mirror							
CALI_TF_ADD	BSMIR_ZCORR_VOUTDL_60	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_DL	62.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORR_VOUTUL_60	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_UL	62.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORR_VOUTDR_60	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_DR	62.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORR_VOUTUR_60	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_UR	62.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORRLN_ZCORR_60	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_Z_CORR_LN	62.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORR_VOUTDL_355	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_DL	357.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORR_VOUTUL_355	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_UL	357.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORR_VOUTDR_355	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_DR	357.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORR_VOUTUR_355	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_VOUT_UR	357.8	0	0	0
CALI_TF_ADD	BSMIR_ZCORRLN_ZCORR_355	V1:Sc_BS_MIR_Z_CORR	V1:Sc_BS_MIR_Z_CORR_LN	357.8	0	0	0
# PR Mirror							
CALI_TF_ADD	PRMIR_ZCORR_VOUTDL_60	V1:Sc_PR_MIR_Z_CORR	V1:Sc_PR_MIR_VOUT_DL	62.3	0	0	0
CALI_TF_ADD	PRMIR_ZCORR_VOUTUL_60	V1:Sc_PR_MIR_Z_CORR	V1:Sc_PR_MIR_VOUT_UL	62.3	0	0	0

0 0

CALI_TF_ADD CALI_TF_ADD	PRMIR_ZCORR_VOUTDR_60 PRMIR_ZCORR_VOUTUR_60	V1:Sc_PR_MIR_Z_CORR V1:Sc_PR_MIR_Z_CORR	V1:Sc_PR_MIR_VOUT_DR V1:Sc_PR_MIR_VOUT_UR	62.3 62.3	0	0 0	0 0 0 0	
CALI_TF_ADD	PRMIR_ZCORR_VOUTDL_355	V1:Sc_PR_MIR_Z_CORR	V1:Sc_PR_MIR_VOUT_DL	357.3	0	0	0 0	
CALL_IF_ADD	PRMIR_ZCORR_VUUIUL_355	VI:SC_PR_MIR_Z_CURR	VI:SC_PR_MIR_VUUI_UL	357.3	0	0	0 0	
CALI_TF_ADD CALI_TF_ADD	PRMIR_ZCORR_VOUTUR_355	V1:Sc_PR_MIR_Z_CORR	V1:Sc_PR_MIR_VOUT_UR	357.3	0	0	0 0	
# CAL to Sc								
CALL TE ADD	NEMIR CALLOSC 2012	VI-CAL NE MIR 7 CORR	VISC NE MIR 7 CORR	2012 5	0	0	0 0	
CALL TE ADD	WEMIR CALLOSC 2012	V1:CAL WE MIR 7 CORR	V1.Sc_WE_MIR_Z_CORR	2012.5	0	0	0 0	
CALL TE ADD	NIMIR CALLOSC 2012	V1:CAL NT MTR 7 CORR	V1:Sc NT MTR 7 CORR	2012.0	0	0	0 0	
CALL TE ADD	WIMIR CALLOSC 2012	V1:CAL WI MIR 7 CORR	V1:Sc WI MIR Z CORR	2012.0	0	0	0 0	
CALL TE ADD	BSMIR CALLOSC 2012	V1:CAL BS MIR 7 CORR	V1.Sc_W1_MIR_Z_CORR	2012.5	0	0	0 0	
CALL TE ADD	DBMIR_CALLOSC_2012	V1.CAL DD MID 7 CODD	V1.Sc_DS_MIR_Z_CORR	2012.5	0	0	0 0	
CALL_IF_ADD	NEMAR CALLOSC_2012	VI.CAL_FR_MIR_Z_CORR	VI.Sc_FR_MIR_Z_CORR	2012.5	0	0	0 0	
CALL TE ADD	WEMAR CALLOSC 2012	V1.CAL UE MAR 7 CORR	V1.Sc_WE_MAR 7 COPP	2012.5	0	0	0 0	
CALI_TF_ADD	BSMAR_CALtoSc_2012	V1:CAL_BS_MAR_Z_CORR	V1:Sc_BS_MAR_Z_CORR	2012.5	0	0	0 0	
# DCM								
CALL TE ADD	NEPCAL PD1 PD2 30 V1	PCAL NER PD1 nover	V1 PCAL NEB PD2 DOWOR	34.5 0	0	0 0	n	
CALL TE ADD	NEPCAI PD1 PD2 60 V1	·PCAL NER DD1 power	V1.PCAL NEB PD2 power	63 5 0	õ	0 1	- n	
CALL_IF_ADD	NEPCAL_FD1_FD2_00 V1	.PCAL_NEB_PD1_power	VI.FCAL_NEB_FD2_power	250.0 0	0		5	
CALL_IF_ADD	NEPCAL_PD1_PD2_355 VI	PCAL_NEB_PD1_power	VI:PCAL_NEB_PD2_power	359.0 0	0		5	
CALL_IF_ADD	WEPCAL_PD1_PD2_30 VI	PCAL_WEB_PD1_power	VI:PCAL_WEB_PD2_power	36.5 0	0		5	
CALI_IF_ADD	WEPCAL_PD1_PD2_60 V1	:PCAL_WEB_PD1_power	VI:PCAL_WEB_PD2_power	60.5 0	0	0 0	5	
CALI_TF_ADD	WEPCAL_PD1_PD2_355 V1	:PCAL_WEB_PD1_power	V1:PCAL_WEB_PD2_power	355.5 0	0	0 (0	
# Compare DAR	M and CAL							
CALI_TF_ADD	NEMIR_DARM_CAL_60 V	1:CAL_NE_MIR_Z_CORR	V1:LSC_DARM 62.5 0	0 0 0				
CALI_TF_ADD	NEMIR_DARM_CAL_355 V	1:CAL_NE_MIR_Z_CORR	V1:LSC_DARM 357.5 0	0 0 0				
CALI_TF_ADD	WEMIR_DARM_CAL_60 V	1:CAL_WE_MIR_Z_CORR	V1:LSC_DARM 61.5 0	0 0 0				
CALI_TF_ADD	WEMIR_DARM_CAL_355 V	1:CAL_WE_MIR_Z_CORR	V1:LSC_DARM 356.5 0	0 0 0				
# Compare DAR	M and PCAI							
CALL TE ADD	NEMTR DARM DCAL 35	VI-PCAL NEB PD1 DOUDT	VIVISC DARM 34 5	0 0 0 0	`			
CALL_IF_ADD	NEMTR DARM PCAL 60	V1.PCAL NEB PD1 power	VILLOC DARM 63 5		, `			
CALL TE ADD	VENTR DARM DCAL 25	V1.DCAL UEP DD1 power	VILLOC DARM 26 E		,			
CALI_IF_ADD	WEMIR_DARM_PCAL_35	VI:PCAL_WEB_PDI_power	VI:LSC_DARM 30.5	0 0 0 0				
CALI_IF_ADD	WEMIR_DARM_PCAL_60	VI:PCAL_WEB_PDI_power	VI:LSC_DARM 60.5	0 0 0 0)			
# Compare Hre	c and NE PCAL					~ .		
CALI_TF_ADD	NEMIR_HREC_HPCAL_35	V1:PCAL_NEB_PD1_hpcal	V1:Hrec_hoft_raw_2000	0Hz 34.5	0	24	0 0.122	2
# 112 from pc	al +10 from end response	previou	us 0.148+10					
CALI_TF_ADD	NEMIR_HREC_HPCAL_60	V1:PCAL_NEB_PD1_hpcal	V1:Hrec_hoft_raw_2000	0Hz 63.5	0	24	0 0.122	2
CALI_TF_ADD	NEMIR_HREC_HPCAL2_35	V1:PCAL_NEB_PD2_hpcal	V1:Hrec_hoft_raw_2000	0Hz 34.5	0	24	0 0.122	2
CALI_TF_ADD	NEMIR_HREC_HPCAL2_60	V1:PCAL_NEB_PD2_hpcal	V1:Hrec_hoft_raw_2000	0Hz 63.5	0	24	0 0.122	2
# Compare Hre	c and WE PCAL							
CALI TF ADD	WEMIR HREC HPCAL 35	V1:PCAL WEB PD1 hpcal	V1:Hrec hoft raw 2000	0Hz 36.5	0	24	0 0.122	2
CALL TE ADD	WEMTR HREC HPCAL 60	V1:PCAL WEB PD1 hpcal	V1:Hrec hoft raw 2000	0Hz 60.5	0	24	0 0.122	2
CALL TE ADD	WEMTR HREC HPCAL2 35	V1:PCAL WEB PD2 hpcal	V1:Hrec hoft raw 2000	0Hz 36.5	õ	24	0 0 122	-)
CALL TE ADD	WEMTR HREC HPCAL2 60	V1:PCAL WEB PD2 hpcal	V1:Hrec hoft raw 2000	0Hz 60.5	0	24	0 0.122	2
		· - · · · · · ·			-			
# Compare Hre	c and NE CAL_NOISE							
CALI_TF_ADD	NEMIR_HREC_HINJ_35	V1:CAL_NE_MIR_Z_NOISE	E V1:Hrec_hoft_raw_2000	0Hz 37.5	0	0	2.43e+13	-0.337
CALI_TF_ADD	NEMIR_HREC_HINJ_75	V1:CAL_NE_MIR_Z_NOISE	E V1:Hrec_hoft_raw_2000	0Hz 77.5	0	0	1.05e+14	-0.325
CALI_TF_ADD	NEMIR_HREC_HINJ_105	V1:CAL_NE_MIR_Z_NOISE	E V1:Hrec_hoft_raw_2000	0Hz 107.5	0	0	2.03e+14	-0.315
CALI_TF_ADD	NEMIR_HREC_HINJ_135	V1:CAL_NE_MIR_Z_NOISE	E V1:Hrec_hoft_raw_2000	0Hz 137.5	0	0	3.35e+14	-0.308
# Compose Use	a and WE CAL NOTCE							
CALL TE ADD	WENTR HREC HINI 55	VI.CAL WE MTD 7 NOTSE	V1. Hroc hoft ray 2000	087 56 5	0	0	6 660+13	0 301
CALL TE ADD	WENTR HREC HINI 105	V1.CAL WE MIR 7 NOTSE	V1:Hroc hoft ray 2000	0112 00.0	0	0	2 380+14	0.204
CALL_IF_ADD	WENTR HREC HINI 205	VI.CAL WE MIR 7 NOISE	V1:Hroc hoft ray 2000	0112 100.5	0	0	2.00e+14	0.234
CALL_IF_ADD	WEMIR_HREC_HINJ_205	VI.CAL WE MIR 7 NOTSE	Vi.Hree heft rev 2000	0HZ 200.5	0	0	9.00e+14 2 E0e+1E	-0.200
CALL IL ADD	wEnit_INEC_HINJ_400	VI.CAL_WE_MIR_Z_NUISE	vi.niec_noit_raw_2000	UNZ 400.5	U	U	0.00e+15	-0.202
# Compare PCA	L and CAL							
CALI_TF_RATIO	DARMCALNE_DARMPCALNE 60	NEMIR_DARM_CAL_60	NEMIR_DARM_PCAL_60					
CALI_TF_RATIO	DARMCALWE_DARMPCALWE_60	WEMIR_DARM_CAL_60	WEMIR_DARM_PCAL_60					
# Compare CAL	_NE and CAL_WE	NEWTO DIEN OF	UDVID DADY 211 20					
CALL_TF_RATIO	DARMCALNE60_DARMCALWE60	NEMIR_DARM_CAL_60	WEMIR_DARM_CAL_60					
CALI_TF_RATIO	DARMCALNE355_DARMCALWE3	55 NEMIR_DARM_CAL_355	WEMIR_DARM_CAL_355					
# Compare PCA	L_NE and PCAL WE							
CALL TF RATTO	DARMPCALNES5 DARMPCALWE	35 NEMIR DARM PCAL	35 WEMIR DARM PCAL 35					
CALL TE DATIO	DARMPCALNEGO DARMPCALWE	60 NEMTE DARM PCAL	60 WENTE DARM PCAL 60					