CNRS
Centre National de la Recherche Scientifique

INFN
Instituto Nazionale di Fisica Nucleare
I(P)/JVIRGJ

VSR1 cavity finesse measurements

F. Marion, B. Mours, L. Rolland, E. Tournefier
LAPP-Annecy

VIR-052A-08

June 19, 2008

Project office: Traversa H di via Macerata - I-56021 S. Stefano a Macerata, Cascina (PI) Secretariat: Telephone (39) 50752521 - Fax (39) 50752550 - e-mail virgo@pisa.infn.it

Contents

1 Introduction 2
2 Finesse reconstruction method 3
2.1 Estimation of the cavity length as function of time 3
2.2 Simulation of the Airy peak shapes 5
2.3 Fit of the Airy peaks 6
3 Measurements of the cavity finesse during VSR1 7
3.1 Measurements from Airy peaks in free swinging cavities 7
3.2 Comparison with the locked cavity power variations 7
4 Conclusion 15
A SIESTA configuration file 17
B Measurements during VSR1 18

1 Introduction

The long cavities of the Virgo interferometer (north and west arms) consist in Fabry-Perot cavities when the interferometer is locked to take data in Science Mode. They are used to increase the power of the laser that is stored in the cavities.

The response of Virgo to a change in the cavity differential length is a modification of the laser power measured at the level of the dark fringe. It is defined as a transfer function in W / m.

When a cavity is locked, its response to a length modification behaves as a simple pole whose frequency depends on the finesse of the cavity. The average response of the cavities is taken into account in the reconstruction of the strain signal $h(t)$ to search for gravitationnal waves. The finesses of the cavities are expected to vary by a few percent as function of the mirror temperatures [1, 2].

The aim of this note is to estimate the variations of the finesses during the run VSR1 (May 18th to October 1st, 2007).

The method used to determine the cavity finesse, based on the comparison of the Airy peaks in the data with simulations, is described in the first section. The results and monitoring of the cavity finesse during VSR1 are then given. They are then compared to the variation of the power transmitted by the cavities.

2 Finesse reconstruction method

The finesse of the Fabry-Perot cavities depends on the mirror amplitude reflectivities ρ_{1} and ρ_{2} as:

$$
\begin{align*}
F & =\frac{\pi \sqrt{R}}{1-R} \tag{1}\\
\text { with } R & =\rho_{1} \rho_{2} \tag{2}
\end{align*}
$$

The intensity reflection coefficients are defined as $r_{1}=\rho_{1}^{2}$ and $r_{2}=\rho_{2}^{2}$.
It can also be extracted from the TEM_{00} (Transverse Electro-Magnetic) Airy peaks [3]. Airy peaks are visible in the time variation of the power stored in the cavity when the length of the cavity changes. The powers in the north and west cavities are monitored through photodiodes in the external end-benches. The channel names are $\operatorname{Pr} _\mathrm{B} 7 _$DC and $\mathrm{Pr} _\mathrm{B} 8 _$DC respectively.

The finesse is defined as the ratio of the distance between two consecutive TEM_{00} resonances (FSR, Free Spectral Range) to their linewidth (FWHM, Full Width Half Maximum). However, due dynamical effects, the Airy peaks are distorted and the line width cannot be measured directly. The distorsion depends on the speed of the cavity mirrors. This parameter can be set in a dynamical simulation of a cavity which predicts the shape of the Airy peaks. A fit of the data with the simulation allows to estimate the finesse.

2.1 Estimation of the cavity length as function of time

The speed of the cavity is estimated from the cavity length time variation. The variation of the cavity length between two TEM_{00} resonances is equal to $\lambda / 2$ where λ is the wavelength of the laser (1064 nm).

An exemple of the cavity power as function of time is given in the figure 1. In order to reconstruct the cavity length time variations, the issue is to find the cavity length extrema. A few paremeters have been defined from three Airy peaks $(i-1)$ to $(i+1)$ around the current one indexed by i : the amplitudes and widths of the peaks, A_{j} and W_{j}, and the time between the peaks: $\Delta t_{j}=t_{j}-t_{j-1}$. The following conditions are used to define an extremum:

- when the Airy peak is at one extremum (speed close to 0), it is much larger than its neighbours: $W_{i}>2 W_{i-1}$ and $W_{i}>2 W_{i+1}$.
- when the Airy peak is after the lengh extremum and the extremum is close to next peak: $\Delta t_{i}>\Delta t_{i-1}$ and $\Delta t_{i}>\Delta t_{i+1}$ and $W_{i}>1.05 W_{i+1}$
- when the Airy peak is soon after the lengh extremum: $\Delta t_{i}<\Delta t_{i-1}$ and $\Delta t_{i}<\Delta t_{i+1}$ and $W_{i}>1.05 W_{i+1}$

If these conditions are not fulfilled, the cavity length is incremented by $\pm \lambda / 2$ depending on the current direction. An example of reconstructed cavity length time variation is shown in the figure 1.

If the cavity is excited but not too much (angularly and longitudinally), its length varies sinusoidally with time. A cosine function can be fit to the points: $l(t)=a_{i}+b_{i} \cos \left(\omega_{i} t+\Phi_{i}\right)$. For a given Airy peak at t_{i}, the fit is computed over a window of ?? s (or extended in order to enclose at least 5 peaks). The speed is then derived from $l(t)$ as $\left|v\left(t_{i}\right)\right|=b_{i} \omega_{i} \sin \omega_{i} t_{i}+\Phi_{i}$.

The cavity lenght can be reconstructed in different types of data.

- free swinging cavity: the cavity length variation is not really sinusoidal. The determination of its extrema, and therefore the cavity speed are not precise.
- swinging cavity with one mirror excited with a $\sim 1 \mathrm{~Hz}$ line. The cavity length variation is dominated by the 1 Hz excitation and the speed is reconstructed within $\sim 20 \%$.

Figure 1: Cavity power and estimated length vs time. (a) Reconstructed north cavity length variations for a dataset with specific injections. (b) Reconstructed cavity length variations in a short window, with the cosine fit. (c) Same, but with larger time window. (d) NE cavity power (Pr_B7_DC) as function of time in the same window as (b).

2.2 Simulation of the Airy peak shapes

The time domain simulation of a Fabry-Perot cavity including dynamical effects is computed using the SIESTA ${ }^{1}$ program [4].

A set of simulations are performed scanning the cavity speed and finesse from 0.5 to $30 \mu \mathrm{~m} / \mathrm{s}$ and 40 to 60 respectively, with steps of 1 for both parameters. The time serie of the simulated photodiode readout is sampled at $20 \tilde{\mathrm{k}} \mathrm{Hz}$.

Typical values of the mirror reflectivities (in intensity) are initially set to $r_{1}=0.882$ and $r_{2}=0.999957$. For a given cavity finesse, the reflection r_{1} of the input mirror of the cavity is modified accordingly to equation 2 in the simulation. The speed of the cavity elongation is directly a parameter of the simulation configuration. An exemple of SIESTA configuration file is given in annexe.

For every sets of parameters (speed, finesse), the time serie of the simulated Airy peak is stored in a 3-dimension table within $\pm 0.020 \mathrm{~ms}$ (801 samples) around the peak maximum. The amplitude of the peak is set such that the integral of the time serie is 1 . The shape of the Airy peaks is then lineraly interpolated between the different simulated sets in order to have a continuous function. The figure 2 shows the shape of the Airy peaks as function of the cavity finesse for a speed of $10 \mu \mathrm{~m} / \mathrm{s}$ and as function of the cavity speed for a finesse of 50 .

Figure 2: Shape of the simulated Airy peaks (a) as function of the cavity speed for a finesse of 50. (b) as function of the cavity finesse for a speed of $10 \mu \mathrm{~m} / \mathrm{s}$,

[^0]
2.3 Fit of the Airy peaks

Errors of $\pm 10^{-7} \mathrm{~W}$ have been used for the measurements of the cavity power time series Pr_B7, $8 _$DC $\left(\pm 1.710^{-3}\right.$ V for the voltage time series $\left.\operatorname{Pr} _B 7,8 _d 1,2 _D C\right)$. Every Airy peak i detected in this time serie is fitted using MIGRAD ${ }^{2}$. The fit has four parameters: time of the maximum, amplitude, cavity finesse and cavity speed (when using the voltage channels Pr_B7, $8 _d 1,2 _$DC (in V), an offset is added as a fifth parameter).

The initial time of the peak is set to its maximum t_{i}. This parameter is constrained within $\pm 200 \mu \mathrm{~s}$ around t_{i}. The initial amplitude is set to the integral of the measured Airy peak. The initial value of the finesse is set to its nominal value of 50 . The initial speed of the cavity is set to the estimation described above. When the cavity length is close to a sine (with the 1 Hz excitation), the speed is constrained to vary by less than 30% from its initial value. Else, it is let free.

The Airy peaks with an estimated cavity speed outside the range $[3 ; 20] \mu \mathrm{m} / \mathrm{s}$ are not used.
A few cuts are applied in order to select the "good quality" fits.

- no error returned by MIGRAD,
- the parameters are not close to the edge of the simulated table,
- χ^{2} probability higher than 10%.

[^1]
3 Measurements of the cavity finesse during VSR1

3.1 Measurements from Airy peaks in free swinging cavities

No specific data were taken during VSR1 to measure the finesse of the cavities. Datasets with free swinging mirrors have been selected. The criteria were at least 30 seconds (and maximum 500 seconds) of data in step 0 , with the BS and cavity mirrors aligned
(i.e. $S c_{-} N E$ _Gain_tyMarMis $=0$) and PR misaligned $\left(S c_{-} P R_{-} G a i n_{-} t y M a r M i s=\right.$ -150).

About 600 datasets have been selected during VSR1. The north and west cavity finesses have been fit using the voltage signal $\operatorname{Pr} _\mathrm{B} 7 _\mathrm{d} 1 _\mathrm{ACp}$ and power signal $\mathrm{Pr} _\mathrm{B} 8 _\mathrm{DC}$ respectively. Since the cavities are not excited, the cavity motion is not well estimated. Thus the speed is let free in the Airy peak fits.

For every datasets, some checks are performed on a few distributions. Examples are shown in the figures $3,4,5$ and 6 . The mean of the distribution of the error-weigted fitted finesse is a way to measure the finesse of the dataset. The fitted finesse as function of the fitted speed (before the selection on the speed) is used to check that there is no correlation between both parameters. The relative difference between the fitted speed and its initial estimation is not really usefull since the initial estimation is rather bad. The difference between the fitted time of the maximum and its initial value is lower than $100 \mu \mathrm{~s}$.

The datasets are then selected using a few quality criteria. The number of correctly fitted Airy peaks must be higher than 100. Four estimations of the finesse are performed: the average values of the raw and error-weigted finesse distributions, the value from a Gaussian fit of the raw distribution and the median value of the fitted finesse. The differences between the values must be lower than 0.5 . The error of the Gaussian fit and the fitted sigma of the distribution must be lower than 0.5 and 1 respectively.

For the datasets passing the quality criteria, the finesses obtained from the Gaussian fit are given in appendix B and shown in the figure 7. Time variations are clearly visible, with amplitude of ± 1.5 around the average value for both cavities. The average values obtain from the few measurements during VSR1 are 49.1 and 51.5 for the north and west cavities respectively.

3.2 Comparison with the locked cavity power variations

When the interferometer is locked (step 12), the north and west cavities are controlled such that the laser TEM00 mode resonates. The mirror relative positions are thus controlled such that the power that is stored inside the cavity is at a maximum of an Airy peak.

The power stored in the cavity, measured through the channels $\operatorname{Pr} _\mathrm{B}\{7,8\} _\mathrm{DC}$, is proportionnal to the cavity finesse. The relative variation of the cavity power gives a measurement of the relative variation of the cavity finesse.

The variations of the cavity powers in step 12 during VSR1 have been computed. They

Figure 3: Distributions for the north cavity at GPS 865551091. (a) Distribution of the error-weighted fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the fitted finesse.

Figure 4: Distributions for the west cavity at GPS 865551091. (a) Distribution of the error-weighted fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the fitted finesse.

Figure 5: Distributions for the north cavity at GPS 868086730. (a) Distribution of the fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the error-weighted fitted finesse.

Figure 6: Distributions for the west cavity at GPS 868086730. (a) Distribution of the fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the error-weighted fitted finesse.
have been normalised such that they match, on average, the finesse where there are direct measurements within one hour (normalisation factors of 575 and 627 for the north and west cavity powers respectively). The comparison of the finesse variations estimated by both methods are shown in the figure 8 . A zoom on the beginning of the run (figure 9), when the etalon effect changed by one period on the NI mirror due to temperature variations.

The behavior of the cavity finesse measured in this note and the transmitted power of the cavities are similar. It somehow validate the measurements using the Airy peak shape. However, two types of systematic errors can be highlighted:

- during periods with constant transmitted power value, the dispersion of the cavity finesse measurements is of the order of 0.2 ,
- the normalisation factor of the cavity power might change as function of time. It is expected to change due to different mirror and/or photodiode alignements. Using a constant normalisation factor during VSR1, differences up to 1 are seen between the normalized power and the finesse.

Figure 7: Finesse vs time during VSR1 for the west (black) and north (red) cavities. The lines gives the average values during the run.

Figure 8: Cavity finesse and normalised power transmitted by the north and west cavities. The transmitted powers have been normalised by 575 and 627 respectively.

Figure 9: Zoom on the cavity finesse and normalised power transmitted by the north and west cavities. During this period, the etalon effect of the NI mirror went along a full period due to high temperature variations.

4 Conclusion

The finesse of the north and west cavities have been measured during VSR1 using the shape of the Airy peaks seen in the transmitted power of the free swinging cavities. It permits to monitor the absolute value of the finesse and to estimate the amplitude of the finesse variation to about ± 2 around their average values, as expected from the etalon effect in the input mirrors. Systematic errors of the order of 0.2 can be estimated from the dispersion of the measurements within short time-scales.

The variations of the measured finesse follow the variations of the power transmitted by the locked cavities. Differences of the order of $2 \%(\Delta F \sim 1)$ can be used as pessimistic systematic errors on the absolute value of the finesse using the Airy peak shape.

References

[1] M. Punturo, The mirror resonant modes method for measuring the optical absorption (2007) VIR-001A-07
[2] M. Punturo, Etalon effect in the Virgo cavities, slides of weekly meeting from June 12th 2007
[3] F. Acernese et al. (Virgo collaboration) Applied Optics 46, Issue 17, pp 3466-3484 (2007). Measurements of the optical parameters of the VIRGO interferometer.
[4] B. Caron et al. Astroparticle Physics 10, 369-386 (1999). SIESTA, a time domain, general purpose simulation program for the VIRGO experiment.

A SIESTA configuration file

Configuration file for the SIESTA simulation. In this simulation, the NE mirror is moving at $10 \mu \mathrm{~m} / \mathrm{S}$ (MISweep). The NE and NI reflection coefficients are respectively 0.999957 and 0.881968 The simulated finesse is thus 50 .

```
/* Creation of the clocks for signal simulation (rates) */
/* UJclock name totalTime nClocks Freq0 Freq1 */
UJclock masterClocks 80000 2 80000 1
```

/* Creation of the frame builder to store the output signals into a frame file */
UFrBuilder FBuilder 1100
/* ***** Creation of the mirrors with their surface ****** */

```
/* *** NI,back ****/
/*MIrror name clock susPos thermPos frontSurf backSurf initPos initOrientation */
MIrror Mir11 0 NULL NULL NULL MiSu11b 6.4 0.0. 1. 0. 0.
/* MIsurf name curvature radius thetaX thetaY halfThickness reflection losses */
MIsurf MiSu11b 0. .2 0. 0. 0. 0.881968 .1e-3
```

/* *** NE, front ****/
MIrror Mir12 0 NULL NULL MiSu12f NULL 3006.4 0. 0. 10. 0.
MIsurf MiSu12f $2.81294 \mathrm{e}-4 \mathrm{D}$ 0. 0. 0. 0.9999570.
/* *** WI, back ****/
MIrror Mir21 0 NULL NULL NULL MiSu21b 0. 5.6 0. 0. 1. 0.
/*MIsurf MiSu21b 0. . 2 0. 0. 0. 0 .1e-3 */
MIsurf MiSu21b 0. . 2 0. 0. 0. 0 0
/* *** WE, front ****/
MIrror Mir22 0 NULL NULL MiSu22f NULL 0. 3005.6 0. 0. 1. 0.
MIsurf MiSu22f $2.89855 \mathrm{e}-4$. 2 . 0. 0. 0 .
/* *** BS, front ****/
MIrror Mirbs 0 NULL NULL MiSubsf NULL 0.0.0. 1. -1. 0.
MIsurf MiSubsf 0. . 2 0. 0. 0. . 50 .
/* *** PR, front ****/
MIrror Mirrc 0 NULL NULL NULL MiSurcf -6. 0. 0. 1. 0. 0.
MIsurf MiSurcf 0. . 2 0. 0. 0. 0. 0 .

```
/* Define a mirror movement */
/* MISweep name clock mirror startPos slope(m/s) axis (0=x, 2=z) */
MIsweep sweepz 0 Mir12 0. 1e-05 2
/* Create the laser */
/*IOlaser name clock surf wavelength power noise noise curvature waist window method */
IOlaser laser 0 NULL 1.064e-6 . 56 NULL NULL 0. .021 .40 NO 0
/* Create the phase modulator */
OPmod mod 0 laser.oBeam 3 0. 6.26408e6 -6.26408e6 carrier NULL sb1 NULL sb2 NULL
/* Create the signals for amplitude modulation of the side bands */
USignal carrier 0.99
USignal sb1 0.075
USignal sb2 -0.075
/*dynamic simulation*/
OPglobal itf O mod.oBeam MiSubsf MiSu11b MiSu12f MiSu21b MiSu22f MiSurcf NO NULL
```

```
/* Create the photodiodes */
```

/* Create the photodiodes */
/*OPdiode name clock efficiency demodFreq demod incidentBeam withShotNoise? */
/*OPdiode name clock efficiency demodFreq demod incidentBeam withShotNoise? */
OPdiode B1 0 1. 6.26408e6 NULL itf.oBeam1 YES
OPdiode B1 0 1. 6.26408e6 NULL itf.oBeam1 YES
OPdiode B7 0 1. 6.26408e6 NULL itf.oBeam7 YES
OPdiode B7 0 1. 6.26408e6 NULL itf.oBeam7 YES
OPdiode B5 0 1. 6.26408e6 NULL itf.oBeam5 YES

```
OPdiode B5 0 1. 6.26408e6 NULL itf.oBeam5 YES
```

```
/* Simulate local readout */
/*UFrLRdout clock adcname input gain ADCbits type */
UFrLRdout 0 Pr_B7_DC B7.dc 1. -32 adc
UFrLRdout 0 Pr_B1_DC B1.dc 1. -32 adc
```

```
/* Save output to the frame file */
/* UFrOFile clock filename Ascii? frame framePerFile */
UFrOFile -1 finesse_tmp NO FBuilder.frameH 1
```


B Measurements during VSR1

The measured finesse for all the selected datasets during VSR1 are given in the following tables for the west and the north cavities.
－иant a à ：I ว ${ }^{2} \dot{p}^{p} L$

080 67	0970．0 干 09\％ 67	99I	－87L209998	088．${ }^{\text {LG }}$	0GL0．0 干 00L． 7 C	8 ± 6	－ 20802 ¢798
02も＊ 6 も	0L90＊0 干 090．67	80］	－8\＆zL09998	080 79	0ZL0 0 干 090． Cc	28LI	－モ6702tø98
04İ8t	0890．0 干 067＊ 87	927	－8¢9899998	008 ${ }^{\text {LG }}$	OSLO 0 干 020 $0^{\circ} \mathrm{C}$	970I	－ 782697798
082067	0才90．0 干 09\％ 67	LZI	－ 769798998	076＊${ }^{\text {LG }}$	0¢L0＇0 干 090． $\mathrm{CS}^{\text {c }}$	LZLI	＇tL2697t98
080 67	0980 0 干 067＊ 67	278	－¢ LL98998	0¢7\％${ }^{\text {c }}$	0ZL0 0 干 070．79	08LI	＇ $792897 t 98$
085：6も	0才I0．0 干 0¢\％＇6才	L67L	－ 70 L098998	009．za	OSLO 0 干 020 \％ 9	796	－\ddagger 9889もあ 98
08t． ¢ $^{\text {c }}$	00历0．0 干 0GL．LS	9才I	－8¢9989998	067． $\mathrm{c}^{\text {c }}$	02I0 0 干 070．79	910I	＇もちLL9tt98
070 0°	0ZI＇0 干 0gs ${ }^{\circ} \mathrm{LG}$	${ }^{\text {c }} 0$ L	－L60LGc998	088\％¢	0070 0 干 0L0． 0°	∓ 98	－E\＆\％L9tt98
067＊¢¢	0680 0 干 $0066^{\circ} \mathrm{G}$	99%	－8¢9989798	067．79	06I0 0 干 080． ¢ $^{\text {c }}$	¢06	－¢¢L997t98
088． L $^{\text {c }}$	0790＊0 干 $079^{\circ} \mathrm{TG}$	20I	－¢¢ち9L¢t98	0LL．tG	0870 0 干 096．TG	もも9	＇も6L99tt98
	0¢ $¢ 0 \cdot 0$ 干 $00 \varepsilon^{\prime}$ TG	27.6	－6269LCt98	008\％9	06I0 0 干 088° LS	286	
07İLS	0870 0 干 $078^{\circ} \mathrm{TG}$	28t	－¢LIETCt98	006． LG $^{\text {c }}$	06T0．0 干 006．TG	${ }_{966}$	＇も99897t98
0tt「枵	$0 \pm E 0^{\circ} 0$ 干 08L＇LG	09I	－ 70260 cti 98	000 za		870	＇もち9797t98
0tt＊	09L0 0 干 075＇LS	686	－t¢ql0cti98	007＊LG	OGL0．0 F 089．LG	67ヵI	－ $\mathrm{CLLL97t} 98$
08¢ LG		961	－67L90cti98	0¢t．LG	09L0．0 干 00才゙ TG	799L	－ $009097 t 98$
009．LS	0970 0 干 0L8． TG	¢78	－87970¢t98	07C．LG	0070 0 干 077．LS	L97	－L2898tt98
078． L $^{\text {c }}$	0LZ0＇0 干 $069^{\circ} \mathrm{T}$ ¢	298	－67986も798	08L｀tc	0070 0 干 0LE LS	887	－C067Ett98
085＊ 19		もLI	－66โ96も798	0LG．LG	0もE0 0 干 0Lも＇LG	GLI	－09ttetti
018．za	08L0＇0 干 007． $\mathrm{C}^{\text {c }}$	992	－0¢\＆66も798	060ㄴ．${ }^{\text {c }}$	0z80 0 干 0ZI＇LS	L6I	＇も08\＆\＆tt98
076． L $^{\text {c }}$	08L0＇0 干 07\％ 79	LGL	－078867798	078．09	0770 0 干 0\＆L＇tS	978	－676787t98
0Lも「て¢	08L0＇0 干 $06 \mathrm{~L}^{\circ} \mathrm{G}$ ¢	9 CL	－0LE\＆67t98	06L｀tc	08L0 0 干 070＇TG	¢09	－98978tt98
079 \％	0¢L0＇0 干 08L＇$\%$ ¢	622	－008767798	0L0 TG	08L0．0 干 028．09	LLV	－288を8tø98
078． 69	0才L0＇0 干 $0600^{\circ} \mathrm{G}$	878	－067667t98	0L2＇09	0LE0．0 干 099．09	¢¢\％	－98078tt98
089＊L9	OSL0＇0 干 020 79	もも6	－092067t98	02809	0080 0 干 082．09	907	－999Lでも98
0L9＊LS	0080＇0 干 $079^{\circ} \mathrm{TG}$	98\％	－06968も798	0LZ＇LG	0870 0 干 087 TG	801	－90czLtt98
0ga Ls	09L0 0 干 07F＇LS	068L	－08L687t98	02609	0GZ0＇0 干 06I＇TG	9tI	－\％8\＆2Ltt98
099．LS	0970 0 F 0¢T＇ts	$\ddagger 97$	－T78L8t798	0tE LG	08L0．0 干 09609	も0ZL	8\＆と9Lもあ98
0LZ＊LS	0070．0 干 $070 \cdot \mathrm{LG}$	607	－GtLt8tt9	0L809	0880 0 干 $078^{\circ} 09$	02I	－980868t98
	08L0＇0 干 07\％ $\mathrm{c}^{\circ} \mathrm{C}$	692	－¢78LLtt98	0Lİ6t	$0090{ }^{\circ} 0$ 干 0G9 67	LZI．	－¢L8928t98
07ヶ゙て¢		076	－tEELLtt98	082．09	0990\％干 008．09	0LI	－ 96 L766898
${ }^{\text {ипррәи }}$ H	${ }^{72} \mathrm{f}^{H}$	${ }^{\text {sypad }} \mathrm{N}$	Sdゆ	${ }^{\text {ипррәи }}$ H	${ }^{72} \mathrm{f}^{H}$	${ }^{\text {sypad }} \mathrm{N}$	Sd

0才Z＇TS		\＆8I	－676680898	007＊ 67	$0670^{\circ} 0$ 干 087＊ 67	\％C\％	－8ちもてヤ0298
90．LS	0LZ0＇0 干 080＇LG	299	－ 890680898	078＊67	$0070^{\circ} 0$ 干 $06 \varepsilon^{*} 67$	L0I	－8LLIt0298
009．LG	0¢\％0＇0 F 0¢L＇TG	L．9	－0才7280898	008： 61	0L70 0 干 068.67	00I	－ 766070298
026．09	OGL0＇0 干 0 ¢0＇LS	88もL	－08L980898	069＊6t	$0670^{\circ} 0$ 干 $027^{\circ} 6 \square^{\circ}$	798	－¢99680298
008．LG	08¢0 0 干 $07 \overbrace{}^{\circ} \mathrm{TG}$	897	－090880898	006．67	08L0 0 干 $02 \varepsilon^{\circ} 67$	609	－LL2880298
07¢ ${ }^{\text {L }}$ L	06L0＇0 F 0¢E LG	970	－ 766920898	0 LZ 67	08L0 0 干 09767°	¢92	－ 269280298
096．09	0LE0＇0 干 08 L＇TG $^{\text {c }}$	LLG	－ 969920898	0LL＊61	08900 0 干 02 ® $^{\circ} 67$	08 I	－\ddagger 66670298
079［9	$0 ¢ \% 0^{\circ} 0$ 干 007^{\prime} TS	0.9	－ 688520898	009 67	06L0＇0 干 001 67	966	－792870298
06İLG	0才70＇0 干 08L＇tG	689	－0L0820898	099．8t	08L0＇0 干 028．87	乙¢\＆L	－797870298
09L．LS	0070 0 干 $069^{\circ} \mathrm{T}$ ¢	もも8	－8L9L69298	079．6t		878	L L0070298
060 7 C	0\＆L0＇0 干 $079^{\circ} \mathrm{TG}$	078	－867069298	0LL＊ 61	0090＇0 干 0076 6 ¢	875．	－068\＆28998
08t．09	0980 0 干 $06 \mathrm{~L}^{\circ} 0 \mathrm{C}$	991	－809029298	00L＊6t	07T0 0 干 0LI 6 万	ILI	－ 9 \＃も828998
08867	02L0＇0 干 09667	9 CL	－000299298	092＊8t	0270＇0 干 089 ${ }^{\circ} \mathrm{C}$	でも	－LE\＆L99998
02t0 0 c	0LE0＇0 干 088.67	988	－870099298	029＊8t	0970 0 干 07I 67	L゙6	LLLZ89998
098＊67	$0020{ }^{\circ}$ 干 $069^{\circ} 67$	¢9	－¢¢6879298	02も゙ $6 \pm$	$0770^{\circ} 0$ 干 $067^{\circ} 6 \square^{\circ}$	879	－¢¢8もて9998
0L6．67	09โ ${ }^{\circ} 0$ 干 0L8 ${ }^{\circ} 6$ ¢	ZIL	－ctiligla	008：6t	$0270^{\circ} 0$ 干 $06 \nabla^{\circ} 6 \square^{\circ}$	¢09	－¢99769998
0LL 67	0990＊0 干 007． 67	661	－¢87809298	080 67	$0870{ }^{\circ} 0$ 干 097＇67	969	－ 781 Lz9998
080．09	0870．0 干 0L6．67	L81	－tL096tz98	092．67	08L0 0 干 07 ® $^{\circ} 6$ 万	029	－776079998
0L9．67	OGSO＊O 干 OGL 67	L8I	－69L887298	026．87		GGg	－てLぃ079998
08867	0870 0 干 0 L6．67	9LI	－669896298	089＊6t	09 ¢0＇0 干 00才 6 ¢	889	－98も6［9998
096．87	0\＆L0．0 干 099．87	88LL	＇ 76 L9LLL98	0¢8＊67	$0770^{\circ} 0$ 干 $0 ¢ 77^{6} \square^{\circ}$	669	－7828［9998
009．87	$0720{ }^{\circ} 0$ 干 092．87	90I	－ 88 ¢820298	079 67	$0770{ }^{\circ} 0$ 干 $07 \overbrace{}^{\circ} 6 \square^{\circ}$	989	－7278［9998
002：87	0才1．0 干 088 ${ }^{\circ} \mathrm{8T}$	DIL	－0も¢990298	088＊6	09¢0 0 干 0 Lも 6 万	2.26	－L269L9998
096＊87	0070．0 干 089．87	988	－ 0707990298	02866	$0 ¢ 700^{\circ}$ 干 $02 \varepsilon^{\circ} 67$	629	L6¢tL9998
089．87	0GL0＇0 干 $0699^{\circ} \mathrm{B}$	09I	－0¢2L90298	07I＊6t	$0 \varepsilon ¢ 00^{\circ}$ 干 $087^{\circ} 67$	L6I	6868 L9998
028＊87	$0760{ }^{\circ} 0$ 干 $069^{\circ} 87$	00I	－L89L90298	070.67	$0070^{\circ} 0$ 干 $087^{\circ} 67$	L99	6LもEL9998
089．67	$0 \searrow て 0^{\circ} 0$ 干 0¢\％ 6 万	∓ 99	－L6LE¢0298	078＊6	0LI0 0 干 07866 万	092	－696zL9998
078．87	06L0＊0 干 090．67	6701	－1897¢0298	069 67	0 LZ0＇0 干 $078^{\circ} 67$	679	69ちてL9998
099＊87	0LZ0．0 干 08L．87	g7\％L	－LLLZ90298	02L＊6t	0890．0 干 $07 \varepsilon^{\circ} 67$	701	－98LZL9998
${\stackrel{\text { ип？}}{ }{ }^{\text {a }}}^{\text {H }}$	${ }^{72}{ }^{\text {f }}$ H	${ }^{\text {ad }}$ N	Sdゆ	${ }^{w}$	${ }^{72}{ }^{\text {f }} \mathrm{H}$	${ }^{p 2 d} N$	Sdゆ

Table 3：WE finesse measurements during VSR1（continued）．

087＊TG	0LE0＊0 干 00¢．TG	917	－0L2879028	089．79	0680 0 干 $0 \angle 77^{\circ} 7 \mathrm{C}$	LV9	－ 27 ¢¢68698
089．T9	08900 0 干 097．TG	098	－ 977809028	078 69	0¢¢0 0 干 098.79	6L0L	－LEL768698
00\％ TG $^{\text {c }}$	0880＊0 干 0¢才．TG	628	－GLLL09028	0LL＇G9	$0680{ }^{\circ} 0$ 干 $07 \varepsilon^{\circ} \mathrm{zc}$	267	－LLLI68698
079．TG	0¢70＇0 干 089 ${ }^{\text {TG }}$	¢L9	－\％¢LT09028	00\＆ 79	0¢L0 0 干 067.79	66IL	－ 229688698
072． 59		L00］	－769869028	070．7¢	0910 0 干 $078.7 ¢$	026	－291688698
060．79	0LE0＇0 干 $0 \angle 88^{\circ}$ TS	289	－787969028	006．79	0980 0 干 0 Lち 7 ¢	L8t	－ 299888698
016．TG	0¢70．0 干 0¢8．TG	206	－ 797969028	0才L \％9		799	－ 2 İ888698
008．z¢	0070．0 干 08L＇TG	26IL	－$冖 67659028$	098．79	0¢ $700^{\circ} 0$ 干 0 L® 7 C	709	－L29688698
006． L $^{\text {c }}$	0870 0 干 0LG＇TS	ZLIL	－786869028	0Lも 69	0610＇0 干 0LE $7 ¢$	てぃ9	－290788698
07L｀za	0¢70＇0 干 0LI＇ZG	Ggi	－99866L028	02t79	0LE0＇0 干 07ヵ＇ 7 C	677	－299888698
00I• ¢¢	09L0＇0 干 080． $\mathrm{c}^{\text {c }}$	¢97	－ 766861028	080 0°		CLT	－ 270888698
080 $0^{\circ} \mathrm{C}$	0もも0＇0 干 06I＇z¢	モ0I	－LEE965028	009．$¢ 9$	$0 ¢ 500^{\circ}$ 干 088.79	T98	－L¢9788698
070．z¢	0880 0 干 080 $0^{\circ} \mathrm{G}$	926	－L69965028	00c．ts	0880 0 干 $0999^{\text {L }}$ ¢	2IE	－T96888698
080 \％\％	0880 0 干 0899° TS	675	＇もLE090028	009＊LS	0850＇0 干 078．LG	6LI	－6Lぃて\＆8698
072． $\mathrm{C}^{\text {c }}$	0890 0 干 07\％ 79	681	－99L670028	0才6． T ¢	0LI0 0 干 00\％ 79	LIL	－661678698
0¢0 $0^{\text {¢ }}$	0680＊0 干 078． $7 ¢$	\％LE	－C99870028	008¢¢	02800° 干 $029^{\circ} \mathrm{C}$ ¢	08I	－002082898
090．z¢	06900 0 干 088． 79	GLI	－CtI870028	00L®¢	0たt0 0 干 $06 \mathrm{I}^{\circ} \mathrm{C}$ ¢	9Lt	－06L082898
0¢8＊${ }^{\text {LS }}$	0080\％ 0 干 078． $7 ¢$	687	－989270028	096．79	00¢0＇0 干 00L 7 C	90t	－089622898
086． L $^{\text {c }}$	0ZL0＇0 干 008． $7 ¢$	68LE	－G29t70028	00609	0870 0 干 $00 \varepsilon^{\circ} \mathrm{L}$ ¢	68%	－68け977898
0¢¢ \％${ }^{\text {c }}$	0920＊0 干 090＇z¢	701	－こもで\％0028	0LG．ts	0920＊0 干 091．L马	LtI	－868もて7898
090\％\％	0060＇0 干 067． 79	¢0L	－818700028	027＊TS		2，8	－07676L898
002． ¢ $^{\text {c }}$	0790＊0 干 0LE $7 ¢$	L\＆\％	－862L00028	02L｀ts	$0 L 70{ }^{\circ} 0$ 干 $0 ¢ ¢^{\prime} \mathrm{LS}$	80t	－006L6L898
02L゙Z9	08G0＊0 干 067．7¢	L\＆L	－882L00028	089＊09	OLL0．0 干 0才6．09	Lf8L	－068L6L898
087： 69	0980\％ 0 干 0LZ 79	L¢\％	－892666698	0L0 TG	0LL0．0 干 07609	962I	－08806L898
070． 69	0¢T0 0 干 099 TS	968	－677888698	007＊TS	0080 0 干 $079^{\circ} \mathrm{T}$ ¢	L0t	－020cli898
092＊LS	0960 0 干 087＇LS	6，	－090LL9698	096．ts		モ0t	－099tLI898
018．79	0LL0＇0 干 088． 7 C	¢¢	－62IStt698	079＊LS	0¢E0＇0 干 0g\％LG	899	－0才C8LL898
018． 5	0LZ0＇0 干 0¢T＇ 7 C	\＆L¢	－L688tt698	00c．ts	0970 0 干 0¢0＇LS	L69	－876960898
067．${ }^{\text {c }}$	0¢ $200^{\circ} 0$ 干 087．7c	781	－79188t698	00609	0¢80 0 干 $0688^{\circ} 09$	L®\％	－ 7 ¢8760898
	0990＊0 干 0L6． LG $^{\text {c }}$	847	＇78780п698	097＇ L9 $^{\text {c }}$	0870 0 干 $0 ¢ \varepsilon^{\circ} \mathrm{L}$ ¢	Ø¢	－¢0L060898
${ }^{\text {иппрәи }}$ H	${ }^{727}{ }^{\text {H }}$		Sdゆ	${ }^{\text {ип！рәш }}$ H	${ }_{7}^{72}$ H	${ }^{\text {sybad }}$ N	Sdワ

Table 4：WE finesse measurements during VSR1（continued）．

	0¢L0＊0 干 0¢9 \％¢	979	－20才0¢0¢28	0¢L｀TG	0¢Ћ0．0 干 $0 \pm 8^{\circ} \mathrm{LG}$	08L	669z987 28
0L9．z¢		27.6	－L2t670928	068 ${ }^{\text {TG }}$	0¢E0＇0 干 $0266^{\text {L }}$ LG	0LI	920798t 28
099．z9		0 L\％	698870928	078＊${ }^{\text {LG }}$	OGL0＇0 干 $078^{\text {c }}$ LG	676	0LLT98t 28
028\％9	$986000 \% 089^{\circ} 79$	982	－688L70928	069 ${ }^{\text {TS }}$	0才て0＇0 干 062． TG	927	－¢¢0T98t 28
089．7¢	06L0．0 干 0Gc $\%$ c	981	－0才LL70928	082．TG	0LZ0＇0 干 08L＇LG	281	696678728
089．79	09L0．0 干 069． 79	29I	－DL0LZ0ç8	098．LG		97.	－ 908678728
008． 79		7\％\％	－ 009970928	0 St LG	0680 0 干 $009^{\text {TG }}$	¢¢L	－262678728
097． $\mathrm{c}^{\text {c }}$	08L0．0 干 099．7c	20I	－027970928	078 ${ }^{\text {LS }}$		789	－¢19678728
079 79		\＆69	－09z9z0c28	008＊LG	09E0＇0 干 0LE LG	981	－6L8878t28
029\％9	OちZ0＇0 干 0LL． 79	モ81	－0才Lもて0928	089．6ஏ	07L0 0 干 099．67	29IL	－96I688728
0LL $\mathrm{Ca}^{\text {c }}$		¢92	－0¢Zって0928	070．09	08L0．0 ∓ 076.67	987	－969088728
068．79	79900 0 干 $09 \varepsilon^{\circ} \mathrm{ZG}$	0L8I	－072870928	0才t．09	0LL0 0 干 0688^{6}	9L0I	－ 9 L0088728
	00L0．0 干 0¢\％\％ 9	± 09	－¢¢も¢z0g28	096．67	00L0 0 干 $0 \mp 8^{\circ} 67$	087I	－ 909678728
070． Ca	0才L0．0 干 001． 7 c	0L9	－I¢97\％0928	000．09	09L0 0 干 0 88.67	689	966878728
096．T¢	09L0．0 F 078．LG	988	－LZLZ70928	069．79		991	006987ヶ28
0LE \％9	0080＊0 $\ddagger 067^{\circ} \mathrm{ZG}$	0 L\％	－¢866L0928	090 ${ }^{\circ} \mathrm{c}$	0090＇0 干 097 $7 ¢$	926	0289¢7t 28
0LZ．79	0870＊0 干 07\％＇7¢	get	－8088L0928	096．LG	0LI0＇0 干 0L9 LG	978	09282LtL8
07L｀¢¢	0970＊0 干 07\％＇z¢	L0\％	－9898L0928	091．09	0670 0 干 $0 \pm L^{\circ} 09$	¢St	－86L7078L8
068．79		\＆L\％	－8898L0928	0L9＊8t		961	－289LLIEL8
098．79	0¢70＊0 干 0¢\％＇z¢	978	－ 6622 L0928	006．67	0¢L0＇0 干 070．09	701	－ 7 ［ち98Lで28
0も6．T¢	0\＆L0＊0干0¢LTG	LZ0］	－609910928	079．09	0090＊0 干 080．09	29I	－ 706982 L 28
06L．t9	07\％0＇0 干 09L＇TS	979	－8998L0cz8	OtE09	07ヶ0＇0 干 020．09	$\underline{4} 9$	－¢1898LzL8
0¢E TG	0LZ0＊0 F 069 $^{\text {LG }}$	モ¢¢	－gccilogz8	001．09	0070 0 干 0L0．09	¢67	－¢67ヵ¢LzL8
07¢． Cc	09L0＊0 干 098． $7 ¢$	て，9	－880900928	087＊67	$0 ¢ ¢ 0{ }^{\circ} 0$ 干 0666°	807	－Tも706çz
08L｀ ¢9 $^{\text {c }}$	0才L0：0 干 08E． 79	296	－¢69900cz8	0L0 LG	0LZ0＇0 干 0¢\％＇LG	\％L2	－69LL99028
080 ${ }^{\text {tg }}$	06L0．0 F 0tE L	078	－¢9才700¢ 28	098．LG		ఒ〒\％	－$¢ 7889028$
062．tc	08L0 0 干 $000 \cdot 69$	966	－ 999988 ± 28	089 ${ }^{\text {TG }}$	00¢0 0 干 $069^{\circ} \mathrm{LG}$	67%	－¢¢Lec90 ${ }^{\text {c }}$
089 ${ }^{\text {T }}$ ¢	0¢70＊0 干 0¢8．LG	¢99	－¢96988728	020．7s	OtL0 0 干 $029^{\circ} \mathrm{TS}$	768	702LE9028
07L $\mathrm{c}^{\text {c }}$	0770＊0 干 029 LS	¢88	－ 990988728	0St．LS	00¢0＇0 F 0¢G＇LG	L98	－872679028
089 ¢¢		68%	－28t998t 28	0tL．ts	07L0．0 干 067＊LS	8791	－887679028
	${ }^{727}$ H	${ }^{\text {sybad }} N$	Sdワ	${ }^{\text {uпpp }}{ }^{\text {a }}$ H	${ }_{7}^{72}$ H	${ }^{p a d} N$	Sdゆ

－иวп！b วıд

08L＊67	0¢E0＊0 干 0L6．87	089	－80L889LL8	098＊87	0880＊0 干 098．87	†¢9	－9818L0L98
097：67	0970．0 干 026．8才	988	－869289LL8	086．87	0290．0 $\mp 08 L^{\circ} 87$	67%	－¢02910298
0¢6＊8t	$0770 \cdot 0$ 干 006.87	6I0I	－880289LL8	029＊8t	0もモ0．0 干 0¢L．8̇	\＆Lt	－0098L0298
0TL＊8t	$0 ¢ ¢ 00$ 干 0\％L＇8t	てワ8	－890989L28	007＊6】	$00 ¢ 00^{\circ}$ 干 0\＆6．87	LUt	－L0L9L9998
078＊8t	0L60．0 $\mp 060 \cdot 8 \pm$	68I	－2LL909028	088＊ 8 t	0¢E0．0 干 $078.8 \pm$	L09	－L69tL9998
080 2 t		¢ヵI	－ 78 Lt09028	007＊ $6 \pm$	$0 ¢ ¢ 00^{\circ}$ 干 076．87	797	－6967L9998
092： 2 t	091．0 $\mp 08 L^{\circ} \mathrm{LE}$	87I	－ 7 Lece9028	098．87		087	－8LLLL9998
078： 27	09600° 干 0L6 2 L	LLI	－ 709709028	072：87	$0070 \cdot 0$ 干 0LL．87	276	－88c89¢998
060＊8t	09L0．0 干 0ZI．8t	897L	－ 7 ± 9669028	0\＆¢ 67	00700° 干 00才 6 ¢	DLS	－ 787698998
067＊ 27	09200 干 0才8． 2 L	¢67	－709269028	092009	0LI＇0 干 070＇LG	86I	－L60LGç98
088． 2 t	$08700^{\circ} \mathrm{F} 098^{\circ} \angle \mathrm{L}$	967	－ 797 969028	067＊6ワ		998	－ 79289 ¢798
098.87	0GS0．0 干 029．87	88%	－8LLL66698	009＊87	08900 干 029．87	899	－ 702997798
061＊6t	0TE0．0 干 09L．8才	986	－2L9988698	068＊8t	0980 0 干 00¢ 6 万	916	－¿\＆Lz9tt98
067＊67		99%	－8908L8698	086．87	0270．0 ∓ 076.87	988	－ 76009 ¢798
067＊6ヵ	08L0＇0 干 0LI 6 万	881	－T968¢8698	00867	$0 ¢ \mp 00^{\circ} 0$ 干 $096.8 \pm$	898	－L2898t798
0 ［9．67		70I	－6Lちて¢¢698	001＊6t	07900 干 096．87	0¢\％	－67678tt98
069＊8t	0LLO 0 干 0906 6 万	CEL	－0¢もて 68698	062：87	OGL0＇0 干 028．87	¢ZI	－98078tt98
076． 27	09才0．0 干 069 2 L	298	－89L260898	098．87	$0990{ }^{\circ} \mathrm{F}$ 干 000 6 б	¢\＆L	－999LZっt798
069． ¢ $^{\text {¢ }}$	0LG0 0 干 0LL 2 L	027	－¢02060898	076：87	$08700^{\circ} \mathrm{F} 000{ }^{\circ} 6$ 万	もLI	－ 788 LIt 98
088＊87	0LI0 0 F 0L8 2 L	928	－0才てL80898	029＊8t	$0970{ }^{\circ} 0$ 干 006．87	006	－88¢9LIt98
02L： 2 T		LLL	－0¢L980898	0L9 6 6 ¢		67%	－ 96 L766898
096． 2 t	$00 才 0 \cdot 0$ 干 0\＆L 2 L	809	－209080898	07E6も	$08 L 0 \cdot 0$ 干 $0 \varnothing \sim \cdot 67$	907	－60LL88898
097＊ 2 も	00600° 干 $0 屯 9 . \angle \square$	モ¢\％	－096990898	07\％＊09	0も才0．0 干 088．6ぁ	๕¢\％	－669088898
086．87	0990．0 ∓ 00067	L\＆\＆	－L6LE90298	029 6t	0L90．0 干 079 6 6 万	881	－600928898
001＊6t	07T0 0 干 0L0 67	819	－L89790298	002＊6t	0LZ $0^{\circ} 0$ 干 098 ${ }^{\circ} 67$	88\＆	－66もGL8E98
096＊8t	0870.0 干 080 67	¢68	－8もちで0298	097＊67	0L90．0 干 0\＆66 6 万	69 I	－62tもL8898
09I＊6t	0ZI．0 干 018．87	ZIL	－6LLZた0298	02967	08100° 干 0766^{6}	799	－68ちて28898
009＊87	0LE0 0 干 0L0 67	LE8	－207880298	078 6 ¢	02I0 0 干 0\＆66 6 万	ஏ98	－676L28898
026＊8t	$0 ¢ ¢ 00$ 干 08L 87	7.29	－ 798870298	090＊09		998	－606028898
091：6t	0790.0 干 $066.8 \pm$	\＆LI	－L0070298	0L6．61	00L0．0 干 0L8．6才	892	$\cdot 668028898$
${ }^{\text {ипррәш }}$ H	${ }^{7 ?}$	${ }^{\text {sypad }} \mathrm{N}$	Sdゆ	${ }_{\text {ипррәш }}$ H	${ }^{72 f}{ }^{\text {H }}$	${ }^{\text {sypad }}$ N	Sdわ

	$\overbrace{0}^{\Omega}$
	\mathfrak{t}

[^0]: ${ }^{1}$ SIESTA version v4r00

[^1]: ${ }^{2}$ GRADiend MInimisation

