CNRS Centre National de la Recherche Scientifique INFN Instituto Nazionale di Fisica Nucleare

VSR1 cavity finesse measurements

F. Marion, B. Mours, <u>L. Rolland</u>, E. Tournefier

LAPP-Annecy

VIR-052A-08

June 19, 2008

VIRGO * A joint CNRS-INFN Project Project office: Traversa H di via Macerata - I-56021 S. Stefano a Macerata, Cascina (PI) Secretariat: Telephone (39) 50 752 521 - Fax (39) 50 752 550 - e-mail virgo@pisa.infn.it

Contents

1	Introduction	2
2	Finesse reconstruction method	3
	2.1 Estimation of the cavity length as function of time	3
	2.2 Simulation of the Airy peak shapes	5
	2.3 Fit of the Airy peaks	6
3	Measurements of the cavity finesse during VSR1	7
	3.1 Measurements from Airy peaks in free swinging cavities	7
	3.2 Comparison with the locked cavity power variations	7
4	Conclusion	15
A	SIESTA configuration file	17
в	Measurements during VSR1	18

1 Introduction

The long cavities of the Virgo interferometer (north and west arms) consist in Fabry-Perot cavities when the interferometer is locked to take data in Science Mode. They are used to increase the power of the laser that is stored in the cavities.

The response of Virgo to a change in the cavity differential length is a modification of the laser power measured at the level of the dark fringe. It is defined as a transfer function in W/m.

When a cavity is locked, its response to a length modification behaves as a simple pole whose frequency depends on the finesse of the cavity. The average response of the cavities is taken into account in the reconstruction of the strain signal h(t) to search for gravitationnal waves. The finesses of the cavities are expected to vary by a few percent as function of the mirror temperatures [1, 2].

The aim of this note is to estimate the variations of the finesses during the run VSR1 (May 18th to October 1st, 2007).

The method used to determine the cavity finesse, based on the comparison of the Airy peaks in the data with simulations, is described in the first section. The results and monitoring of the cavity finesse during VSR1 are then given. They are then compared to the variation of the power transmitted by the cavities.

2 Finesse reconstruction method

The finesse of the Fabry-Perot cavities depends on the mirror amplitude reflectivities ρ_1 and ρ_2 as:

$$F = \frac{\pi\sqrt{R}}{1-R} \tag{1}$$

with
$$R = \rho_1 \rho_2$$
 (2)

The intensity reflection coefficients are defined as $r_1 = \rho_1^2$ and $r_2 = \rho_2^2$.

It can also be extracted from the TEM_{00} (Transverse Electro-Magnetic) Airy peaks [3]. Airy peaks are visible in the time variation of the power stored in the cavity when the length of the cavity changes. The powers in the north and west cavities are monitored through photodiodes in the external end-benches. The channel names are Pr_B7_DC and Pr_B8_DC respectively.

The finesse is defined as the ratio of the distance between two consecutive TEM_{00} resonances (FSR, Free Spectral Range) to their linewidth (FWHM, Full Width Half Maximum). However, due dynamical effects, the Airy peaks are distorted and the line width cannot be measured directly. The distorsion depends on the speed of the cavity mirrors. This parameter can be set in a dynamical simulation of a cavity which predicts the shape of the Airy peaks. A fit of the data with the simulation allows to estimate the finesse.

2.1 Estimation of the cavity length as function of time

The speed of the cavity is estimated from the cavity length time variation. The variation of the cavity length between two TEM_{00} resonances is equal to $\lambda/2$ where λ is the wavelength of the laser (1064 nm).

An exemple of the cavity power as function of time is given in the figure 1. In order to reconstruct the cavity length time variations, the issue is to find the cavity length extrema. A few paremeters have been defined from three Airy peaks (i-1) to (i+1) around the current one indexed by *i*: the amplitudes and widths of the peaks, A_j and W_j , and the time between the peaks: $\Delta t_j = t_j - t_{j-1}$. The following conditions are used to define an extremum:

- when the Airy peak is at one extremum (speed close to 0), it is much larger than its neighbours: $W_i > 2W_{i-1}$ and $W_i > 2W_{i+1}$.
- when the Airy peak is after the lengh extremum and the extremum is close to next peak: $\Delta t_i > \Delta t_{i-1}$ and $\Delta t_i > \Delta t_{i+1}$ and $W_i > 1.05W_{i+1}$
- when the Airy peak is soon after the lengh extremum: $\Delta t_i < \Delta t_{i-1}$ and $\Delta t_i < \Delta t_{i+1}$ and $W_i > 1.05W_{i+1}$

If these conditions are not fulfilled, the cavity length is incremented by $\pm \lambda/2$ depending on the current direction. An example of reconstructed cavity length time variation is shown in the figure 1.

If the cavity is excited but not too much (angularly and longitudinally), its length varies sinusoidally with time. A cosine function can be fit to the points: $l(t) = a_i + b_i \cos(\omega_i t + \Phi_i)$. For a given Airy peak at t_i , the fit is computed over a window of ?? s (or extended in order to enclose at least 5 peaks). The speed is then derived from l(t) as $|v(t_i)| = b_i \omega_i \sin \omega_i t_i + \Phi_i$.

The cavity lenght can be reconstructed in different types of data.

- free swinging cavity: the cavity length variation is not really sinusoidal. The determination of its extrema, and therefore the cavity speed are not precise.
- swinging cavity with one mirror excited with a ~ 1 Hz line. The cavity length variation is dominated by the 1 Hz excitation and the speed is reconstructed within $\sim 20\%$.

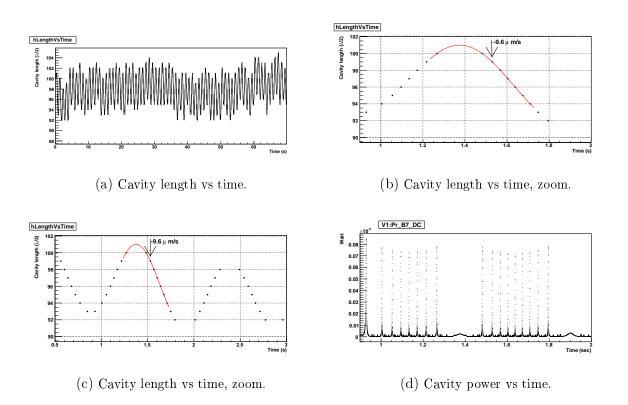


Figure 1: Cavity power and estimated length vs time. (a) Reconstructed north cavity length variations for a dataset with specific injections. (b) Reconstructed cavity length variations in a short window, with the cosine fit. (c) Same, but with larger time window. (d) NE cavity power (Pr_B7_DC) as function of time in the same window as (b).

2.2 Simulation of the Airy peak shapes

The time domain simulation of a Fabry-Perot cavity including dynamical effects is computed using the $SIESTA^1$ program [4].

A set of simulations are performed scanning the cavity speed and finesse from 0.5 to 30μ m/s and 40 to 60 respectively, with steps of 1 for both parameters. The time serie of the simulated photodiode readout is sampled at 20kHz.

Typical values of the mirror reflectivities (in intensity) are initially set to $r_1 = 0.882$ and $r_2 = 0.999957$. For a given cavity finesse, the reflection r_1 of the input mirror of the cavity is modified accordingly to equation 2 in the simulation. The speed of the cavity elongation is directly a parameter of the simulation configuration. An exemple of SIESTA configuration file is given in annexe.

For every sets of parameters (speed, finesse), the time serie of the simulated Airy peak is stored in a 3-dimension table within ± 0.020 ms (801 samples) around the peak maximum. The amplitude of the peak is set such that the integral of the time serie is 1. The shape of the Airy peaks is then linerally interpolated between the different simulated sets in order to have a continuous function. The figure 2 shows the shape of the Airy peaks as function of the cavity finesse for a speed of 10μ m/s and as function of the cavity speed for a finesse of 50.

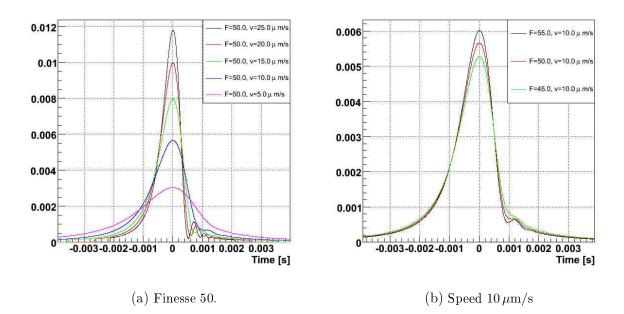


Figure 2: Shape of the simulated Airy peaks (a) as function of the cavity speed for a finesse of 50. (b) as function of the cavity finesse for a speed of $10 \,\mu m/s$,

 $^1{\rm SIESTA}$ version v4r00

VIR-052A-08

2.3 Fit of the Airy peaks

Errors of $\pm 10^{-7}$ W have been used for the measurements of the cavity power time series Pr_B7,8_DC ($\pm 1.710^{-3}$ V for the voltage time series Pr_B7,8_d1,2_DC). Every Airy peak *i* detected in this time serie is fitted using MIGRAD². The fit has four parameters: time of the maximum, amplitude, cavity finesse and cavity speed (when using the voltage channels Pr_B7,8_d1,2_DC (in V), an offset is added as a fifth parameter).

The initial time of the peak is set to its maximum t_i . This parameter is constrained within $\pm 200 \,\mu$ s around t_i . The initial amplitude is set to the integral of the measured Airy peak. The initial value of the finesse is set to its nominal value of 50. The initial speed of the cavity is set to the estimation described above. When the cavity length is close to a sine (with the 1 Hz excitation), the speed is constrained to vary by less than 30% from its initial value. Else, it is let free.

The Airy peaks with an estimated cavity speed outside the range $[3; 20] \,\mu\text{m/s}$ are not used. A few cuts are applied in order to select the "good quality" fits.

- no error returned by MIGRAD,
- the parameters are not close to the edge of the simulated table,
- χ^2 probability higher than 10%.

 $^{^2 {\}rm GRADiend}~{\rm MInimisation}$

3 Measurements of the cavity finesse during VSR1

3.1 Measurements from Airy peaks in free swinging cavities

No specific data were taken during VSR1 to measure the finesse of the cavities. Datasets with free swinging mirrors have been selected. The criteria were at least 30 seconds (and maximum 500 seconds) of data in step 0, with the BS and cavity mirrors aligned

(i.e. $Sc_NE_Gain_tyMarMis = 0$) and PR misaligned ($Sc_PR_Gain_tyMarMis = -150$).

About 600 datasets have been selected during VSR1. The north and west cavity finesses have been fit using the voltage signal Pr_B7_d1_ACp and power signal Pr_B8_DC respectively. Since the cavities are not excited, the cavity motion is not well estimated. Thus the speed is let free in the Airy peak fits.

For every datasets, some checks are performed on a few distributions. Examples are shown in the figures 3, 4, 5 and 6. The mean of the distribution of the error-weigted fitted finesse is a way to measure the finesse of the dataset. The fitted finesse as function of the fitted speed (before the selection on the speed) is used to check that there is no correlation between both parameters. The relative difference between the fitted speed and its initial estimation is not really usefull since the initial estimation is rather bad. The difference between the fitted time of the maximum and its initial value is lower than $100 \,\mu$ s.

The datasets are then selected using a few quality criteria. The number of correctly fitted Airy peaks must be higher than 100. Four estimations of the finesse are performed: the average values of the raw and error-weigted finesse distributions, the value from a Gaussian fit of the raw distribution and the median value of the fitted finesse. The differences between the values must be lower than 0.5. The error of the Gaussian fit and the fitted sigma of the distribution must be lower than 0.5 and 1 respectively.

For the datasets passing the quality criteria, the finesses obtained from the Gaussian fit are given in appendix B and shown in the figure 7. Time variations are clearly visible, with amplitude of ± 1.5 around the average value for both cavities. The average values obtain from the few measurements during VSR1 are 49.1 and 51.5 for the north and west cavities respectively.

3.2 Comparison with the locked cavity power variations

When the interferometer is locked (step 12), the north and west cavities are controlled such that the laser TEM00 mode resonates. The mirror relative positions are thus controlled such that the power that is stored inside the cavity is at a maximum of an Airy peak.

The power stored in the cavity, measured through the channels $Pr_B{7,8}_DC$, is proportionnal to the cavity finesse. The relative variation of the cavity power gives a measurement of the relative variation of the cavity finesse.

The variations of the cavity powers in step 12 during VSR1 have been computed. They

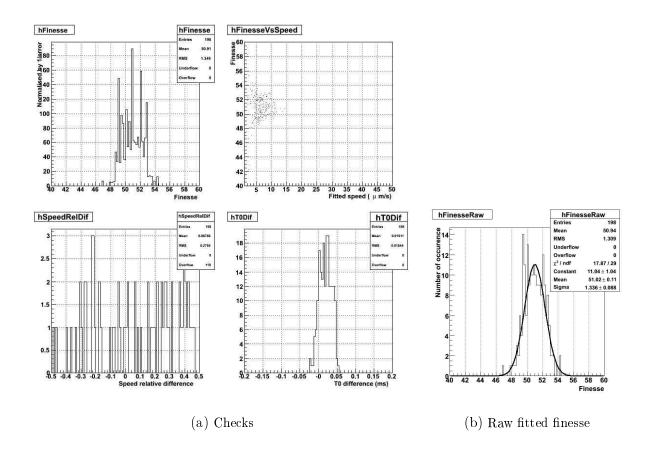


Figure 3: Distributions for the north cavity at GPS 865551091. (a) Distribution of the error-weighted fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the fitted finesse.

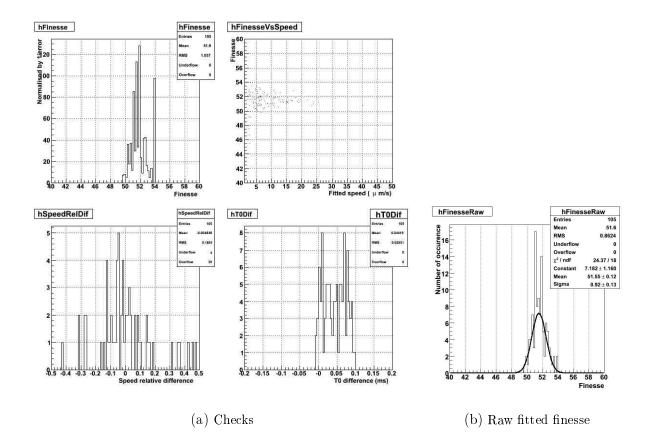


Figure 4: Distributions for the west cavity at GPS 865551091. (a) Distribution of the error-weighted fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the fitted finesse.

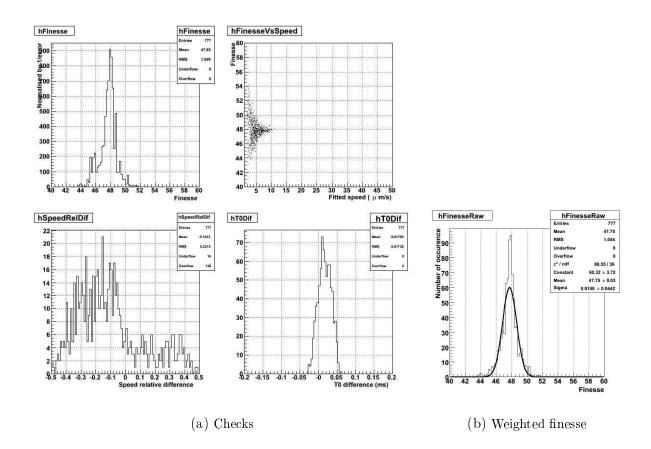


Figure 5: **Distributions for the north cavity at GPS 868086730.** (a) Distribution of the fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the error-weighted fitted finesse.

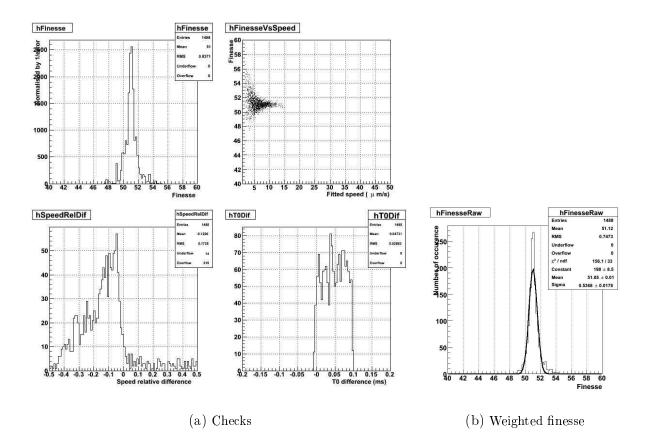


Figure 6: Distributions for the west cavity at GPS 868086730. (a) Distribution of the fitted finesse, finesse as function of speed, relative speed difference, time difference. (b) Distribution of the error-weighted fitted finesse.

have been normalised such that they match, on average, the finesse where there are direct measurements within one hour (normalisation factors of 575 and 627 for the north and west cavity powers respectively). The comparison of the finesse variations estimated by both methods are shown in the figure 8. A zoom on the beginning of the run (figure 9), when the etalon effect changed by one period on the NI mirror due to temperature variations.

The behavior of the cavity finesse measured in this note and the transmitted power of the cavities are similar. It somehow validate the measurements using the Airy peak shape. However, two types of systematic errors can be highlighted:

- during periods with constant transmitted power value, the dispersion of the cavity finesse measurements is of the order of 0.2,
- the normalisation factor of the cavity power might change as function of time. It is expected to change due to different mirror and/or photodiode alignements. Using a constant normalisation factor during VSR1, differences up to 1 are seen between the normalized power and the finesse.

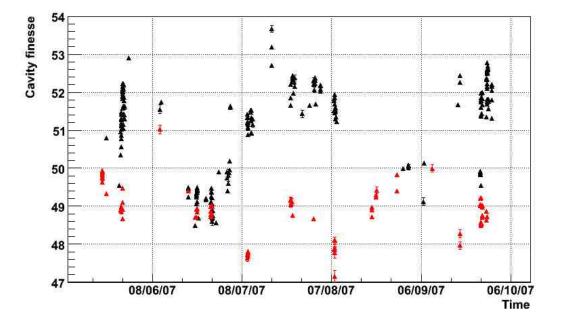


Figure 7: Finesse vs time during VSR1 for the west (black) and north (red) cavities. The lines gives the average values during the run.

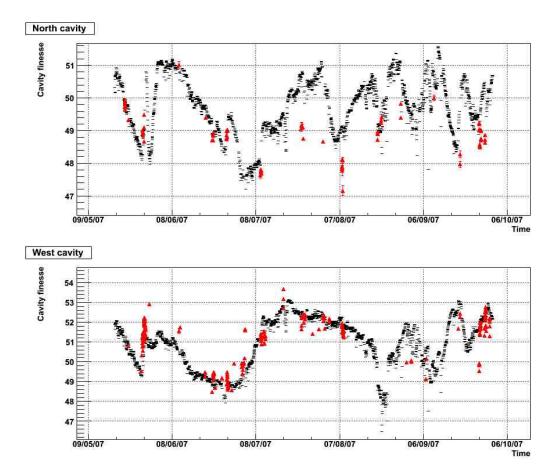


Figure 8: Cavity finesse and normalised power transmitted by the north and west cavities. The transmitted powers have been normalised by 575 and 627 respectively.

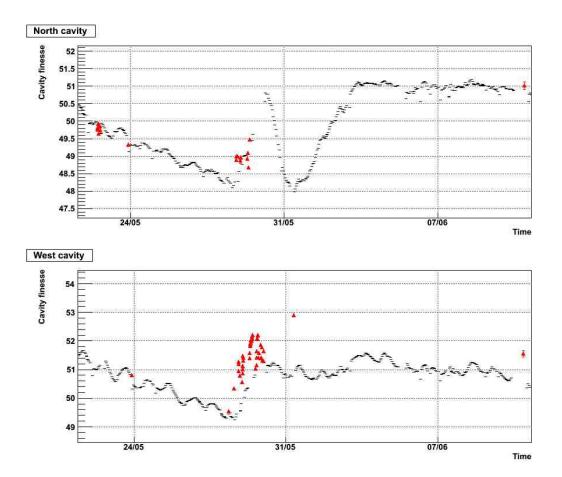


Figure 9: Zoom on the cavity finesse and normalised power transmitted by the north and west cavities. During this period, the etalon effect of the NI mirror went along a full period due to high temperature variations.

4 Conclusion

The finesse of the north and west cavities have been measured during VSR1 using the shape of the Airy peaks seen in the transmitted power of the free swinging cavities. It permits to monitor the absolute value of the finesse and to estimate the amplitude of the finesse variation to about ± 2 around their average values, as expected from the etalon effect in the input mirrors. Systematic errors of the order of 0.2 can be estimated from the dispersion of the measurements within short time-scales.

The variations of the measured finesse follow the variations of the power transmitted by the locked cavities. Differences of the order of 2% ($\Delta F \sim 1$) can be used as pessimistic systematic errors on the absolute value of the finesse using the Airy peak shape.

References

- [1] M. Punturo, The mirror resonant modes method for measuring the optical absorption (2007) VIR-001A-07
- [2] M. Punturo, *Etalon effect in the Virgo cavities*, slides of weekly meeting from June 12th 2007
- [3] F. Acernese et al. (Virgo collaboration) **Applied Optics 46**, Issue 17, pp 3466-3484 (2007). Measurements of the optical parameters of the VIRGO interferometer.
- [4] B. Caron et al. Astroparticle Physics 10, 369-386 (1999). SIESTA, a time domain, general purpose simulation program for the VIRGO experiment.

A SIESTA configuration file

Configuration file for the SIESTA simulation. In this simulation, the NE mirror is moving at $10 \,\mu\text{m/S}$ (MISweep). The NE and NI reflection coefficients are respectively 0.999957 and 0.881968 The simulated finesse is thus 50.

```
/* Creation of the clocks for signal simulation (rates) */
/* UJclock name
                        totalTime nClocks Freq0 Freq1 */
UJclock
                                 2
                                         80000 1
          masterClocks
                        80000
/* Creation of the frame builder to store the output signals into a frame file */
UFrBuilder FBuilder 1 1 0 0
/* ***** Creation of the mirrors with their surface *****
                                                          */
/* *** NI, back ****/
/*MIrror name
                  clock susPos thermPos frontSurf backSurf initPos
                                                                     initOrientation */
MIrror
         Mir11
                        NULL
                               NULL
                                        NULL
                                                 MiSu11b 6.4 0. 0. 1. 0. 0.
                  Ω
/* MIsurf name
                  curvature radius thetaX thetaY halfThickness reflection losses */
MIsurf
         MiSu11b
                  0.
                            .2
                                   0.
                                          0.
                                                 0.
                                                              0.881968
                                                                             .1e-3
/* *** NE, front ****/
         Mir12
                  0 NULL NULL MiSu12f
                                          NULL 3006.4 0. 0.
MIrror
                                                             1 0. 0.
MIsurf
                  2.81294e-4
                              . 2
                                  0.
                                              0.999957
         MiSu12f
                                      0.
                                          0.
                                                       0.
/* *** WI, back ****/
MIrror
         Mir21 0 NULL NULL NULL MiSu21b 0. 5.6 0. 0. 1. 0.
/*MIsurf
                     0. .2 0. 0.
                                     0.
                                         0 .1e-3 */
           MiSu21b
MIsurf
         MiSu21b
                   0. .2 0. 0. 0.
                                       0 0
/* *** WE, front ****/
               0 NULL NULL MiSu22f
                                             0. 3005.6 0. 0. 1. 0.
         Mir22
MIrror
                                        NULL
MIsurf
         MiSu22f
                   2.89855e-4
                              .20.
                                       0. 0. 0
                                                 0.
/* *** BS, front ****/
         Mirbs 0 NULL NULL MiSubsf
                                       NULL 0. 0. 0. 1. -1. 0.
MIrror
MIsurf
         MiSubsf
                  0. .2 0.
                              0.
                                  0.
                                    .50.
/* *** PR, front ****/
MIrror
         Mirrc O NULL NULL NULL
                                     MiSurcf
                                              -6. 0. 0. 1. 0. 0.
                                      0.
MIsurf
         MiSurcf 0. .2 0.
                              0.
                                  0.
                                          0.
```

VIR-052A-08

```
/* Define a mirror movement */
/* MISweep name
                  clock mirror startPos slope(m/s) axis (0=x, 2=z) */
MIsweep
           sweepz 0
                        Mir12 0.
                                        1e-05
                                                   2
/* Create the laser */
/*IOlaser name clock surf wavelength power noise noise curvature waist window method */
                      NULL 1.064e-6
                                            NULL NULL O.
                                                                         .40
IOlaser
          laser 0
                                      .56
                                                                   .021
                                                                                NO
                                                                                   0
/* Create the phase modulator */
OPmod mod 0 laser.oBeam 3 0. 6.26408e6 -6.26408e6 carrier NULL sb1 NULL sb2 NULL
/* Create the signals for amplitude modulation of the side bands */
USignal carrier 0.99
USignal sb1
                 0.075
USignal sb2
                -0.075
/*dynamic simulation*/
OPglobal itf 0 mod.oBeam MiSubsf MiSu11b MiSu12f MiSu21b MiSu22f MiSurcf NO NULL
/* Create the photodiodes */
/*OPdiode name clock efficiency demodFreq demod incidentBeam withShotNoise? */
OPdiode
          B1
               0
                     1.
                                6.26408e6
                                           NULL
                                                 itf.oBeam1
                                                                YES
OPdiode
               0
                                                 itf.oBeam7
          B7
                     1.
                                6.26408e6
                                           NULL
                                                                YES
OPdiode
          B5
               0
                     1.
                                6.26408e6 NULL
                                                 itf.oBeam5
                                                                YES
/* Simulate local readout */
/*UFrLRdout clock adcname
                                 input
                                                gain ADCbits type */
                                 B7.dc
                                                1.
                                                     -32
                                                              adc
UFrLRdout
                  Pr_B7_DC
            0
UFrLRdout
            0
                  Pr_B1_DC
                                 B1.dc
                                                1.
                                                     -32
                                                              adc
/* Save output to the frame file */
/* UFrOFile clock filename Ascii? frame framePerFile */
UFrOFile -1 finesse_tmp NO FBuilder.frameH 1
```

B Measurements during VSR1

The measured finesse for all the selected datasets during VSR1 are given in the following tables for the west and the north cavities.

are given.	Airy peaks is given (N_{pea})	Table 1: West finesse
	_{ks}). The finesse fitted o	measurements during
	Airy peaks is given (N_{peaks}) . The finesse fitted on the raw finesse distribution and the median value of the mea	Table 1: West finesse measurements during VSR1. For every datasets and every cavity, the number of corr
	measured finesse	umber of correctly fitted

	864470804.	864470294.	864469784.	864469274.	864468764.	864468254.	864467744.	864467234.	864466724.	864465194.	864464174.	864463664.	864462644.	864461114.	864460604.	864435877.	864434905.	864434450.	864433804.	864432929.	864432585.	864432387.	864432035.	864421666.	864417505.	864417332.	864416338.	864398035.	864376813.	863992195.	GPS
	948	1187	1026	1127	1180	962	1016	864	903	644	937	995	1048	1429	1562	461	488	175	127	346	503	477	252	206	108	145	1204	170	121	110	N_{peaks}
	52.100 ± 0.0150	52.060 ± 0.0120	52.070 ± 0.0150	52.060 ± 0.0130	52.020 ± 0.0120	52.070 ± 0.0150	52.020 ± 0.0170	52.010 ± 0.0200	52.030 ± 0.0190	51.950 ± 0.0280	51.880 ± 0.0190	51.900 ± 0.0190	51.830 ± 0.0170	51.580 ± 0.0150	51.400 ± 0.0160	51.420 ± 0.0200	51.310 ± 0.0200	51.470 ± 0.0340	51.120 ± 0.0320	51.130 ± 0.0220	51.020 ± 0.0180	50.870 ± 0.0180	50.560 ± 0.0410	50.780 ± 0.0300	51.280 ± 0.0480	51.190 ± 0.0250	50.950 ± 0.0180	50.340 ± 0.0380	49.550 ± 0.0600	50.800 ± 0.0550	F_{fit}
!	51.880	52.030	51.800	51.920	52.230	52.500	52.490	52.330	52.290	51.710	52.300	51.900	52.000	51.400	51.450	51.520	51.130	51.510	51.090	50.820	51.190	51.010	50.270	50.870	51.210	50.970	51.340	50.810	49.170	50.780	F_{median}
	866607748.	866607238.	866563538.	866364694.	866361124.	866360104.	865585638.	865551091.	864636538.	864516452.	864515972.	864513173.	864509704.	864507534.	864506129.	864504648.	864498649.	864496199.	864494330.	864493820.	864493310.	864492800.	864492290.	864490760.	864489690.	864489180.	864487844.	864484745.	864471824.	864471314.	GPS
	166	108	276	127	327	1291	146	105	256	107	227	487	160	686	196	323	357	114	765	751	715	779	823	944	336	1390	264	209	769	920	N_{peaks}
	49.250 ± 0.0460	49.060 ± 0.0610	48.490 ± 0.0580	49.450 ± 0.0640	49.490 ± 0.0360	49.250 ± 0.0140	51.750 ± 0.0400	51.550 ± 0.120	52.900 ± 0.0390	51.640 ± 0.0620	51.300 ± 0.0330	51.320 ± 0.0280	51.780 ± 0.0340	51.420 ± 0.0160	51.400 ± 0.0450	51.870 ± 0.0260	51.590 ± 0.0270	51.420 ± 0.0520	${+} 0$	52.220 ± 0.0180	52.190 ± 0.0180	52.180 ± 0.0150	52.090 ± 0.0140	52.070 ± 0.0150	51.640 ± 0.0300	51.420 ± 0.0160	51.150 ± 0.0460	51.040 ± 0.0400	52.220 ± 0.0180	52.160 ± 0.0160	F_{fit}
	49.030	49.470	48.170	49.780	49.030	49.180	51.480	52.020	53.290	51.880	51.440	51.120	51.440	51.440	51.330	51.500	51.820	51.180	52.310	51.920	52.410	52.520	52.320	51.680	51.610	51.550	51.560	51.210	52.210	52.420	F_{median}

Table 2:
$W\!E~finesse$
finesse measurements during
during
VSR1
g VSR1 (continued).

$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.240	51.210 ± 0.0350	183	868089449.	49.400	49.480 ± 0.0290	252	867042448.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.060	51.080 ± 0.0210	567	868089068.	49.820	49.390 ± 0.0400	101	867041718.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.500	51.150 ± 0.0230	611	868087240.	49.300	49.390 ± 0.0410	100	867040992.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	50.970	51.050 ± 0.0150	1488	868086730.	49.690	49.470 ± 0.0290	362	867039553.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.300	51.420 ± 0.0330	268	868083060.	49.900	49.370 ± 0.0180	609	867038717.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.520	51.330 ± 0.0190	1026	868076992.	49.210	49.260 ± 0.0180	764	867037697.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	50.960	51.180 ± 0.0370	211	868076645.	49.710	49.470 ± 0.0580	130	867029944.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.640	51.200 ± 0.0230	610	868074832.	49.500	49.100 ± 0.0190	966	867028762.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.190	51.180 ± 0.0240	639	868073010.	48.550	48.870 ± 0.0180	1332	867028252.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	51.750	51.590 ± 0.0200	844	867591518.	49.520	49.100 ± 0.0250	328	867020011.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	52.090	51.640 ± 0.0130	840	867590498.	49.710	49.200 ± 0.0500	128	866873390.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	50.180	50.190 ± 0.0360	166	867570608.	49.100	49.170 ± 0.0420	111	866873245.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	49.830	49.950 ± 0.0170	745	867567000.	48.760	48.680 ± 0.0470	442	866661331.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	50.470	49.880 ± 0.0310	386	867550048.	48.670	49.120 ± 0.0260	941	866632771.
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	49.860	49.590 ± 0.0700	154	867528953.	49.470	49.490 ± 0.0220	628	866624844.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.910	49.810 ± 0.160	112	867517545.	49.300	49.490 ± 0.0270	504	866622653.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.710	49.400 ± 0.0560	192	867503283.	49.030	49.460 ± 0.0230	596	866621432.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.080	49.910 ± 0.0480	181	867496014.	49.750	49.420 ± 0.0180	670	866620922.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.510	49.750 ± 0.0550	181	867488163.	48.970	49.430 ± 0.0240	555	866620412.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.830	49.910 ± 0.0480	115	867258593.	49.680	49.400 ± 0.0250	588	866619486.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.950	48.560 ± 0.0130	1183	867176122.	49.330	49.430 ± 0.0220	599	866618782.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.500	48.760 ± 0.0720	105	867073484.	49.520	49.420 ± 0.0220	586	866618272.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.700	48.880 ± 0.140	114	867066540.	49.380	49.410 ± 0.0350	272	866615977.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.950	48.680 ± 0.0400	335	867066204.	49.370	49.370 ± 0.0230	572	866614591.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.580	48.690 ± 0.0750	160	867061750.	49.120	49.280 ± 0.0330	191	866613989.
$867052171.$ 1225 48.780 ± 0.0210 $867052681.$ 1029 49.060 ± 0.0190 $867053191.$ 664 49.230 ± 0.0240	48.870	48.590 ± 0.0920	100	867061631.	49.040	49.280 ± 0.0200	661	866613479.
867052171.122548.780 \pm 0.0210867052681.102949.060 \pm 0.0190	49.530	49.230 ± 0.0240	664	867053191.	49.220	49.320 ± 0.0170	760	866612969.
867052171. 1225 48.780 \pm 0.0210	48.840	49.060 ± 0.0190	1029	867052681.	49.590	49.320 ± 0.0210	629	866612459.
	48.560	48.780 ± 0.0210	1225	867052171.	49.170	49.340 ± 0.0580	102	866612136.
$GPS N_{peaks} F_{tit}$	F_{median}	F_{fit}	N_{peaks}	GPS	F_{median}	F_{fit}	N_{peaks}	GPS

REFERENCES

Table 3:
WE fine
esse me
finesse measurements during
during
VSR1
(continued).

51.280	51.300 ± 0.0310	445	870628770.	52.580	52.270 ± 0.0390	641	869393247.
51.580	51.460 ± 0.0580	350	870608225.	52.820	52.360 ± 0.0330	1019	869392737.
51.300	51.450 ± 0.0380	379	870607715.	52.770	52.320 ± 0.0390	497	869391717.
51.640	51.680 ± 0.0230	615	870604132.	52.300	52.290 ± 0.0130	1199	869389677.
51.720	51.940 ± 0.0350	1001	870598522.	52.020	52.320 ± 0.0160	970	869389167.
52.090	51.870 ± 0.0370	687	870596482.	52.900	52.410 ± 0.0360	481	869388657.
51.910	51.830 ± 0.0240	907	870595462.	52.740	52.430 ± 0.0190	562	869388147.
52.300	51.780 ± 0.0200	1197	870594952.	52.860	52.410 ± 0.0250	502	869384577.
51.900	51.510 ± 0.0280	1112	870593932.	52.410	52.370 ± 0.0190	642	869384067.
52.120	52.170 ± 0.0230	155	870199365.	52.470	52.420 ± 0.0310	429	869383557.
52.100	52.080 ± 0.0160	464	870198992.	52.030	52.340 ± 0.0240	472	869383047.
52.080	52.190 ± 0.0440	104	870196337.	52.500	52.380 ± 0.0430	351	869382537.
52.040	52.030 ± 0.0380	276	870195691.	51.500	51.660 ± 0.0380	312	869333951.
52.030	51.680 ± 0.0380	549	870060314.	51.600	51.840 ± 0.0580	179	869332419.
52.720	52.220 ± 0.0680	139	870029165.	51.940	52.200 ± 0.0170	711	869329199.
52.030	52.320 ± 0.0390	312	870028655.	53.300	53.670 ± 0.0870	130	868780700.
52.060	52.380 ± 0.0590	175	870028145.	53.100	53.190 ± 0.0440	415	868780190.
51.830	52.340 ± 0.0300	489	870027635.	52.960	52.700 ± 0.0500	405	868779680.
51.980	52.300 ± 0.0120	1182	870024575.	50.900	51.300 ± 0.0280	239	868226489.
52.330	52.060 ± 0.0760	102	870022447.	51.510	51.160 ± 0.0760	141	868224898.
52.050	52.290 ± 0.0900	104	870002818.	51.270	51.330 ± 0.0340	372	868192920.
52.700	52.310 ± 0.0620	231	870001798.	51.170	51.530 ± 0.0410	403	868191900.
52.170	52.290 ± 0.0530	137	870001288.	50.630	50.940 ± 0.0110	1841	868191390.
52.280	52.210 ± 0.0350	241	869999758.	51.010	50.920 ± 0.0110	1725	868190880.
52.020	51.660 ± 0.0450	395	869883229.	51.200	51.520 ± 0.0300	401	868175070.
51.750	51.430 ± 0.0960	112	869671060.	51.950	51.480 ± 0.0440	404	868174560.
52.810	52.380 ± 0.0770	154	869445179.	51.640	51.250 ± 0.0350	558	868173540.
51.810	52.150 ± 0.0270	313	869443891.	51.500	51.050 ± 0.0260	691	868095928.
52.290	52.280 ± 0.0750	132	869438162.	50.900	50.890 ± 0.0350	321	868092324.
52.330	51.970 ± 0.0660	278	869408282.	51.260	51.330 ± 0.0280	254	868090703.
F_{median}	F_{fit}	N_{peaks}	GPS	F_{median}	F_{fit}	N_{peaks}	GPS

Table 4: WE finesse measurements during VSR1 (continued).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.700	52.630 ± 0.0130	646	875030407.	51.730	51.840 ± 0.0450	130	874852599.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.510	52.620 ± 0.0160	227	875029477.	51.890	51.970 ± 0.0330	110	874852076.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.560	52.630 ± 0.0210	210	875028869.	51.820	51.840 ± 0.0150	229	874851710.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.370	52.580 ± 0.00935	786	875027889.	51.690	51.790 ± 0.0240	276	874851033.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.630	52.550 ± 0.0190	185	875027740.	51.780	51.780 ± 0.0210	187	874849969.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.580	52.590 ± 0.0160	167	875027014.	51.850	51.740 ± 0.0240	425	874849805.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.800	52.540 ± 0.0100	422	875026604.	51.450	51.600 ± 0.0390	133	874849727.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.260	52.550 ± 0.0180	107	875026270.	51.820	51.410 ± 0.0180	582	874849513.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	52.640	52.530 ± 0.0160	523	875025250.	51.800	51.370 ± 0.0350	185	874843819.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	52.670	52.770 ± 0.0240	184	875024740.	49.580	49.550 ± 0.0120	1167	874839195.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	52.770	52.510 ± 0.0120	763	875024230.	50.020	49.920 ± 0.0180	486	874830525.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	52.390	52.350 ± 0.00562	1810	875023720.	50.140	49.890 ± 0.0110	1016	874830015.
51.740 $874855437.$ 239 51.440 ± 0.0330 51.450 $874886065.$ 383 51.670 ± 0.0240 52.070 $874886661.$ 996 52.000 ± 0.0130 51.680 $874886661.$ 996 52.000 ± 0.0130 51.010 $875002463.$ 820 51.340 ± 0.0230 50.100 $875005523.$ 957 52.330 ± 0.0140 50.340 $875011555.$ 534 51.690 ± 0.0210 50.520 $875011555.$ 534 51.690 ± 0.0220 50.160 $875017792.$ 326 52.230 ± 0.0220 48.610 $875018528.$ 213 52.150 ± 0.0230 51.960 $875018686.$ 201 52.220 ± 0.0230 52.060 $875012983.$ 210 52.220 ± 0.0230 52.090 $875022121.$ 886 51.820 ± 0.0140 52.000 $875022631.$ 610 52.100 ± 0.0140	52.660	52.230 ± 0.0100	604	875023433.	49.950	49.840 ± 0.0100	1280	874829505.
51.740 $874855437.$ 239 51.440 ± 0.0330 51.450 $874886065.$ 383 51.670 ± 0.0240 52.070 $874886253.$ 563 51.670 ± 0.0240 51.680 $874886661.$ 996 52.000 ± 0.0130 51.010 $875002463.$ 820 51.340 ± 0.0130 51.010 $875005523.$ 957 52.330 ± 0.0140 50.100 $875011555.$ 534 51.690 ± 0.0210 50.520 $875013558.$ 625 51.760 ± 0.0220 50.160 $875017792.$ 326 52.230 ± 0.0130 48.610 $875018528.$ 213 52.150 ± 0.0240 51.960 $875018686.$ 201 52.220 ± 0.0240 52.060 $875019983.$ 210 52.490 ± 0.0230 $875022121.$ 886 51.820 ± 0.0160	52.040	52.100 ± 0.0140	610	875022631.	50.000	49.830 ± 0.0160	589	874828995.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.960	51.820 ± 0.0160	988	875022121.	52.590	52.440 ± 0.0480	166	874236900.
51.740 $874855437.$ 239 51.440 ± 0.0330 51.450 $874886065.$ 383 51.670 ± 0.0240 52.070 $874886253.$ 563 51.670 ± 0.0240 51.680 $874886661.$ 996 52.000 ± 0.0130 51.610 $875002463.$ 820 51.340 ± 0.0130 51.010 $875005523.$ 957 52.330 ± 0.0140 50.100 $87501555.$ 534 51.690 ± 0.0210 50.340 $875013558.$ 625 51.760 ± 0.0220 50.520 $875016509.$ 1021 51.750 ± 0.0130 49.900 $875018528.$ 213 52.230 ± 0.0230 48.610 $875018686.$ 201 52.220 ± 0.0240 51.960 $875018803.$ 155 52.220 ± 0.0230	52.310	52.490 ± 0.0300	210	875019983.	52.060	52.260 ± 0.0600	275	874235370.
51.740 $874855437.$ 239 51.440 ± 0.0330 51.450 $874886065.$ 383 51.670 ± 0.0240 52.070 $874886253.$ 563 51.670 ± 0.0230 51.680 $874886661.$ 996 52.000 ± 0.0130 51.360 $875002463.$ 820 51.340 ± 0.0130 51.010 $875005523.$ 957 52.330 ± 0.0140 49.480 $875006033.$ 612 52.360 ± 0.0140 50.340 $875011555.$ 534 51.690 ± 0.0210 50.520 $875013558.$ 625 51.760 ± 0.0220 49.900 $875018528.$ 213 52.150 ± 0.0230 48.610 $875018528.$ 213 52.150 ± 0.0240 $875018528.$ 201 52.220 ± 0.0240	52.210	52.220 ± 0.0230	155	875018803.	51.960	51.670 ± 0.0170	826	874178760.
51.740 $874855437.$ 239 51.440 ± 0.0330 51.450 $874886065.$ 383 51.670 ± 0.0240 52.070 $874886253.$ 563 51.670 ± 0.0240 51.680 $874886661.$ 996 52.000 ± 0.0130 51.610 $875002463.$ 820 51.340 ± 0.0130 51.010 $875005523.$ 957 52.330 ± 0.0140 50.100 $875006033.$ 612 52.360 ± 0.0140 50.340 $875011555.$ 534 51.690 ± 0.0210 50.520 $875013558.$ 625 51.760 ± 0.0220 49.900 $875017792.$ 326 52.230 ± 0.0230 48.610 $875018528.$ 213 52.150 ± 0.0240	52.120	52.220 ± 0.0260	201	875018686.	50.160	50.140 ± 0.0490	454	873202198.
51.740 $874855437.$ 239 51.440 ± 0.0330 51.450 $874886065.$ 383 51.670 ± 0.0240 52.070 $874886253.$ 563 51.670 ± 0.0230 51.680 $874886661.$ 996 52.000 ± 0.0130 51.360 $875002463.$ 820 51.340 ± 0.0130 51.010 $875005523.$ 957 52.330 ± 0.0140 49.480 $875006033.$ 612 52.360 ± 0.0140 50.100 $875011555.$ 534 51.690 ± 0.0210 50.520 $875016509.$ 1021 51.760 ± 0.0220 $875017792.$ 326 52.230 ± 0.0230	52.390	52.150 ± 0.0240	213	875018528.	48.610	49.120 ± 0.100	196	873171637.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.350	52.230 ± 0.0230	326	875017792.	49.900	50.020 ± 0.0730	102	872736412.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.940	51.750 ± 0.0130	1021	875016509.	50.520	50.080 ± 0.0600	167	872735902.
51.740 $874855437.$ 239 51.440 ± 0.0330 51.450 $874886065.$ 383 51.670 ± 0.0240 52.070 $874886253.$ 563 51.670 ± 0.0230 51.680 $874886661.$ 996 52.000 ± 0.0130 51.360 $875002463.$ 820 51.340 ± 0.0190 51.010 $875005523.$ 957 52.30 ± 0.0140 49.480 $875006033.$ 612 52.360 ± 0.0160 875011555. 534 51.690 ± 0.0210	51.790	51.760 ± 0.0220	625	875013558.	50.340	50.070 ± 0.0420	261	872735313.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.330		534	875011555.	50.100	50.070 ± 0.0200	493	872734293.
51.740874855437.239 51.440 ± 0.0330 51.450874886065.383 51.670 ± 0.0240 52.070874886253.563 51.830 ± 0.0230 51.680874886661.996 52.000 ± 0.0130 51.360875002463.820 51.340 ± 0.0190 51.010875005523.957 52.330 ± 0.0140	52.420		612	875006033.	49.480	49.990 ± 0.0530	208	872590244.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.180		957	875005523.	51.010	51.230 ± 0.0210	772	870657159.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.030	51.340 ± 0.0190	820	875002463.	51.360	51.350 ± 0.0320	222	870638454.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.790	52.000 ± 0.0130	966	874886661.	51.680	51.590 ± 0.0300	249	870633733.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.680	51.830 ± 0.0230	563	874886253.	52.070	51.570 ± 0.0140	892	870631702.
$51.740 874855437. 239 51.440 \pm 0.0330$	52.120	51.670 ± 0.0240	383	874886065.	51.450	51.530 ± 0.0300	361	870629748.
and an and a statement	51.680	51.440 ± 0.0330	239	874855437.	51.740	51.490 ± 0.0120	1628	870629238.
$ F_{median} $ GPS $ N_{neaks} $ F_{fit}	F_{median}	F_{fit}	N_{peaks}	GPS	F_{median}	F_{fit}	N_{peaks}	GPS

 $\mathbf{22}$

Table 5:	
$W\!E$ finesse measurements during VS	
measur	
rements	
during	
VS_{-}	

52.420	52.200 ± 0.0160	370	875159390.
51.930	52.190 ± 0.0100	757	875158864.
52.230	52.150 ± 0.0160	195	875158686.
52.300	52.040 ± 0.00372	3148	875157666.
51.910	51.800 ± 0.00535	2349	875157156.
51.340	51.310 ± 0.00615	3027	875156646.
51.770	51.760 ± 0.0200	556	875057162.
51.730	51.800 ± 0.0160	670	875055480.
51.870	51.810 ± 0.0160	803	875053868.
51.640	51.570 ± 0.0210	308	875051411.
53.130	52.600 ± 0.0220	221	875032324.
52.660	52.680 ± 0.0240	141	875031347.
52.580	52.590 ± 0.0120	478	875030917.
F_{median}	F_{fit}	N_{peaks}	GPS

Table 6: North cavity finesse measurements during VSR1. For every datasets and every cavity, the number of correctly fitted Airy peaks is given (N_{peaks}). The finesse fitted on the raw finesse distribution and the median value of the measured finesse are given.

867018435.	867016703.	867013500.	866615101.	866614591.	866612969.	866611178.	866563538.	866369284.	865551091.	864468764.	864465704.	864462134.	864460094.	864435877.	864432929.	864432035.	864421666.	864417332.	864416338.	863992195.	863881109.	863880599.	863876009.	863875499.	863874479.	863872439.	863871929.	863870909.	863870399.	GPS
634	249	413	441	501	462	280	227	574	198	855	668	915	885	358	230	123	133	114	006	249	206	233	138	338	169	562	364	355	768	N_{peaks}
48.860 ± 0.0380	48.780 ± 0.0670	48.730 ± 0.0440	48.930 ± 0.0500	48.840 ± 0.0450	48.920 ± 0.0530	48.710 ± 0.0690	48.710 ± 0.0400	49.400 ± 0.0200	51.020 ± 0.110	49.480 ± 0.0430	48.670 ± 0.0580	49.100 ± 0.0350	48.920 ± 0.0270	48.960 ± 0.0430	48.960 ± 0.0540	48.870 ± 0.0750	49.000 ± 0.0560	49.000 ± 0.0480	48.900 ± 0.0260	49.330 ± 0.0190	49.740 ± 0.0730	49.880 ± 0.0440	49.640 ± 0.0610	49.850 ± 0.0210	49.930 ± 0.0610	49.920 ± 0.0180	49.930 ± 0.0470	49.760 ± 0.0210	49.810 ± 0.0100	F_{fit}
48.360	48.980	48.670	49.200	48.880	49.400	48.850	48.220	49.330	50.760	49.490	48.600	48.890	48.930	49.300	49.100	48.790	48.850	48.920	48.570	49.610	49.340	50.220	49.570	49.700	49.260	49.670	49.820	50.060	49.910	F_{median}
871688108.	871687598.	871687088.	871686068.	870605717.	870604132.	870603112.	870602602.	870599542.	870597502.	870595462.	869997718.	869386617.	869378058.	869333951.	869332419.	869322430.	868097758.	868090703.	868087240.	868086730.	868080607.	868066950.	867053191.	867052681.	867042448.	867042119.	867038207.	867028252.	867020011.	GPS
580	886	1019	842	129	143	128	177	1268	293	496	238	985	256	188	104	135	367	270	376	777	608	234	337	518	393	112	831	672	173	N_{peaks}
48.910 ± 0.0330	48.970 ± 0.0260	48.900 ± 0.0220	48.720 ± 0.0330	48.090 ± 0.0910	47.160 ± 0.150	47.780 ± 0.160	47.910 ± 0.0960	48.120 ± 0.0150	47.840 ± 0.0760	47.860 ± 0.0480	48.670 ± 0.0550	48.760 ± 0.0310	49.120 ± 0.0870	49.170 ± 0.0780	49.150 ± 0.0800	49.050 ± 0.0770	47.690 ± 0.0460	47.770 ± 0.0510	47.810 ± 0.0470	47.750 ± 0.0350	47.730 ± 0.0400	47.640 ± 0.0900	49.000 ± 0.0560	49.010 ± 0.0420	49.030 ± 0.0480	48.810 ± 0.120	49.010 ± 0.0310	48.780 ± 0.0330	48.990 ± 0.0640	F_{fit}
49.180	49.260	48.930	48.710	48.220	47.030	47.760	47.320	48.090	47.490	47.380	48.850	49.190	49.290	49.490	49.510	48.690	47.920	47.590	48.380	47.770	47.960	47.460	48.930	49.100	48.960	49.160	48.600	48.970	49.160	F_{median}

Table 7:
North
cavity
finesse
North cavity finesse measurements during VSR1 (continued
during
VSR1
(continued).

875013558.	875008084.	875006033.	874886661.	874886502.	874886253.	874886065.	874884050.	874855437.	874851033.	874850492.	874849969.	874849805.	874849513.	874839195.	874832055.	874831545.	874828995.	874236900.	874235370.	873425627.	872416805.	872414255.	871812689.	871806569.	871806059.	GPS
296	414	381	679	280	232	146	2234	150	219	119	199	397	405	912	133	379	820	179	208	230	528	2269	153	594	1028	N_{peaks}
48.720 ± 0.0530	48.870 ± 0.0330	48.630 ± 0.0440	48.760 ± 0.0300	49.020 ± 0.0270	48.740 ± 0.0490	48.700 ± 0.0530	48.980 ± 0.00770	48.550 ± 0.0650	48.490 ± 0.0230	48.540 ± 0.0370	48.530 ± 0.0270	48.580 ± 0.0190	48.580 ± 0.0210	49.230 ± 0.0270	49.200 ± 0.0660	49.010 ± 0.0310	49.040 ± 0.0310	48.280 ± 0.110	47.970 ± 0.0970	50.000 ± 0.0960	49.830 ± 0.0250	49.400 ± 0.00570	49.420 ± 0.0890	49.240 ± 0.0210	49.300 ± 0.0150	F_{fit}
48.880	49.130	48.420	48.540	48.620	49.050	49.120	48.970	48.200	48.590	48.790	48.700	48.570	48.610	49.370	49.150	48.920	49.430	48.470	47.790	49.860	49.940	49.270	49.470	48.870	49.270	F_{median}