EIB SAS STATUS REPORT

Jo van den Brand, Frans Mul

INTRODUCTION

Introduction

- General considerations
- Design issues

Status of project

- SAS mechanics
- Sensors and control
- Acoustics
- Logistics
 - Manpower
 - Time line
 - Installation
 - Budget

EXTERNAL INJECTION BENCH

EIB

- Diffused light
 - Seems ok
- Beam jitter noise
 - Angular tilt motion
- B2 photo-diode for AA
 - Horizontal motion
- Implement EIB-SAS
 - Change Request, July 01, 2010

- LIGO R&D, TAMA, AEI
 - Riccardo & Alessandro
 - Pisa experience
- Status
 - Engineer (Frans Mul) was stationed at AEI
 - Design finished: June 2010
 - Ordered IP and GAS
 - Delivery main components: August 2010
 - Technical support at Nikhef
 - DAQ from Annecy
 - Short time line

EIB - SAS

Production mechanics: completed August 15, 2010

Horizontal and vertical motion

- 7 x stepping motors
- 6 x voice coil actuators
- Real-time digital control system
 - 800 kHz 18 bit ADCs: LVDTs, geophones
 - DAC for voice coils

EIB – SAS: IP AND GAS

MARAGING STEEL: THERMAL TREATMENT

Maraging steel

- Aubert & Duval: Marval18 steel
- Application
 - IP flex joints
 - GAS spring blades
- Blades surface electropolished and light nickel plated (and heat treated)

Thermal treatment

- 435 °C for 100 hours under Argon
- Aging at 200°C 2 3 days (later)
- Rockwell C hardness
 - Initial 20, final 52 55
 - Quality control of every component
- Performed at Nikhef
 - Build-up experience
 - Set-up completed
 - Steel samples in house (ESA)

LVDT AND ACTUATOR

LVDT and actuators

- Constructed: 3H and 3V
- Testing
 - In progress at Nikhef
- Electronics boards
 - Designed by Alessandro Bertolini
 - Four PCBs at Nikhef (from AEI)
 - PCB populated: under test
- Virgo boards
 - Status of Virgo LVDT boards
 - Redesign needed?
 - Replace when Virgo boards are available

ACCELEROMETERS

Geophones

- Geospace
 - Qty 4 GS-1, 1 Hz seismometer, horizontal
 - Qty 4 HS-1, 2 Hz seismometer, vertical
 - In house
- PCBs
 - In house and populated
 - Tests in progress
- Accelerometer
 - Alessandro Bertolini
 - Modify gap
 - Implement if needed
 - Under discussion

GAS ASSEMBLY

Assembly

- Nikhef cleanroom
- 1 day for 3 GAS filters

GAS TUNING

GAS tuning set-up

- Adjust compression of springs
- Vary the load
- Measure resonance frequency
- 1 day per GAS filter
- Transfer functions
 - Shaker system
 - Speaker (modified)

GAS TUNING

Tuning results

- Goal: tune below 300 mHz
- Achieved < 150 mHz
- Precise loading
 - Weigh components on bench
 - Decide on frequency setting
- Quality factor decreases at low frequency

GAS TESTS

Transfer function

- 60 dB above 10 Hz
- Achieved > 65 dB at 20 Hz
- Precise loading
 - Weigh components on bench
 - Decide on frequency setting
- Quality factor decreases at low frequency

GAS TESTS

- Temperature dependence
 - Cleanroom: 16 to 24.2 degrees C
 - Thermocouples
 - Measure н.
 - Vertical displacement
 - Resonance frequency

1144 1144

GAS TESTS

Temperature dependence

temperature goes up

Displacement

Move away from resonance as

315.5

FEA STUDIES

FEA results

- Stress distribution
 - Poisson ratio 0.32
 - Width distribution
 - Average stress 1.4 GPa
 - High surface stress
- Compare FEA to data
 - Temperature stability (cleanroom!)
 - Strain gauges, tensile tests
 - Frequencies, positions
 - Safety aspects
 - Stress corrosion
- Discuss with experts
 - ESA, Marine
 - Albert Einstein Institute, Caltech, Pisa, …
- Affect GAS design

IP ASSEMBLY

IP TUNING

IP tuning set-up

- Frame completed
- Suspend EIB-SAS
- Shaker, accelerometers
- Tune IP counterweight
 - Improve horizontal transfer function
 - Measure transfer functions

Front view Scale: 1:6

Gert Jan Mul

Logistics

Nikhef manpower reserved

- Preparation of installation
 - 1500 m laboratory and in ITF
 - Cabling, connectors, path panels
 - Dedicated electrical engineer: Wim Gotink
- Engineers, technicians and physicists
 - At 1500 m laboratory
 - During installation and commissioning in ITF
- EGO and Virgo assistance needed
 - Preparation of installation
 - Interact with Flavio, Piero, Eric, ...
 - Control issues
 - DSP, AD, DA, BIO, CPU, links, crate available
 - LVDTs, actuators, stepping motors, drivers
 - Software development
 - Alignment issues during bench installation
 - Commissioning
 - Passive commissioning
 - Active commissioning

TIME LINE

Milestones

- EIB-SAS at EGO site
 - Propose November 2010, w4
 - Validate in December 2010, w1 and w2
- Install in ITF
 - January 2010, w1
 - Consistent with timeline by Henrich

ID	Task Name	Duration	EGO resources	gust	Septembe October	November D	ecember J	anuary	February	March	April	May	June
				081522	290512192603101724	431 07 14 21 280	05 12 19 26 0	2091623	300613202	270613202	703101724	4 <u>010815222</u>	905121926
1	Delivery of LAPP PC, TOLM, ADCs	0 days			 Delivery of LA 	PP PC, TOLM,	ADCs						
2	Finish mechanical setup	27 days		7 days	-Finish r	mechanical set	tup						
3	Integrate control system	8 days			8 days	grate control s	system						
4	Tests at Nikhef	7 days		-	7 days 📥	Tests at Nikhe	ef						
5	Arrival of EIB-SAS at 1500W	0 days			-	Arrival of EIB	3-SAS at 15	W00					
6	??? Preparations for EIB-SAS installation ot 1500W	10 days		-	10 days 77777	??? Preparatio	ons for ElB	-SAS ins	tallation ot	1500W			
7													
8	Seismic isolation tests, TF measurements at 1500W	13 days	0,5 mE;1 mT;0,5 P	-	13 days 📘	Seismic	c isolation 1	ests , TF i	measureme	ents at 1500	W		
9	ITF ready for EIB change	0 days						ITF read	y for EIB cl	hange			
10	Install temp.ref.frame for EIB YAG beam	5 days		-			5 days	Install	temp.ref.fra	me for EIB	YAG bean	n	
11	Install EIB-SAS and realign EIB as before	5 days					5 days	nsta	all EIB-SAS	and realigr	n EIB as be	fore	
12	Organize additional workforce for installation?	10 days				10 day	s 777777	Z <mark>.(</mark> €rgan	ize additio	nal workfor	ce for inst	allation?	
13	Reconnect cables, make EIB operative	10 days	0,5 mE;1 mT;0,5 P	-			10 d	ays	Reconnec	t cables, m	ake EIB op	erative	
14	Commissioning of passive EIB-SAS; calibration of actuators	15 days		-				15 days	Co	mmissioni	ng of pass	ive EIB-SAS	calibrati
15	Commissioning of EIB-SAS with feedback from ITF	20 days		-				20) days 🎽	Со	mmissionii	ng of EIB- S A	S with fee

INSTALLATION

INSTALLATION

BUDGET

- Cost breakdown (including VAT)
 - Mechanics
 - GAS, IP, frames
 - Electronics
 - LVDTs, actuators, stepping motors, drivers
 - DAQ
 - From Annecy (not included in overview)
 - Other
 - Cabling
 - Shipping

Total cost

- 95 kEuro
- AdV or V+?

#	Item	Contractor / supplier	Cost (€)	Charged to	
			(taxes	(EGO/Virgo	
			included)	lab)	
	Inverted pendulums	Galli & Morelli Srl	9,900	-	
	Geometric anti-springs and tools	Galli & Morelli Srl	23,050	-	
	Frame structure	Galli & Morelli Srl	16,600	-	
	LVDT/actuators	Galli & Morelli Srl	5,200	-	
	Vertical blades	Galli & Morelli Srl	2,250	-	
	Horizontal blades	Galli & Morelli Srl	3,050	-	
	Shipping to Nikhef	Galli & Morelli Srl	3,000	-	
	Stepping motors and controllers	TMC	3,525	-	
	GAS tuning set-up	Rimas	970	-	
	IP tuning set-up	Rimas	5,797	-	
	Geophones	Geospace	4,728	-	
	Microphone	Bruel & Kjaer	2,611	-	
	Electronics (PCBs, DAQ, etc.)	QPI, NI, etc.	2,552	-	
	Cabling (estimate)	Not known yet	5.950	5.950	
	Shipping to EGO site (estimate)	Not known yet	3,570	-	

SUMMARY

Development SAS solution for EIB

- Robust and custom solution
 - Full remote control of positioning
 - 60 dB attenuation in all 6 degrees of freedom
 - Low resonance frequencies
- Includes full control, damping
- Minimize risks
 - Install in 1500 m laboratory and validate
- Preparation for installation
 - Set-up discussions
 - Cabling, alignment, etc
 - Organize manpower

ACOUSTIC ISOLATION

Shielding approach

- Quietrock.com
- Double wall
 - QuietRock QR-545 panels
 - Air space 75 mm
 - Woods studs
 - Acoustic sealant
 - Metal tape
- SAS structure
 - Specific resonances
 - Rigid leg modes (>230 Hz)
 - Banana modes (>420 Hz)
 - Eddy current damping
- Provides temperature stabilization
 - Test in 1500 laboratory

	Frequency	Airborne Sound	95%			
	(Hz)	Transmission	Confidence			
		Loss (dB)	Limits			
	50	45 *				
	63	48 *				
	80	53 *	± 3.0			
	100	56 *	± 3.2			
	125	59 c	± 2.4			
	160	64 c	± 1.1			
\rightarrow	200	67	± 1.2			
	250	68	± 0.9			
	315	71	± 0.9			
\rightarrow	400	74	± 0.6			
	500	79 c	± 0.6			
	630	85 *	± 0.6			
	800	87 c	± 0.4			
	1000	89 *	± 0.4			
	1250	89 *	± 0.4			
	1600	93 *	± 0.3			
	2000	92 *	± 0.2			
	2500	92 *	± 0.5			
	3150	91 *	± 0.4			
	4000	90 *	± 0.4			
	5000	88 *	± 0.5			
	Sound Transmission Class (STC) = 80					

ACOUSTIC ISOLATION – EXERCISE

- Normal conversation
 - 40 60 dB $\rightarrow 2 \times 10^{-3} 2 \times 10^{-2}$ Pa
 - Double wall isolation
 - 60 dB attenuation
 - Sound pressure $2 \times 10^{-6} 2 \times 10^{-5}$ Pa
 - SAS structure
 - Specific resonances
 - Rigid leg modes (>230 Hz)
 - Assume 200 Hz excitation $\lambda = \frac{v}{c} \approx \frac{300 \text{ m/s}}{c} = 1.5 \text{ m}$ 200 Hz
 - Area $A = 2.5 \times 1.5 \approx 3.5 \text{ m}^2$
 - Force $F = pA = (2 \times 10^{-5} \text{ Pa})(3.5 \text{ m}^2) = 7 \times 10^{-5} \text{ N}$
 - Acceleration $a = F / m \approx (7 \times 10^{-5} \text{ N}) / (700 \text{ kg}) = 10^{-7} \text{ m/s}^2$
 - Displacement $x = a / \omega^2 = (10^{-7} \text{ m/s}^2) / (2\pi \cdot 200 \text{ Hz})^2 \approx 6 \times 10^{-14} \text{ m}$

- Floor noise
$$x = 10^{-8} \left(\frac{10 \text{ Hz}}{f} \right)^2 \rightarrow 2.5 \times 10^{-11} \text{ m/}\sqrt{Hz}$$

Damp this excitation

RADIATION EFFICIENCY

- Definition
 - Radiated acoustic energy P
 - Radiation efficiency $\sigma \equiv \frac{P}{\rho_L c_L v^2}$
 - For a piston
 - See `Praktische Maschinenakustik', Kollman et al.
- For a plate
 - Excitation by sound wave
 - Suppression below critical frequency
 - Due to acoustic short circuit
 - Frequency estimated at 2 kHz
 - Figs below are for steel
 - EIB optical table has 4 mm steel plates

Abb. 5.4. Zur Abstrahlung biegeschwingender Platten

 $\lambda_{\rm B}$

λL

Akustischer Kurzschluß

Volle Abstrahlung

 $\lambda_L < \lambda_B$

 $\lambda_L > \lambda_B$

ACOUSTIC COUPLING

- Acoustics group TNO-TPD Delft
 - Infrastructure available
 - Bert Clairbois
 - Measurements
 - Spring-isolated optical table
 - 2.5 x 1 x 0.3 m, 200 kg
 - Excitation
 - Acoustically with shaker
 - White noise (blue curve)
 - harmonic analysis (red data points)
 - Determine radiation efficiency
 - Conclusion
 - Suppression below critical frequency

 $f_g \approx 1.8 \frac{c^2 h}{m}$

Estimated at 2 kHz

Preliminary

To be continued...