SBE STATUS REPORT

Jo van den Brand, Alessandro Bertolini, Martin Doets, Eric Hennes

INTRODUCTION

Introduction

- General considerations
- Design issues

Status of project

- SAS mechanics
- Sensors

Schedule

- Prototype
- Time line

MINI-TOWER INTERFACE

x

IP support structure

- Tilt stability (< 0.1 mrad)
- FEA vacuum forces
- Agree on interface
- Clean-air flow system
 - Integration
- Vacuum issues
 - Materials
 - Procedures

OVERVIEW

Horizontal isolation

- Inverted pendulum
- Single wire suspension
- Triple wire suspension
- Vertical isolation
 - Top GAS filter
 - Bottom GAS filter
- Inertial damping
 - From top GAS
- Bench control
 - From ground
 - Confirm performance

DIMENSIONS AND WEIGHTS

CROSS SECTION

TOP STAGE

BOTTOM STAGE

GAS BLADE DESIGN (PRELIMINARY)

Performance studies

Preliminary

Specs of all models in this paper:

- IP-mode tuned at 200 mHz
- IP top plate including filter has mass 100 kg
- **3-body** system: 1=top filter, 2=chain filter, 3=bench (chain filter including marionette function)
- 4-body system: 1=top filter, 2=chain filter, 3=marionette, 4= bench
- Total suspended mass $m_{sus}=m_2 + m_3 (+m_4) = 500 \text{ kg}$ (= top filter maximum load)
- Bench mass 250 kg unless otherwise specified
- Total wire length $L_{tot} = L_1 + L_2 (+ L_3) = 200 \text{ cm}$
- Wires infinitely flexible
- Only 3 (4) rigid body horizontal modes considered
- Transfer functions plotted with bandwidth 1 mHz for all modes.
- Created using Maple

3 – BODY STUDIES

Preliminary

3-body minitower bench TF, equal suspended masses(250 kg each), varying filter wire length fractions β =L2/L tot

3 body minitower bench TF, equal wire lengths (β =0.5) and varying bench masses 450 250 - 150 - 50 350 10^{2} 10⁰ x bench 10^{-2} x_0 10⁻⁴ 10⁻⁶-0.5 0.1 5 10 1

3-body minitower bench TF, bench mass 340 kg and varying filter wire length fractions β=L2/Ltot

4 – BODY STUDIES

Preliminary

4 body bench TFs, mass 250 kg, IPtop 100, chain filter & mario 125 kg each, equal bench & mario wires, varying chain filter wire length

4 body minitower close to optimal configuration for several bench masses, Total 500 kg suspended mass, L2=L3=80 cm, L4=40 cm, m2/m3=0.55

4body bench TFs, all wires 66 cm, bench 250 kg, top filter 100, total suspended

Performance studies

Preliminary

4-body modal frequencies; fixed filter wire length L2=84cm (β2= 0.42), varying filter mass and mario wire length

Conclusion: optimal configurations (= lowest TF @ 10 Hz)

For ~ 350 kg bench:

3 body:

L₂=140 cm , L_{bench}=60 cm f₄ =1.45 Hz (modal) TF_{bench} = 5e-8 @ 10 Hz

For ~ 250 kg bench:

3 body:

L₂=80-120 cm , L_{bench}=120-80 cm f₄ =1.3-1.5 Hz (modal)

TF_{bench} = 3e-8 @ 10 Hz

4-body: m_2 = 82 kg , m_3 = 67 kg, L_2 =60 cm , L_3 =70 cm , L_{bench} =50 cm f_4 =2.55 Hz (modal) TF_{bench} = 5e-9 @ 10 Hz

4-body: m_2 = 137 kg , m_3 = 113 kg , L_2 =70 cm , L_3 =70 cm , L_{bench} =60 cm f_4 =2 Hz (modal) TF_{bench} = 1.5e-9 @ 10 Hz

Displacement noise well below 10⁻¹² m/rtHz at 10 Hz

Logistics

Issues

- Design in progress

- Mechanics
- Simulations
- Accelerometers, LVDTs, actuators, stepping motors
- Experience with EIB-SAS
- Interface with mini-tower
 - IP support ring (specify tilt requirements)
 - Controls from ground: performance
- Prepare prototype
 - Construction H2 2011
 - Test H1 2012
 - Vacuum vessel needed
 - Specify tests
- Cost estimate

QUESTIONS

- Beam spot motion
 - Spot movement on QPD
 - Acceptable?
- RMS movement
 - Low frequency cut-off control signals from QPD?
 M. Mantovani DIM 28 Jul 2011 VIR-0444A-11
- Angular requirement
 - Sensitivity of telecope?

Figure 10: Beam spot motion on the optics.

Automatic Alignment Sensing and Control scheme for Advanced Virgo MSRC configuration

	Requirement (330µm beam)
δh	1.1e-11 m/sqrt(Hz)
δθ	1.5e-14 rad/sqrt(Hz)
h _{RMS}	6.4e-7 m
$\theta_{\rm RMS}$	9e-10 rad
	Requirement (1650µm beam)
δh	Requirement (1650μm beam) 5.4e-11 m/sqrt(Hz)
δh δθ	Requirement (1650µm beam)5.4e-11 m/sqrt(Hz)7.6e-14 rad/sqrt(Hz)
δh δθ h _{RMS}	Sequirement (1650µm beam) 5.4e-11 m/sqrt(Hz) 7.6e-14 rad/sqrt(Hz) 3.2e-6 m

VIR-0201A-11

M. Mantovani

Issue: 1 Date: April 18, 2011