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Abstract

The detection of continuous gravitational waves has to deal with the
Doppler effect induced by the Earth motion with respect to the source
[1]. The correction to be applied to the antenna output depends on the
source sky direction and on the signal frequency. Since these parameters
are, in general, unknown a large computing effort is required to correct
for any possible direction and emission frequency. A correction technique
independent of the source frequency is discussed in this paper. The moving
observer proper time is accelerated (or slowed down) by removing (or
doubling) in a timely manner single samples of the detector digitized signal
so to keep the synchronization to the rest clock. This technique allows to
save a large amount of computing time in data analysis.

1 Introduction

Let us consider a source in the sky emitting a monochromatic wave with am-

plitude A0 and frequency ν0.
∗ The Fourier analysis by an observer at rest

with respect to the source, on a 1 year-long data bench, exhibits a peak with

amplitude A0 and width δν = 1
1Year ≃ 3.17 10−8 Hz.

∗In gravitational waves, A0 is a tensor, but the argument is valid for fields of any nature.
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Let us consider the simple case of a detector moving with constant velocity,

covering in 1 year a circular orbit around the Sun and pointing to the source

with fixed orientation. The detected signal will be:

A(t) = A0 cos(2πν0t + ϕ(t)) where ϕ(t) = ǫ sin(2πνyt) (1)

νy denotes here the orbital frequency while ǫ is the amplitude of the phase

variation due to the Doppler effect (phase modulation index). The frequency

modulation is thus ∆ν = ν − ν0 = ǫνy cos (2πνyt).

For a source located on the orbital plane, the amplitude of the frequency

modulation (ǫνy) is given by first order Doppler effect: ∆ν = ν0 (v/c), where v

is the orbital velocity and c is the speed of light.† As a consequence:

ǫ =
ν0v

νyc
=

2πr

λ
(2)

where (r = v/(2πνy)) is the orbital radius and λ (= c/ν0) is the source wave-

length. The signal energy is not affected by the phase modulation but it is

spread on a band ∆ν whose halfwidth is given by the frequency modulation

amplitude, ǫνy. In the case of Earth orbital motion (where v ≃ 30 km/s, and

thus β = v/c ≃ 10−4), for a 100 Hz wave the square of the spectral amplitude

(A1) is reduced by a factor of the order of δν
∆ν , namely:

A2
1

A2
0

=
δν

∆ν
=

δν

2βν0
≃

3.17 10−8

2 10−4 102
≃ 1.6 10−6 (3)

The ratio of the spectral amplitudes at the source frequency is thus ≃ 1.25 10−3,

corresponding to a reduction of signal to noise ratio ≃ 58 dB.

The Doppler effect can be corrected for a given direction by resampling the

signal with an average frequency equal to the source one, but with a phase

modulation able to correct the one induced by the observer motion. The same

monochromatic signal coming from a direction −→n , is detected by a moving

observer as follows:

A0 ei (
−→
k ·−→r (t)−ω0t) (4)

where −→r (t) is the position of the antenna as measured by the rest observer, while
−→
k is the wavelength vector, equal to ω0

c
−→n , with usual notations. Multiplying

the signal by e−i(
−→
k ·−→r (t)), the rest observer signal (A0 e−iω0t) is recovered.

As discussed in section 5, the accuracy of this method is limited by the error

in the knowledge of the source direction. For continuous wave detection the

†Second order Doppler effect is here neglected.
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goal is to make a compensation accurate enough so to restore a large fraction of

the signal energy in the original spectral peak and thus to have a signal to noise

ratio similar to the one measured by the rest observer. The required accuracy

can be computed by developing the phase-modulated signal in Bessel functions:

A(t) = A0 cos(ω0t + ǫ sin(ωyt)) = A0

+∞
∑

−∞

Jn(ǫ) cos(ω0 + nωy)t (5)

where Jn(ǫ) are the Bessel functions of the first kind and ωy = 2πνy. For ǫ = 1

rad they assume the following values:

J0 = 0.765198

J1 = 0.440051

J2 = 0.114903

J3 = 0.019563

J4 = 0.002477

......

The term at the source frequency (J0) keeps thus more than 75% of the signal

amplitude (about 60% of the energy). This means that, if the Doppler correction

is able to reduce the phase modulation index down below 1 rad (ǫ < 1), the peak

spectral amplitude reduction, with respect to the rest frame, will be very small,

less than 3 dB. This is taken as our specification, even if the entire argument

can be scaled to have a better accuracy in peak amplitude recovering.

To reach 1 rad accuracy, the Earth position has to be known better than

λ/2π, that means, for a 100 Hz signal, about 500 km. Since Earth ephemeris

are measured with an accuracy of hundreds of meters [2], the correction can be

performed up to very high frequency (tens of kHz). Moreover, to keep a dephas-

ing less than 1 rad for a 100 Hz signal detection in a one year-long observation

time, the antenna clock has to exhibit a stability of 1
2π100·1 year (i.e. better than

one part on 2 1010). Gravitational wave antenna clocks, synchronized to GPS

time, exhibit a much better stability [3][4].

2 Discrete Resampling Correction

The method discussed here aims to synchronize the moving observer clock

to the rest one with an accuracy better than a sampling interval ∆t = 1/νs,

where νs denotes the sampling frequency. Let us consider an ideal sinusoidal

wave with a frequency equal to the sampling one, coming from a given direction
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in the sky. Its equiphase surfaces are planes perpendicular to the wave vector
−→
k s, travelling at the speed of light. In the rest frame the plane equation for a

given phase φ is given by:
−→
k s · −→r − ωst = φ (6)

where ωs = 2π νs and |
−→
k s| = ωs/c.

Let us select the family of planes whose phase φ is an integer multiple of

2π. Considering two contiguous planes in Eq.6, it straightforward to understand

that these planes travel parallel each other, separated by a time ∆t, (i.e. by a

distance c∆t), corresponding to a phase ωs∆t. The rest observer that measures

the positions of the family planes at sampling frequency νs, i.e. each ∆t seconds,

will sees at any sample time the j th plane takes the place the (j + 1)th one

had at the previous sample, and to be replaced by the (j − 1)th one. In other

words, the planes shift each other but the family will fill at any sample the

same positions. These fixed planes are used as a reference grid in the rest frame

where the moving observer motion is described by a trajectory −→r (t). Without

any loss of generality one can assume that at time t = 0 the two clocks (moving

and rest one) are synchonized to φ = 0 on the target plane crossing the rest

frame origin, coincident with the moving observer starting position. At a time

t the phase measured by the moving observer is
−→
k s · −→r (t) − ωst (Eq.[6]), to

be compared with the one detected by the observer at rest in the origin, ωst.

The dephasing (
−→
k s · −→r (t)) is thus ruled by the moving observer position with

respect to the start grid plane where synchronization occurred.

As mentioned above, the goal is to lock the two clocks so to have a time

difference not larger than the sampling interval (∆t). When the moving observer

crosses one of the two planes nearest to the origin, a dephasing ωs∆t, has been

cumulated. This can be compensated slowing down (or accelerating, depending

on the dephase sign - see below) the moving observer proper time, by a time

∆t. This correction can performed in an easy way, just repeating (or deleting)

one of the digitized signal sample. In particular, if the observer motion versus

is opposite to the wave one (i.e. −→v · −→n < 0) a negative dephasing with respect

to the rest clock occurs. This means that the moving clock is anticipating the

rest one. The moving clock is thus ”delayed” by repeating a sample of moving

observer signal. Viceversa, when −→v · −→n > 0, a delay occurs, compensated by

removing a sample. The correction just described has to be performed each

time the moving observer crosses one of the grid planes.

For a generic wave with frequency ν0, the achieved time synchronization,

implies a phase locking accuracy of ω0∆t, i.e. 2πν0/νs. To meet the required
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1 rad phase accuracy (see sect.1) it thus necessary to operate with a sampling

frequency at least 2π times larger the source one. In gravitational wave anten-

nas use of sampling frequencies around 20 kHz is made, and thus the technique

can be applied up to several kHz. This widely covers the range where con-

tinuous gravitational waves are expected, leaving a margin for better accuracy

requirements. It is important to stress that once this time-domain correction

is performed for a given direction of the sky, the 1 rad accuracy specification

is fullfilled at the same time for all frequencies below νs/2π. One can thus as-

sume the Doppler effect corrected in all this frequency range, and consider the

moving observer at rest with respect to any source coming from the chosen sky

direction.

In the usual cases the moving observer velocity does not change too much

during the crossing between two grid planes. The time to cross two contiguous

planes (tcrossing) is well approximated by their distance (c∆t), divided by the

amplitude of the observer velocity projection along the wave vector (|−→v · −→n |):

tcrossing = 1/(|
−→
β · −→n | νs) (7)

The minimum possible values for tcrossing = 1/(βνs), occur when the velocity

direction is parallel to the wave vector. This means that the correction cannot

occur before than 1/β samples (in the case of Earth, where β ≃ 10−4, one

each about ten thousands). Viceversa, when the velocity of the orbit is almost

perpendicular to the wave vector long crossing times take place.

3 Simulation

The technique was tested by developing a C language simulation. A routine

computes and writes on disk, at a sampling rate νs, the source monochromatic

signal with unitary amplitude, namely:

A = sin(−2πν0i ∆t) (8)

where i denotes the sample index and ∆t is the sampling interval (= 1/νs). The

same signal as detected by an observer moving in the rest frame with trajectory
−→r (t) = (x(t), y(t), z(t)):

A = sin(2πν0 (
nxx + nyy + nzz

c
− i∆t)) (9)

is also computed.
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Another routine computes all times tj the orbit crosses an equiphase plane of

the grid. All values of tj, expressed in term of the rest frame sample index, and

a label indicating the corresponding action (−1 for sample suppression and +1

for duplication) are stored in a two column ascii file (mask.dat). The crossing

time computation is made with a good accuracy using the linear approximation

mentioned above, and thus with a very small computing effort. Also the com-

puting time required for mask application is negligible: during the data reading

it is enough to suppress (or to double) single samples (each a few thousands, in

realistic cases) according to what written in mask.dat. In our simulation this

is made by another routine that applies the mask to the moving observer signal

(Eq.9). The analysis was performed in a ROOT-VEGA environment [5], where

use of FFTW package [6] is made for spectral analysis.§

4 Validation of the technique

Several tests were performed, varying the sampling and signal frequencies,

the wave direction and the orbital motion. The first three figures concern a

10 Hz sinusoidal wave with a 100 Hz sampling frequency, travelling along the

negative y direction. The antenna, in the origin at time t = 0, moves on x-

y plane, anticlockwise, along a 3 · 108 m radius circle, with constant speed

β = v/c = 10−3. The chosen numbers allows testing the method on a full

orbit with a reasonable amount of data. The corresponding phase modulation

index, ruling the spectral peak smearing in the moving reference frame, is now

ǫ = 2πr/λ ≃ 62 rad.

The phase difference between the signal detected by the moving observer and

the rest one is plotted in Fig.1 (black points) as a function of the orbital position

x-y. The same plot for the corrected signal (red points) is close to zero in any

orbital position. The achieved synchronization can be better evaluated in Fig.2,

where the same phase difference for the corrected signal is plotted as a function

of time, along the entire orbit. The dephasing is contained in a range ≃ ± 0.62

rad (as expected by the phase accuracy relation |∆φ| ≤ 2πν0/νs discussed in

sect.2). Around t = 0 (see first Fig.2 zoom), when the velocity is almost parallel

to the wave vector, short crossing times occur and thus frequent corrections are

necessary. At one and three quarters of period (see second zoom), the velocity

is almost perpendicular to the wave vector and long crossing times take place.

§A Bartlett window is applied to all time signals to avoid truncation effects durign FFT

computations. Use of different windows was also made, with negligible differences.
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As shown in Fig.3 the correction technique allows to restore a large part of the

signal energy, spread by the observer motion on a wide frequency band, in the

main spectral bin.

5 Dependence on direction accuracy

The dependence of the results on the accuracy the source direction is known

is discussed here. Let us consider the wavevector ~k forming an angle β with the

ecliptic plane and another vector, located on the same parallel, inclined with

respect to
−→
k by an angle δα. It is straightforward to obtain:

(
−→
k 1 −

−→
k ) · −→r =

ω0r

c
cosβ [(cos δα − 1) + sin δα sinωyt] (10)

For δα << 1 rad, this means:

(
−→
k 1 −

−→
k ) · −→r =

ω0r

c
δα cosβ sin ωy (11)

This represents the residual phase modulation after a correction made using a

direction slightly different from the right one (i.e. the one that should cancel

completely the orbital Doppler effect by a perfect resampling). In order to meet

our specifications the residual modulation index has to be less than 1 rad, that

means:

ω0r

c
δα cosβ < 1 ⇒ δα <

c

ω0r cosβ
(12)

It is important to stress that the required accuracy in the source direction

knowledge increases with the signal frequency. For a 100 Hz source located

on the ecliptic plane (β = 0), and considering an orbital radius equal to the

Earth-Sun distance (≃ 1.5 · 1011m), one obtains:

δα <
3 · 108

1.5 · 1011 · 2π100
≃ 3.18 · 10−6rad = 0.66′′ (13)

Let us consider the other case: a vector
−→
k 1, located on the same meridian

of
−→
k , forming an angle δβ along the parallel. It is immediate to obtain:

(
−→
k 1 −

−→
k ) · −→r =

ω0r

c
cosωyt [cosβ(cos δβ − 1) − sin β sin δβ] (14)

For δβ << 1 rad, this is:

(
−→
k 1 −

−→
k ) · −→r = −

ω0r

c
δβ sin β cosωyt (15)
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Putting again the residual phase modulation index after the Doppler correction

smaller than 1 rad, one obtains the maximum allowed direction mistuning:

ω0r

c
δβ| sin β| < 1 ⇒ δβ <

c

ω0r| sin β|
(16)

For a 100 Hz source located at ecliptic pole (sin β = 1), and taking the Earth-

Sun distance as orbital radius, one obtains again:

δβ < 3.18 · 10−6rad = 0.66′′ (17)

The number of ”independent” direction dN in a solid angle dα dβ is:

dN =
dα

δα

dβ

δβ
=

dα
c

ω0r cos β

dβ
c

ω0r| sin β|

=
(ω0r

c

)2

cosβ| sin β|dαdβ (18)

Integrating on the whole solid angle, the number of independent directions to

be scanned in order to achieve the required accuracy in Doppler correction is

given by:

N =
(ω0r

c

)2
∫ 2π

0

dα

∫ +π/2

−π/2

cosβ| sin β|dβ = 2π
(ω0r

c

)2

(19)

that, in the case of Earth orbital motion, means 6.2 · 1011 directions. A ”blind”

search of continuous wave in the sky based on a 1 year long FFT is thus pro-

hibitive. Indeed, one can relax direction accuracy by using shorter integration

times, at the price to reduce the detection sensitivity. Several techniques, with

reduced sensitivity, were developed to work with a reasonable computing time

(see, for instance, [7].∗

The sensitivity of the proposed correction method on source direction can be

studied by the simulation. The mask computed for a given direction is applied to

signals coming from slightly different ones. The results turned out in agreement

with previous computation, for several sky directions and for different mistuning

values. For instance, let us analyze the same configuration used for the previous

figures. Just the sampling frequency was increased from 100 Hz to 1 kHz, so

to improve the syncronization in the ideal direction case. In this way the phase

accuracy (plotted in Fig.2) is improved, and one can better appreciate the effects

due to the direction mistuning. The mask used in previous figure, computed

for the source direction (0,-1,0), is applied to an identical wave coming from

the orbital plane with direction inclined anticlockwise by α ≃ 0.0157 rad with

∗As shown in this reference, the blind search sensitivity increases with the fourth square

of integration time.
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respect to the mask direction. According to the previous computation (Eq.12),

this deviation should provide with our simulation parameters (r = 3 108 m and

β = 2 10−3) a residual phase modulation index of 1 rad in the case of a full

resampling Doppler correction. As shown in Fig.4.a, this result is found also with

the discrete resampling technique. As expected, with this 1 rad fluctuations,

the recovering of peak amplitude (Fig.4.b) is still acceptable, even if at the

level of the specification threshold (3 db - see section 1). This proof that the

sensitivity of the discrete technique to source direction mistuning is identical to

what expected by the complete signal resampling.

6 Effects on the noise

A final test was made by adding a gaussian random noise to the monochro-

matic signal. The amplitude of the monochromatic signal and the gaussian noise

sigma was fixed in our simulation to have a good signal to noise ratio (a few

units) at the peak frequency, when the integration time is equal to an orbital

period (≃ 6284 s).† In Fig.5 the linear spectral density of the three signals (rest,

moving and corrected) is reported for the configuration used in the first three

figures. The moving detector is not able to distinguish the peak from the noise

since the signal energy is spread out on a wide frequency band, making the

spectral amplitude smaller than the noise floor. Once the discrete correction is

applied the energy in the main bin is almost enterely recovered, and the signal

to noise ratio is similar to the one measured by the rest observer.

7 Required computing time

The mask computation and application, used to correct for Doppler effect

requires a negligible computing time with respect to other data analysis algo-

rithms. In general, it is not necessary to prepare a mask to be used later on

data, as made in our simulation. The next crossing time, and thus the index

of the next signal sample to be deleted or duplicated, will be computed inside

the routine reading the data. The crucial point is that this computation has

to be done not more frequently than a couple of times per second. Indeed for

the Earth β ≃ 10−4 and thus, in the worse case (when the antenna velocity is

parallel to the wave vector) a correction each 104 samples is necessary (see end

†The linear spectral density of the signal peak does not depend on the integration time,

while the noise spectral floor decreases with its square root.
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of Sect.2). If one considers the typical 20 kHz sampling frequency, this means

to compute and operate a correction each 0.5 s. In this period the ground-based

detector motion is surely well approximated by a straight line and the linear

approximation can be used to compute next crossing time. Once Earth position

is computed by ephemeris (an operation necessary for any other Doppler cor-

rection techniques), the next crossing time can be calculated by not more than

a few tens of operations. Less than a few 10−3 operations per sample are thus

necessary. This computing cost is very small if compared to what required by

other algorithms used for spectral analysis [8] and allows to correct for the first

order Doppler effect at all the interesting frequencies.

8 Conclusions

The proposed correction technique is able to synchronize the moving observer

clock to the rest one with enough accuracy to make the first order Doppler effect

negligible for continuous wave detection. Indeed, the signal peak spectral energy

of a monochromatic source is almost enterely recovered, once the correction is

applied to the signal detected by the moving reference frame. The tecnique,

performed in time-domain and valid for a given direction of a sky, provides a

sufficient correction for any source coming from this direction, independently of

its frequency. This operation requires a negligible amount of computing time

if compared with other algorithms used in continuous gravitational wave data

analysis.
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Figure 1: Phase difference between the sinuisodal wave as detected by the mov-
ing observer with respect to rest observer as a function of the antenna orbital
position x-y (black points). The same plot for the dephasing between the cor-
rected signal and the one detected by the rest observer is displayed (red points).
INPUT PARAMETERS: source frequency = 10 Hz, sampling frequency = 100
Hz, wave direction = (0,-1,0), orbital radius = 3 108 m, β = 10−3.
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Figure 2: Same phase difference in red points of Fig.1, plotted as a function of
time for the entire orbit (≃ 6, 283 s). Two zooms of the previous plot around
t=0 and t=3/4 of the orbital period are reported.
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Figure 3: Linear spectral density of the signal as measured by moving observer
(black) and of the corrected signal (gray). The configuration is the same of
the two previous figures. The energy of the signal detected in moving observer
is spread out on many bins. The spectral peak amplitude measured by the
rest observer (equal to 1) is almost entirely recovered by the correction techique
(peak linear spectral density ≃ 0.91). An integration time of two orbital periods
(about 12,566 s) was considered. Use of log scale was done to emphasize the
differences in the tails.
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Figure 4: Top: Same plot of Fig.1 when the mask computed to correct for
direction (0,-1,0) is applied to a signal coming from the same orbital plane, but
inclined by 0.0157 rad anticlockwise with respect to the negative y direction.
Bottom: Linear spectral density of the corrected signal (gray curve) and of the
rest one (black) computed on one orbital period (about 6,283 s). The ratio
between corrected and rest linear spectral densities at the peak frequency is
around 0.75.
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Figure 5: Linear spectral density of the signal as measured by rest (top plot),
moving (middle plot) and corrected (bottom plot) observer when a gaussian ran-
dom noise is added to the monochromatic wave. The configuration is the same
of Fig.1. The integration time is two orbital periods (about 12,566 s).
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