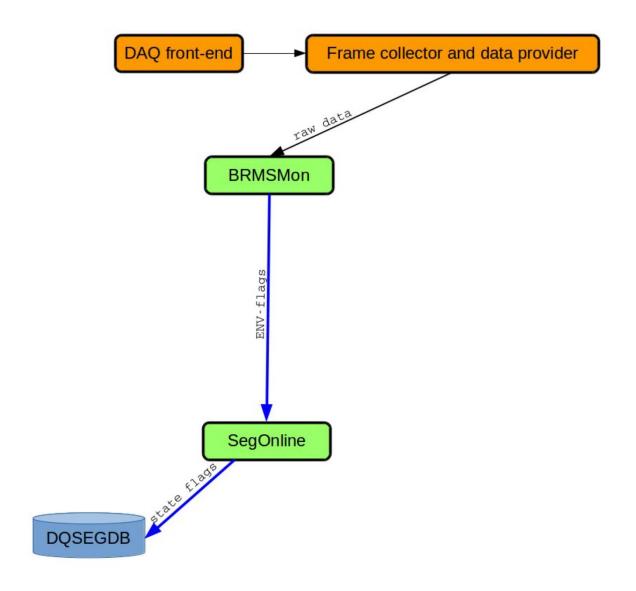
BRMSMon Status Update

Nicolas ARNAUD (narnaud@lal.in2p3.fr)

Detchar meeting, 2015/10/30



BRMSMon Package

- Developed by Florent and used during the Virgo data taking periods
 - Updated for AdV (currently v2r1)
- SVN: Repository, Journal of the revisions, RSS flux
- <u>Documentation</u> (updated, with reference to the old documentation)
- Running online using VPM
 - Currently not from the official Virgo software area but from my user account
 - Configuration file: /virgoData/VirgoOnline/BRMSMon.cfg
 - Frames produced by BRMSMon are processed by SegOnline (thanks to Didier) and appear in the raw data
- BRMSMon channels have V1:BRMSMon as prefix
 - Updated at 1 Hz using 1 second-long frame as input

Online architecture

• From Florent's slides

BRMSMon algorithm

- Produces DQ flags based on band-RMS computed from input channels
- Currently focuses on environmental channels
 - No check of the IFO lock status (was different in the Virgo era)
 - In the future: DQ flags delivered or not depending on an external flag (SCIENCE)

• DQ flag definition

```
DQ NAME dq name n_coinc

BRMS_CHANNEL chan_name_1 fft_length_1 f min_1 f max_1 f max_1 n_sigma_1 cycle_1

BRMS_CHANNEL chan_name_2 fft_length_2 f min_2 f max_2 f max_2 n_sigma_2 cycle_2

...

BRMS_CHANNEL chan_name_N fft_length_N f min_N f max_N f max_N n_sigma_N cycle_N
```

where:

```
dq_name : Name of the DQ flag
n_coinc : At least n_coinc Band-RMS out of N must be above threshold at the same time to set
the DQ flag at 1.
chan name : Channel name
fft_Tength: Time length for the FFT (sec)
f_min : Lower boundary of the frequency band (Hz)
f_max : Upper boundary of the frequency band (Hz)
n_sigma : Threshold (adaptive or static) see the threshold section for details.
cycle : The threshold is adapted every cycle second. This option is irrelevant for a
static threshold.
```

- DQ flag set when n_coinc band-RMS out of N are above threshold
- For each input channel, set the FFT length (in s), the frequency range [f_{min};f_{max}], decide whether the threshold to be applied is static or adaptative, at what level the threshold should be, and how often it will be updated (if adaptative)

BRMSMon algorithm (cont'd)

• Static or adaptative threshold

```
■ if n_{sigma} < 0, the threshold is static and threshold = |n_{sigma}| | cycle 1 | if n_{sigma} < 0, the threshold is adaptative and defined in the following way: threshold = mean(band-RMS) + n_{sigma} \times rms(band-RMS) | In that case, it is updated every cycle seconds
```

- The mean and rms values of the band-RMS distribution are usually computed from the band-RMS values which are below the current threshold
 - We want to see glitches which are significantly above the normal range of variations of that particular channel
- Yet, if the channel output changes significantly and « permanently », BRMSMon should follow this evolution
 - If more than 75% of the band-RMS values are above the current threshold, the updated threshold is computing using only the values above the current threshold

BRMSMon algorithm (cont'd)

- For channels with adaptative thresholds, the first (meaningful) threshold is computed based on the first 60 seconds of data
 - No DQ flag is set during this first minute
- The adaptative thresholds are then updated again 5 minutes later, and then every cycle seconds see previous slides for the algorithm
- BRMSMon checks for each channel
 - that the FrVect* pointer returned by FrameFindVect is not NULL
 - → Identify missing channels
 - that the computed band-RMS is not 0
 - → Identity dead channels!?
- Each DQ flag produces $2 \times (number of input channels) + 1 channels in the raw frame$
 - V1:BRMSMon_<DQ name>
 - V1:BRMSMon_<DQ name>_V1:<channel_1 name>_<f_{min1}>_<f_{max1}>Hz_rms
 - V1:BRMSMon_<DQ name>_V1:<channel_1 name>_<f_{min1}>_<f_{max1}>Hz_thr
 - V1:BRMSMon_<DQ name>_V1:<channel_2 name>_<f_{min2}>_<f_{max2}>Hz_rms
 - V1:BRMSMon_<DQ name>_V1:<channel_2 name>_<f_{min2}>_<f_{max2}>Hz_thr
 - **(...)**

Configuration file

- Currently includes all channels pointed out by Irene
- But no (real) attempt yet to define meaningful DQ flags based on these input channels
- \rightarrow Time to be creative!
- Some examples from the Virgo era .cfg file listed in the next slide

DQ flag examples

• Same channel, low/medium/high thresholds

```
DO NAME
          RECYCLING GLITCH LOW
                                     20
BRMS CHANNEL
               Gc Recycling
                                                   3600
DO NAME
          RECYCLING GLITCH MID
                                     20
                                        30
                                                   3600
BRMS CHANNEL
               Gc Recycling
          RECYCLING GLITCH HIGH 1
DO NAME
BRMS CHANNEL
             Gc Recycling
                                         30
                                     20
                                            10
                                                   3600
```

• Select frequency bands

DQ NAME TCS N	NI POWER GLITCH	1				
BRMS CHANNEL -	$\overline{ ext{TC}}$ S NI $\overline{ ext{P}}$ ower	0.1	32	64	10	500
BRMS_CHANNEL	TCS_NI_Power	0.1	256	512	10	500

 Split a frequency band into several frequency ranges

```
      DQ NAME
      B5 LOW FREQ TIGHT
      1

      BRMS CHANNEL
      Pr B5 ACq
      1
      4
      16
      6
      3600

      BRMS CHANNEL
      Pr B5 ACq
      1
      8
      32
      6
      3600

      BRMS CHANNEL
      Pr B5 ACq
      1
      16
      128
      6
      3600

      BRMS CHANNEL
      Pr B5 ACq
      1
      128
      1024
      6
      3600
```

• Different DQ flags for each frequency band of a given channel

DQ NAME AC NE 64 128 1					
BRMS CHANNEL Em ACBDNE01	0.1	64	128	9	10000
DQ N \overline{A} ME AC NE 1 $\overline{2}$ 8 256 1					
BRMS CHANNEL Em ACBDNE01	0.1	128	256	9	10000
DQ N \overline{A} ME AC NE 2 $\overline{5}$ 6 512 1					
BRMS CHANNEL Em ACBDNE01	0.1	256	512	9	10000

- → Would location-related DQ flags make sense?
 - That would mean mixing apples and oranges: e.g. seismic sensors and microphones