BRMSMon Status Update

Nicolas ARNAUD (<u>narnaud@lal.in2p3.fr</u>)

Detchar meeting, 2015/10/30

RGJ/RGJ

BRMSMon Package

- Developed by Florent and used during the Virgo data taking periods
 - Updated for AdV (currently v2r1)
- SVN: <u>Repository</u>, <u>Journal of the revisions</u>, <u>RSS flux</u>
- <u>Documentation</u> (updated, with reference to the old documentation)
- Running online using VPM
 - Currently not from the official Virgo software area but from my user account
 - Configuration file: /virgoData/VirgoOnline/BRMSMon.cfg
 - Frames produced by BRMSMon are processed by SegOnline
- BRMSMon channels have V1:BRMSMon as prefix
 - Updated at 1 Hz using 1 second-long frame as input

Online architecture

• From Florent's slides DAQ front-end Frame collector and data provider raw data **BRMSMon** ENV - flags SegOnline DQSEGDB State Flage

BRMSMon algorithm

- Produces DQ flags based on band-RMS computed from input channels
- Currently focuses on environmental channels
 - No check of the IFO lock status (was different in the Virgo era)
- DQ flag definition

```
DQ NAME dq name n_coinc
BRMS_CHANNEL chan_name_1 fft_length_1 f min_1 f max_1 f max_1 n_sigma_1 cycle_1
BRMS_CHANNEL chan_name_2 fft_length_2 f_min_2 f_max_2 f_max_2 n_sigma_2 cycle_2
...
BRMS_CHANNEL chan_name_N fft_length_N f_min_N f_max_N f_max_N n_sigma_N cycle_N
```

where:

dq_name : Name of the DQ flag n_coinc : At least n_coinc Band-RMS out of N must be above threshold at the same time to set the DQ flag at 1. chan name : Channel name fft length: Time length for the FFT (sec) f_min : Lower boundary of the frequency band (Hz) f_max : Upper boundary of the frequency band (Hz) n_sigma : Threshold (adaptive or static) see the threshold section for details. cycle : The threshold is adapted every cycle second. This option is irrelevant for a static threshold.

- DQ flag set when n_coinc band-RMS out of N are above threshold
- For each input channel, set the FFT length (in s), the frequency range [f_{min};f_{max}], decide whether the threshold to be applied is static or adaptative, at what level the threshold should be, and how often it will be updated (if adaptative)

BRMSMon algorithm (cont'd)

- Static or adaptative threshold BRMS CHANNEL chan name 1 fft length 1 f min 1 f max 1 f max 1 n sigma 1 cycle 1
 if n_{sigma} < 0, the threshold is static and threshold = | n_{sigma} |
 if n_{sigma} > 0, the threshold is adaptative and defined in the following way: threshold = mean(band-RMS) + n_{sigma} × rms(band-RMS) In that case, it is updated every cycle seconds
- The mean and rms values of the band-RMS distribution are usually computed from the band-RMS values which are below the current threshold
 - We want to see glitches which are significantly above the normal range of variations of that particular channel
- Yet, if the channel output changes significantly and « permanently », BRMSMon should follow this evolution
 - If more than 75% of the band-RMS values are above the current threshold, the updated threshold is computing using only the values above the current threshold

BRMSMon algorithm (cont'd)

- For channels with adaptative thresholds, the first (meaningful) threshold is computed based on the first 60 seconds of data
 - No DQ flag is set during this first minute
- The adaptative thresholds are then updated again 5 minutes later, and then every cycle seconds see previous slides for the algorithm
- BRMSMon checks for each channel
 - that the FrVect* pointer returned by FrameFindVect is not NULL
 - \rightarrow Identify missing channels
 - that the computed band-RMS is not 0
 - \rightarrow Identity dead channels!?

Configuration file

- Currently includes all channels pointed out by Irene
- But no (real) attempt yet to define meaningful DQ flags based on these input channels
- \rightarrow Time to be creative!
- Some examples from the Virgo era .cfg file listed in the next slide

DQ flag examples

• Same channel, low/medium/high thresholds

DQ_NAME RECYCLING_GLITCH_LOW BRMS_CHANNEL Gc_Recycling	1 2	20	30	6	3600
DQ NAME RECYCLING GLITCH_MID BRMS_CHANNEL Gc_Recycling	1 2	20	30	8	3600
DQ_NAME RECYCLING_GLITCH_HIGH BRMS_CHANNEL Gc_Recycling	1 2	20	30	10	3600

• Select frequency bands

DQ NAME TCS NI E	POWER GLITCH	1				
BRMS CHANNEL TOS	S NI Power	0.1	32	64	10	500
BRMS_CHANNEL TCS	S_NI_Power	0.1	256	512	10	500

• Split a frequency band into several frequency ranges

DQ NAME B5	LOW FREQ TIGH	Т	1			
BRMS CHANNEL	Pr B5 ACq	1	4	16	6	3600
BRMS CHANNEL	Pr B5 ACq	1	8	32	6	3600
BRMS ⁻ CHANNEL	Pr B5 ACq	1	16	128	6	3600
BRMS ^{CHANNEL}	Pr B5 ACq	1	128	1024	6	3600
_						

• Different DQ flags for each frequency band of a given channel

DQ NAME AC NE 64 128 1					
BRMS CHANNEL Em ACBDNE01	0.1	64	128	9	10000
DQ NAME AC NE $1\overline{2}8$ 256 1					
BRMS CHANNEL Em ACBDNE01	0.1	128	256	9	10000
DQ NAME AC NE $2\overline{5}6$ 512 1					
BRMS CHANNEL Em ACBDNE01	0.1	256	512	9	10000

- \rightarrow Would location-related DQ flags make sense?
 - That would mean mixing apples and oranges:
 e.g. seismic sensors and microphones