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Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem.
Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec
ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus
placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.
Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla
tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue
a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit
amet ipsum. Nunc quis urna dictum turpis accumsan semper.
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1 Introduction
The search for a stochastic background of gravitational waves (SGWB) is of fundamental im-
portance in early universe cosmology and correspondingly in high energy physics. A successful
detection or, less ambitiously, an upper limit constraint, could be of great interest in testing
models for fundamental interactions.

One important field of investigation, related with the direct gravitational waves observation,
is that of Extended Gravitational Theories (EGT), namely theories of gravity different than
general relativity.

There are several motivations for looking at EGTs, namely

• they are important in order to test general relativity: it is useful to consider some al-
ternative theories of gravity and see precisely how their physical predictions differ from
those of general relativity;
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• effective actions describing the low energy limit of models for the unification of funda-
mental interactions (like superstrings, supregravity, GUTs) tipically contains corrections
terms to general relativity in the gravitational sector;

• they could be a step toward the solution for the gravity quantization problem: since the
efforts in unifying quantum field theory with GR have not been fully successful, it is
important to look for other classical theories of gravity to be quantized.

For these reasons it is important to keep on verifying GR experimentally to higher and higher
degrees of accuracy, investigating or, at least, constraining alternative models.

Most viable theories of gravity are described by a symmetric rank-(0, 2) tensor, the metric,
which completely determines the interaction of gravity with massive bodies. The differences
between the theories lie in how the metric is affected by the presence of matter, in other words,
the dynamics of the spacetime geometry itself. Most of these theories, including general relativ-
ity, incorporate local Lorentz invariance as well as being based upon second order differential
equations. Since the wave operator (the D’Alambertian) is the Lorentz invariant 2nd order
differential operator, it should be reasonable to suppose that most gravitational theories admit
wave-like solutions [Will, 1993, §10.2].

GWs predicted by different theories could differ through:

• the propagation speed (e.g. in case of massive gravitons or extra-dimensions);

• the waveform, for any given source (cosmological or astrophysical it is);

• the polarization modes.

Here we limit ourselves by considering only differences in polarization modes predicted by the
several viable theories. In particular, we will consider only weak, plane, nearly null gravitational
waves in 4-dimensional spacetime, as defined in [Will, 1993, §10.2].

It can be shown that any general metric theory of gravity, with additional fields, degrees of
freedom, or extra dimensions (once projected on our 3-space) can allow, at most, six polarization
modes of a GW [Eardley et al., 1973]. For waves propagating in the z direction, the bases of
the six polarizations can be defined as:

e+
ij =

1 0 0
0 −1 0
0 0 0

 e×ij =

0 1 0
1 0 0
0 0 0

 ebij =

1 0 0
0 1 0
0 0 0


exij =

0 0 1
0 0 0
1 0 0

 eyij =

0 0 0
0 0 1
0 1 0

 e`ij =
√

2

0 0 0
0 0 0
0 0 1

 (1)
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Theoretical Model e+
ij e×ij ebij e`ij exij eyij

Einstein’s General Relativity (GR) * *
GR in a noncompactified 5D Minkowski sp. * * † † * *
GR in a noncompactified 6D Minkowski sp. * * * * * *
5D Kaluza-Klein theory * * * * *
Randall-Sundrum braneworld * *
DGP braneworld (normal branch) * *
DGP braneworld (self-accelerating branch) * * ♦ M
Brans-Dicke theory * * ♦ M
f(R) theory * * ♦ M
Bimetric theory * * ♦ M * *

Table 1: GW polarization modes for various viable theories. Table taken from [Nishizawa et al.,
2009, TABLE 1]. Modes † are correlated and behave as a single degree of freedom. If mg = 0
then the M-modes vanishes; if mg 6= 0 then the M- and ♦-modes are correlated.

The effect of each mode on a ring of test masses is represented in Figure 1. This will have
a direct impact on the way in which a given gravitational wave will couple to a detector, as we
will see.

Each polarization mode can be classified using its rotational symmetry around the GW
propagation axis. Looking at the definitions (1) we see that ebij and e`ij behave as scalars, exij
and eyij as the two components of a (bidimensional) vector and e+

ij, e
×
ij as the two components of

a (bidimensional) symmetric and traceless tensor. This property does not depend, of course, on
the specific theory under consideration; the presence of, or a constraint about a certain mode
can then be used to test a theory by means only of its symmetry properties. In other words, the
observation of GWs polarization modes can be used as a powerful tool to probe or to constrain
alternative theories of gravity in a model-independent way.

1.1 Overview of current results

No direct detection of GWs has yet been possible but many bounds and upper limits have been
evaluated.

In B. P. Abbott et al. [2009] an upper limit on the energy density of the SGWB has been
given, using LIGO S5 run data. Assuming a flat spectrum for Ωgw it is Ωgw(f) < 6.9× 10−6 in
the frequency band around 100 Hz, at 95% confidence. This result is represented in Figure 2:
as can be seen, the upper limit is below the one provided by the nucleosynthesis bound.

A detailed study of the detectability of additional polarization modes has been given by
Nishizawa et al. [2009], including the expected upper limits obtainable with advanced detectors
(as foreseen in 2009).

Here we’re going to provide some estimates using the projected advanced LIGO and ad-
vanced VIRGO sensitivities shown in Figure 3.

Currently, there are only few constraints available on the additional polarization modes of
GWs. For the scalar mode, they came from [Nishizawa et al., 2009]

• the study of the orbital-period derivative for the binary pulsar PSR B1913+16. Observa-
tions agree with general relativity predictions at a conservative level of 1% error. Hence,
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Figure 1: Graphical representation of how each polarization affects test masses arranged on a
circle. Picture adapted from Nishizawa et al. [2009, FIG.1].

scalar GWs can contribute for less than 1% to the energy loss of the binary system;

• the measurements of the amplitude of scalar perturbations in the CMB at large angular
scales (as observed in the WMAP data). These constrain the possible red shift of CMB
photons due to the SGWB, and therefore limit the amplitude of the SGWB at largest
wavelengths (smallest frequencies): h2

0ΩS
gw . 10−12, over the range 10−18 ÷ 10−16 Hz.

With the new generation of advanced detectors a new observing scenario will open.

1.2 Advanced detectors

Over the next decade, several improvements have been scheduled for the next generation GW
interferometric detectors Advanced LIGO (AdvLIGO) and Advanced Virgo (AdV) [Aasi, 2013].
These detectors are expected to yield the first direct observation of gravitational waves.

Hopefully, the GW experiments will be soon a key observational tool to obtain valuable
informations about astronomical objects and physics of the early Universe.

The present discussion is meant to be an “update”, for the article by Nishizawa et al., on
non-standard polarization detectability, considering the improvements currently scheduled for
the advanced interferometric detectors AdvLIGO and AdVirgo. Looking at Figure 3 we see
that a final sensitivity improvement of about an order of magnitude is espected in the most
relevant frequency band.
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Figure 2: Comparison of the measurements for the SGWB energy density by means of the LIGO
S4 and LIGO S5 data. Other indirect constrains are plotted: a constrain from the observed
light nuclei abundance, produced by the Big Bang Nucleosynthesis (BBN), anisotropies in CMB
at large angle, and the millisecond pulsar bound, based on the fluctuations in the pulse arrival
times (adapted from B. P. Abbott et al.).
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Figure 3: Data for the expected strain sensitivities at different stages of the upgrades are taken
from [Aasi, 2013].

2 Cross-correlation analysis: a brief overview

We start with a brief summary of cross-correlation analysis, as derived in [Allen and Romano,
1999] and extended to include non-standard polarizations in [Nishizawa et al., 2009].

2.1 Cross-correlation including non-standard polarizations

To distinguish the SGWB signal h(t) from stochastic detector noise n(t), independent in each
detector, one has to correlate signal between two detectors:

S ≡
ˆ +T/2

−T/2
dt

ˆ +T/2

−T/2
dt′ s1(t)s2(t′)Q(t− t′) ≈

ˆ +∞

−∞
df

ˆ +∞

−∞
df ′ δT (f−f ′)s̃1(t)s̃2(t′) Q̃(f ′) (2)

Here si(t) is the output of the i-th detector, which is supposed to be a linear superposition of
GW strain signal and detector’s intrinsic noise: si(t) = hi(t) + ni(t). The function Q(t − t′)
is a linear filter, which is chosen to optimize the SNR (to be defined yet). It depends on the
separation orientation of the two detectors. The function δT (f) is defined as

δT (f) ≡
ˆ +T/2

−T/2
dt e−2πif/t =

sin(πfT )

πf
(3)

and it is weakly convergent to δ(f) for T → ∞. T is the total observation time, T ∼ 107 sec.
Tilded quantities are Fourier transforms.

For a detector placed at a position x, the SGWB strain signal h(t,x) produced can be
written as:

h(t,x) = hij(t,x)Dij =
∑

A=+,×,x,
y,b,`

ˆ
S2

d2Ω̂

ˆ +∞

−∞
df h̃A

(
f, Ω̂

)
e2πi f(t−Ω̂·x/c)FA

(
Ω̂
)

(4)
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Figure 4: Angular pattern function for the tensor, vector and scalar modes, assuming no correlations

between components. From left to right F T =
√

(F+)2 + (F×)2, F V =
√

(F x)2 + (F y)2 and FS =√
(F b)

2
+ (F `)

2 are represented.

where the gravitational metric perturbation hij(t,x) is decomposed into the six polarization
modes, A = +,×, x, y, b, `, and analyzed by the Fourier transforms of their amplitudes h̃A(f, Ω̂).
The quantity

FA(Ω̂) = DijeAij(Ω̂)

which appears in Eq. (4) is the detector angular pattern function for the mode A, which
is obtained by contracting the metric perturbation with the detector tensor Dij. It gives a
proportionality factor between the metric perturbation and the strain signal produced, for a
given gravitational wave’s propagation direction. As here we are interested in an isotropic
background, we integrate in Eq. (4) over all the propagation directions Ω̂.

Some examples of angular pattern functions are represented, as a polar diagram, in Figure 4.
The key point for extracting the GW strain from the cross-correlation S is taking its expec-

tation value; in absence of intrinsic noise correlation between the two detectors, we have

µ ≡ 〈S〉 =

ˆ +∞

−∞
df

ˆ +∞

−∞
df ′ δT (f − f ′)〈h̃∗1(f)h̃2(f ′)〉Q̃(f ′). (5)

To evaluate the previous expectation value, we have to make some assumptions on the SGWB
signal produced by any given theory [Allen and Romano, 1999, §II.B]. In the simplest model,
which is the one we are interested to, we suppose the backgorund to be

Isotropic: this could be a first-order approximation, but we can expect it to hold from the
comparison with the high isotropy of the CMBR;
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Indipendently polarized i.e., no correlation between different polarization modes;

Stationary, at least for the typical duration of a GW experiment, T ∼ 107 sec, which is much
smaller than the characteristic cosmological time scales;

a Gaussian random process, in this case the second-order moments
〈
hi(t)hj(t

′)
〉
completely

specifies the statistical properties of the signal. This could be a very good first-order ap-
proximation, at least for cosmological backgrounds, granted by the central limit theorem.

Under these hypothesis we are allowed to write

〈
h̃∗A
(
f, Ω̂

)
h̃A′
(
f ′, Ω̂

′)〉
= δ(f − f ′)

δ2
(
Ω̂, Ω̂

′)
4π

δAA′
1

2
SAh (|f |) (6)

where SAh (|f |) is the one-sided power spectral density of each polarization mode. These spectral
densities fully characterize the stochastic background in our model.

It is more common to express the SGWB spectral density SAh (|f |) in terms of the GWs
energy density, per logarithmic frequency bin, normalized by the critical energy density of the
Universe Nishizawa et al.:

ΩA
gw(f) ≡ 1

ρc

dρAgw
d ln f

=

(
2π2

3H2
0

)
f 3SAh (f) A = +,×, x, y, b, `. (7)

Note that the above definition agrees with that of Nishizawa et al. but differs from that of Allen
and Romano by a factor of two, since it is defined for each polarization mode.

It is convenient to represent the energy density in the form h2
0Ωgw(f) by parameterizing

the Hubble constant as H0 = 100h0 km s−1Mpc−1. In most of the cosmological scenarios, we
assume that + and × modes are not polarized, as well as the x and y modes. On the contrary,
scalar modes could be correlated. Then

ΩT
gw ≡ Ω+

gw + Ω×gw,
(
Ω+
gw = Ω×gw

)
(8)

ΩV
gw ≡ Ωx

gw + Ωy
gw,

(
Ωx
gw = Ωy

gw

)
(9)

and

ΩS
gw ≡ Ωb

gw + Ω`
gw = (1 + κ)Ωb

gw (10)

where κ = Ω`
gw/Ω

b
gw.

With the previous assumption, we can express the cross-correlation expectation value in
terms of the SGWB energy density:

µ ≡ 〈S〉 ≈
¨ +∞

−∞
df df ′ δT (f − f ′)

〈
h̃∗1(f)h̃2(f ′)

〉
Q̃(f ′)

=
3H2

0

4π2

ˆ +∞

−∞
df |f |−3δT (0) Q̃(f)

∑
A

ΩA
gw(|f |)

ˆ
S2

d2Ω̂

4π
FA

1

(
Ω̂
)
FA

2

(
Ω̂
)
e2πif(Ω̂·x1−Ω̂·x2)/c

≡ 3H2
0

20π2
T

ˆ +∞

−∞
df |f |−3Q̃(f)

[
ΩT
gwγ

T + ΩV
gwγ

V + ξΩS
gwγ

S
]

(11)
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great circle

Interferometer 1

Interferometer 2

Interferometer 1

Interferometer 2

great circle

β β

Figure 5: Coordinate system on the Earth for a detector pair. In the following we will distin-
guish between two particular orientations: the Type I (detectors’ arms have the bisectors on
the same plane, depicted in the middle) and the Type II (two arms of different detectors are
on the same plane, depicted on the right).

where ξ = (1+2κ)/6. In the last line we have introduced the overlap reduction function (ORF),
γM , for the polarization modes M = T, V, S:

γT (f) ≡ 5

2

ˆ
S2

d2Ω̂

4π

[
F+

1

(
Ω̂
)
F+

2

(
Ω̂
)

+ F×1
(
Ω̂
)
F×2
(
Ω̂
)]
e2πifΩ̂·∆x/c (12)

γV (f) ≡ 5

2

ˆ
S2

d2Ω̂

4π

[
F x

1

(
Ω̂
)
F x

2

(
Ω̂
)

+ F y
1

(
Ω̂
)
F y

2

(
Ω̂
)]
e2πifΩ̂·∆x/c (13)

γS(f) ≡ 15

1 + 2κ

ˆ
S2

d2Ω̂

4π

[
F b

1

(
Ω̂
)
F b

2

(
Ω̂
)

+ κF `
1

(
Ω̂
)
F `

2

(
Ω̂
)]
e2πifΩ̂·∆x/c (14)

The ORF represents how much degree of correlation between detectors in the GW signal is
preserved. It takes into account the separation time delay between the two detectors and the
non parallel alignment of the detector arms. ORF for several detector’s pairs and modes are
represented in Figure 6.
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Figure 6: ORF for the different detector pairs Virgo - LIGO(L), Virgo - LIGO(H) and LIGO(H)
- LIGO(L). Note how the difference of the behavior between the polarization modes appears at
around the characteristic frequency fc ≡ c/2|∆x|, above of which the ORFs rapidly decrease to
0.

2.2 SNR for different polarizations

Assuming that the amplitude of the SGWB strain h(t) is much smaller than the detector noise
n(t), we can calculate the variance of the cross-correlation signal:

σ2 ≡ 〈S2〉 − 〈S〉2 ≈ 〈S2〉 =

¨ +∞

−∞
df df ′ Q̃(f)Q̃(f ′)〈s̃∗1(f)s̃2(f)s̃∗1(f ′)s̃2(f ′)〉

≈
¨ +∞

−∞
df df ′ Q̃(f)Q̃(f ′)〈ñ∗1(f)ñ1(f ′)〉〈ñ2(f)ñ∗2(f ′)〉

≡ T

4

ˆ +∞

−∞
df P1(|f |)P2(|f |)|Q̃(f)| (15)

where we’ve introduced the one-sided power spectrum density of noise for the two detectors,
P1,2(|f |). Introducing the signal-to-noise ratio

SNR≡ µ√
σ2

(16)

we can define the optimal filter function Q̃(f) as the one which maximizes the SNR. Then, the
optimal SNR can be written as [Nishizawa et al., 2009]:

SNR =
3H2

0

10π2

√
T

[ˆ +∞

−∞
df

γ2(|f |)Ω2
gw(|f |)

f 6P1(|f |)P2(|f |)

]1/2

(17)

where γΩgw ≡ γTΩT
gw + γV ΩV

gw + γSΩS
gw.

Considering only one polarization mode at a time (setting ΩM
gw = 0 for the others), we can

compute the SNR for each mode. In the following we consider a flat stochastic background
spectrum, Ωgw = cost.

A normalized SNR (β) is represented in Figure 7 for some relative orientations, as a function
of β (see Figure 5 for the definition of β). The normalization is choosen in such a way that
SNR(0) = 1. Note that SNR(0) is the same for all the polarizations, in the two orientations
(Type I and ype II) considered. It is interesting to note how the SNR for the scalar mode is
enhanced at relatively close detector distance. The same function is represented graphically in
Figure 8, taking advanced Virgo as one of the two detectors.
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Figure 7: SNRs for different modes as a function of the separation angle β between the detectors.
These functions are calculated for two different optimal configurations of the detectors’ arms:
solid lines are for Type I orientations and dashed lines are for Type II orientations (see Figure 5
for the definitions).

Figure 8: Color plot for the SNR for different modes of polarization. It is based on the Advanced
Virgo detector with a possible partner placed somewhere allover the world. Strain sensitivity
for the latter is taken equals to that of AdvLIGO. An optimal alignment of the arms is assumed.
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2.3 Detection, statistical considerations: sensitivity level

Let us suppose that our experiments have gone on-line and are generating a certain amount of
data. How can we decide, from the experimental data, if we’ve detected a SGWB? In particular,

• Assuming that a GW signal is present, how do we estimate its strength? and,

• what is the minimum value of Ωgw required to detect it, say, 95% of the time?

To answer these questions, some statistical considerations are needed [Allen and Romano, 1999].
We have to set up a statistical hypothesis test (from a frequentist point of view) and a decision
rule that, given the outcome of an experiment, could allow us to answer the previous questions
in a statistically rigorous way.

In the field of statistical signal analysis, this problem is worked out by means of the Neyman-
Pearson Lemma (see [Allen and Romano, 1999, §IV.B] and [Kay, 1998, §6.4]).

Once we have the outcome of our cross-correlation experiment, we can calculate the estima-
tors sample mean µ̂ and sample variance s2 for the mean and the variance of the cross-correlation
signal S. Then, the Neyman-Pearson Lemma tell us that: fixed a false alarm probability α, that
is the maximum probability allowed for an erroneous detection, we can assert that a SGWB
signal is present in our data if

µ̂
√
n/s2 >

√
2 erfc−1(2α) (18)

with a detection probability

γ(µ) =
1

2
erfc

(
erfc−1(2α)− µ

√
n
/

2σ2

)
(19)

where n ∼ 104 ÷ 106 is the number of samples of S we have extracted from the whole data
stream. The dection probability defined by Eq. (19) is represented in Figure 6.

Assuming that a SGWB has been observed, we can answer to the remaining questions:

• we can estimate Ωgw, by means of the value of µ, using the Neyman construction for
confidence interval: in an ensemble of observation of the same SGWB, a fraction 1 − α
of the intervals

Iα ≡
[
µ̂−

√
2s2/n erfc−1(2α), µ̂+

√
2s2/n erfc−1(2α)

]
(20)

constructed from the estimators µ̂ and s2, will contain the value of the true mean µ.

• requiring that the detection rate be greater than a desired (fixed) rate γ, we can find
the minimum detectable value of µ solving the inequality given by the Neyman-Pearson
Lemma:

• For a power-law template for the SGWB energy density,

Ωgw(f) = Ων

(
f

f0

)ν
(21)
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Figure 9: The detection probability γ(µ) as a function of µ, for several values of σ2 and α.

where Ων is a constant and f0 a frequency of reference, as predicted by most theoret-
ical models in the LIGO and Virgo frequency band, we can find the minimum SGWB
detectable for each mode M :

ΩM
ν >

1√
T

10π2

3H2
0

[ˆ +∞

−∞
df
( f
f0

)2ν γ2
M(|f |)

f 6P1(|f |)P2(|f |)

]−1/2√
2
(
erfc−1(2α)− erfc−1(2γ)

)
(22)

depending on the noise power spectrum densities of the two detectors, P1,2(|f |), the duration
of the experiment T , and on the false alarm and detection rates, α and γ.

3 Prospects on future results

Using the prospected power spectrum densities of the noise at the scheduled upgrades for
the advanced detectors AdvLIGO and AdV, as reported in [Aasi, 2013], we can calculate the
minimum values of the SGWB energy density detectable in near-future experiments.

Let us compute these values for a 4 months experiment (T ' 107 sec), for a false alarm rate
α = 0.05 and a detection rate γ = 0.95, and (in the case of power-law models for Ωgw) for a
reference frequency f0 = 100 Hz.

3.1 SGWB sensitivity level

As a conclusion, we compare in Figure 14 the updated upper limits for different polarization
modes with the current ones, using the values (for the flat case) taken from the previous tables.

It is interesting to observe that:

• sensitivity to scalar and vector modes is enhanced, with respect to the tensor mode, in
the AdV - AdvLIGO detector pair, so it is possible to test these alternative polarizations;
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the left) and for the AdvLIGO-AdvLIGO pair (on the right).

• on the contrary, with the AdvLIGO detectors, sensitivity to the tensor mode is enhanced,
and is about one order of magnitude better than that achievable with the AdV - AdvLIGO
pair;

• some models, like big bang models and cosmic strings models, predict densities that
lie above the sensitivities predictable with the designed advanced detectors, so it could
become at hand, in the near future (∼ 2019÷ 2021), testing these models.

3.2 Frequency contribution to the SNR

As regards the search for non-standard polarizations, it is interesting to focus on the integrand
in the SNR formula (17).

It contains the contributions to the SNR due to the ORF and to the strain sensitivities of
the two detectors. We plotted the results in Figure 15. Observing it at frequencies just before
the critical frequency, fc = c/2|∆x| ' 19÷51, we can understand which polarization modes are
most likely to be detectable; it turns out that the AdV-AdvLIGO detector pair is well suited
to detect scalar polarization. Then, it could be used at a worth tool in the near-future GW
astronomy for the study of alternative theories of gravity.

3.3 Modes separation

In discussing the detectability of the GW energy densities from non-standard polarization, ΩM
gw,

we just focussed on only one mode and set to 0 the energy density from the others. Actually,
all these three modes are mixed in the detector cross-correlation signal.

The decomposition of the modes is an important issue and can be easily done generaliz-
ing the previous two detector cross-correlation analysis to the case of three (ore more) detec-
tors [Nishizawa et al., 2009].
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For the i-th and the j-th detector, we can define the statistic:

Zij(f) ≡ 20π2

3H2
0T
|f |3s̃i(f)s̃j(f) ≡ ΩT

gw(f)γTij(f) + ΩV
gwγ

V
ij (f) + ΩS

gwγ
S
ij(f) + a noise term. (23)

Assuming once again uncorrelated noise between detector pairs, noise terms average to zero,
and we get 〈Z12〉

〈Z23〉
〈Z31〉

 = Π

 ΩT
gw

ΩV
gw

ξΩS
gw

 (24)

where

Π ≡

γT12 γV12 γS12

γT23 γV23 γS23

γT31 γV31 γS31

 (25)

is a detector correlation matrix. The polarization modes are separable as long as the detector
correlation matrix Π is invertible, that is:

det Π = γT12(γV23γ
S
31 − γV31γ

S
23) + γV12(γS23γ

T
31 − γS31γ

T
23) + γS12(γT23γ

V
31 − γT31γ

V
23) 6= 0 (26)

We can now derive the SNR formula for separate detection of each polarization mode with
three detectors. From the inverse of the previous formula, one can find the cross-correlation
average for the mode M as:

µM =
3H2

0

20π2
T

ˆ +∞

−∞
df |f |−3

[
ηM1(f)〈Z12(f)〉+ ηM2(f)〈Z23(f)〉+ ηM3(f)〈Z31(f)〉︸ ︷︷ ︸

HM
g (f)

Q̃(f) (27)

and a similar formula for the variance:

σ2
M =

T

4

ˆ +∞

−∞
df
[
η2
M1(f)P1(|f |)P2(|f |) + η2

M2(f)P2(|f |)P3(|f |) + η2
M3(f)P3(|f |)P1(|f |)

]︸ ︷︷ ︸
[HM

n (f)]2

|Q̃(f)|2

(28)
where ηMi, forM = T, V, S and i = 1, 2, 3, are the components of the inverse detector correlation
matrix: ηMi ≡ (Π−1)Mi. Then, optimizing their SNR one can find:

SNRM =
3H2

0

10π2

√
T

[ˆ +∞

−∞
df

HM
g

2
(f)

|f |6HM
n

2(f)

]1/2

(29)

Using this formula one can calculate the exact sensitivity to each mode of polarization, in a
three detector correlation analysis.

For simplicity, let us assume that all the three detectors have the same noise power spectrum
P (f). Then, the previous formula can be simplified in

SNRM =
3H2

0

10π2

√
T

[ˆ +∞

−∞
df

ΩM
gw

2
(f)WM(f)

|f |6P 2(f)

]1/2

(30)

where
WM(f) ≡

[
η2
M1 + η2

M2 + η2
M3

]−1 (31)

and
√
WM(f) can be interpreted as an effective overlap reduction function for the mode M

in the case of three detector correlation mode separation. WM is plotted as a function of the
frequency in Figure 16.
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Figure 16: Plot of the squared effective overlap reduction function WM(f) for the AdV -
AdvLIGO(H) - AdvLIGO(L) detector set. Picture adapted from [Nishizawa et al., 2009]. Here
h2

0ΩT
gw = 6.1× 10−9, h2

0ΩV
gw = 1.3× 10−8 and ξh2

0ΩS
gw = 6.0× 10−9.

4 Conclusions

Most alternative theories of gravity have non-standard polarization modes. Tests of these
polarizations, performed through the SGWB searches, is a valuable way of testing alternative
theories of gravity. Cross-correlation analyses, using data from GW detectors, are appropriate
for searching for additional polarization modes.

A network of three or more detectors can (in a model independent way) probe different
polarizations and set constrains on theories beyond GR. We expect that it will possible to test
or, at least, to pose some constrains on some cosmological and astrophysical models with the
next generation advanced detectors.

The timeline of the sensitivities, achievable with the scheduled upgraded strain sensitivities
for the advanced detectors AdV and AdvLIGO, outlines many previsions and possibilities for
the near-future researches on cosmology and astrophysics, and, perhaps, on alternative theories
of gravity.
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