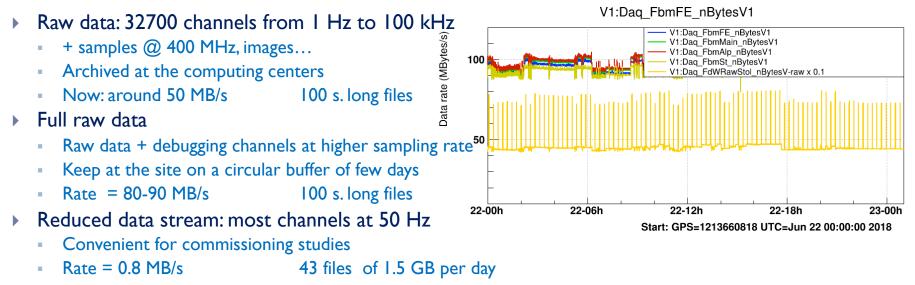

Low Latency data and analysis

h(t) production and online searches


B. Mours (LAPP-Annecy) July 2nd, 2018



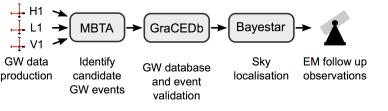
Virgo data and frame format

- Virgo is closer to an accelerator rather than a high energy detector:
 - The primary data stream stream is a continuous stream of channels not events
- Data are organized in frames
 - Frames are a time window (from 1s to hours), containing multiple parallel channels
 - A Virgo frame files
 - Could contains multiple frames
 - Has a Table Of Content for fast single channel access
 - Includes checksums for standalone file verification
 - Include lossless compression algorithms
 - > The frame format is common to all (ground based) GW detectors
 - We have different types of frames, see later
 - Tools to merge frames, make them longer, shorter...
- Events are produced downstream from a small number of channels
 - Small data rate compared to the raw data stream

Main types of data produced by the Virgo DAQ

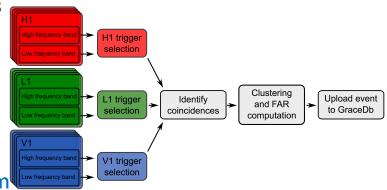

- Trend data stream: min/mean/max/rms @ I Hz
 - Convenient for long term studies or the search
 - Rate = 0.06 MB/s
 I file of 4.6 GB per day to archive
- h(t) frames:
 - The useful stream for event searches
 - Rate = 0.06 MB/s
 43 files archived of 120 MB per day
- 4

h(t) reconstruction


- Runs online to:
 - Provide direct feedback for the detector commissioning/operation
 - Feed online searches for real time alerts
 - Constrains: latency as low as possible: now 20 seconds; to be reduced by a factor 2 for O3.
- Algorithm:
 - Combined multiple input channels (PDs, mirror actuators, ...) to compute h(t)
 - Light CPU resources needed
 - Reprocessing requires reading back the raw data
- Embedded in the online "DAQ" chain
 - Uses the DAQ interfacing toolbox to transfer data (frames) between processes
 - Run on the main DAQ server: takes frames from shared memory
 - Output frames for:
 - "Raw" data stream storage
 - > Detector characterization algorithms thought TCPIP and shared memory frame distribution
 - Online analysis: 4 seconds long low latency frames
 - Offline analysis: 2000 seconds long frames files

h(t) data exchange with LIGO

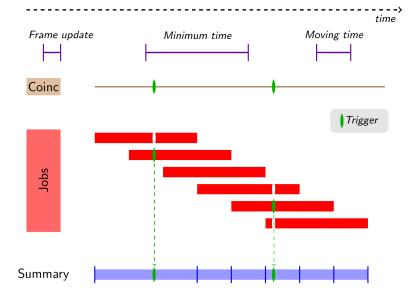
- Virgo h(t) is sent continuously to Caltech
 - Use Virgo DAQ tools for data exchange with LIGO
 - h(t) frames of 4 seconds long
- Receiving LIGO h(t) stream for online analysis running at Virgo
 - Low latency from the data transfer : ~ 2 s.
 - LIGO 4 s. long frame files: 0.4 MB
- Continuous exchange
 - Independent of the detector state
 - Low maintenance service
 - Few restart per year



2000 s. long file are imported by LIGO using LDR

Virgo CBC online search: MBTA

- Virgo developed pipeline to search for Compact Binary Coalescence (CBC)
- Run at Cascina since the first Virgo data taking
 - Was the first pipeline to search online for CBC events and send alert (S6-VSR3)
 - For O2/O3 one of the 3 low latency CBC pipelines
 - Use LIGO and Virgo data
 - Search for HL, HV, LV and HLV triggers
 - Uses the the DAQ tools for data IO
 - Alert produces in less than a minute
- Why running MBTA at the Virgo site?
 - Same software environment as the online system
 - Low latency data access for one of the detector
 - Redundancy with the CIT cluster
 - Pipeline could be monitored by the operators
 - Same control GUI as the Virgo main processes supervision



MBTA and ressources

- Template search on single detectors stream + coincidence step
 - Match filtering technic
 - About 200k templates
 - Use Multi Bands to optimize computation and reduce the number of "real" template used
 - Processing optimize to run on multicore machines to share real templates
 - Larger is the number of core, better is the load balancing for the triggers construction
- Fairly CPU effective
 - For O2: about 3 times more CPUs used for pycbc-live 3 and 10 times more for gstlal-online
 - 6 machines (two CPU with 8 physical cores) needed for a three detectors search in O2.
 - A total of 10 machines were available
 - □ Asked to double it: to run the production + injection stream pipeline + test pipeline
 - Disk space was a also limitation: not enough space to save intermediate products and tests results
 Limited to 60 TB: asked to double it
- Remarks:
 - KAGRA may joint the end of $O3 \rightarrow$ more CPUs might be needed
 - Adding a (semi) coherent step might requires more CPUs
 - The shape of the sensitivity curve add some unknown (more and longer templates?)

A new pipeline for O3: CWB

- Coherent Wave Burst
 - Coherent search of "unmodeled" signals between detectors
- Already running at CIT and AEI for O2
- Study the feasibility of running it a Cascina for triggers with Virgo
 - Use Condor
 - Two machines for zero lag triggers
 - "Several" machines for background
 - On-going tests

