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Abstract
We describe a technique which can be used to simulate numerically the strain h generated by an hy-

pothetical isotropic stochastic background of gravitational waves. The output of the proposed procedures
are a set of correlated time series proportional to the signals detected by a network of gravitational wave’s
detector.

1 Introduction
In order to test the data analysis pipelines and more generally the consistency of detector calibration specifi-
cations it is mandatory to perform software and hardware injections of simulated data. Simulation algorithms
must provide realistic data as much as possible free of artifact. In the case of stochastic signals it is also im-
portant to be able to produce long time series with the correct statistical properties. If the time series length
is large it can be not possible to generate all the data at the same time. Working in the frequency domain
care should be taken in order to avoid introduction of discontinuities between several pieces of data. For an
isotropic and stationary background a simple solution can be implemented using a factorization algorithm, fil-
tering procedures and an overlap and add approach. In the following we will give a coincise description of this
approach.

2 The algorithm
The problem of simulation of the stochastic background signal associated to a network of N gravitational wave
detectors reduces in the isotropic case to the generation of a stationary, Gaussian time series with zero mean

< hA(t) >= 0

and known second order statistic
< hA(t)hB(t′) >= CAB(t− t′)

Here and in the following a capital index labels the detector. In the frequency domain this can be written as

< h̃A(f)∗h̃B(f ′) >= δ(f − f ′)ΓAB(f)

where the positive definite, Hermitian matrix ΓAB can be written as

ΓAB(f) = S(f)γAB(f)

Note that in our case the ΓAB is also real. Let us suppose that, for each value of the frequency f , it is possible
to factorize the array ΓAB as

Γ(f) = Σ̃
+

(f) Σ̃(f) (1)

In this case we can write
h̃A = Σ̃AB(f) η̃B(f)

and
< h̃A(f)∗h̃B(f ′) >= Σ̃∗DA(f)Σ̃BC(f ′) < η̃D(f)∗η̃C(f ′) >

which gives the correct covariance if

< η̃D(f)∗η̃C(f ′) >= δCDδ(f − f ′)

This means that ηA are N uncorrelated white noise time series with unit variance, and that the requested set
of signals can be generated filtering them with an array filter:

hA(t) =

∫ ∞
−∞

ΣAB(t− t′)ηB(t′) dt′

For a practical implementation of this strategy to be possible the support of the kernel ΣAB(t) must be contained
is a reasonably small interval:

ΣAB(t) = 0 t /∈ [−T/2, T/2] .
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This is what we expect on physical grounds when the power spectrum of the stochastic background S(f) is
flat. In this case the correlation between the signals of two different detectors A, B is governed by the Fourier
transform of the overlap reduction function γAB(f), which is zero for delays larger than `AB/c, `AB being the
distance between them.

If S(f) is not flat the situation is more complicated, because long range correlations can be present. However
this problem can be factorized observing that ηAB(f) is proportional to the coherence between the signals, which
does not change when we apply a filter to each signal. In other words it is always possible to write

Γ(f) =
(√

S(f)Σ̃
)+ (√

S(f)Σ̃
)

where Σ̃ is the factorization of γAB and
√
S is a scalar. It follows that hA(t) can be obtained applying the filter

which correspond in the time domain to
√
S(f) to a set of signal generated from a background with flat power

spectrum.

2.0.1 Factorization algorithms

There are several strategies that can be used to obtain the factorization (1). As we are concerned with a
positive definite ΓAB the most obvious possibility is a Cholesky factorization. In this case the matrix Σ is
upper diagonal. For N = 2 it can be expicitly written as

Σ̃ =
√
S

(
1 γ12
0
√

1− γ212

)
and similar, though more and more involved expressions exist for larger N values. For example if N = 3

Σ̃ =
√
S


1 γ12 γ13
0
√

1− γ212
γ23−γ12γ13√

1−γ2
12

0 0
√

1+2γ12γ13γ23−γ2
12−γ2

13−γ2
23

1−γ2
12


However they are really not needed because simple and fast iterative algorithms for Cholesky factorization exist.

A different strategy start from the factorization

Γ = QTDQ

where D is the diagonal matrix with Dii = λi, λi being the i-th eigenvalue of Σ and Q being the orthogonal
matrix with rows equal to the normalized eigenvectors of Σ. In this case we get

Σ = D1/2Q

which in the N = 2 case can be written as

Σ =
√
S

 √
1+γ12

2

√
1+γ12

2√
1−γ12

2 −
√

1−γ12
2

 .

In this case also numerical factorization algorithms exist. This strategy is expected to be a bit more demanding
in terms of computational power, but more numerically stable when correlations between channels are large,
|γAB | ' 1.

2.0.2 Filtering strategy

After evaluating the matrix filter we want to apply we need a strategy for the practical generation of a continuous
stream of data. A standard solution[1] uses the so called overlap and add strategy. Suppose we know that in
the time domain ∀A,B1

ΣAB(k) = 0 k < −L ∪ k > M .

1We switch to the discrete notation here.
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Figure 1: The simulation algorithm. A dashed line represent N buffers. A dotted line represent N output
streams.

This means that in the time domain the signal

s(k) =

 0 k < a
η(k) a ≤ k ≤ b

0 k > b

when filtered becomes different from zero only in the interval [a− L, b+M ]. So we proceed in this way:

1. We initialize a pointer to the output streams: k = 0

2. We fill N buffers of length S with white noise.

3. We pad each buffer with L zeros on the left and M zeros on the right.

4. We convolve with ΣAB . The more efficient way to do this is to work directly in the frequency domain,
transforming each buffer, multiplying by Σ̃ and antitransforming the result, which is added to the buffer
out initially filled with zeros:

outA = outA + F−1
[
Σ̃ABF [inB ]

]
5. Now, we get the S+L+M values in out and we add them to the output streams starting from position k

6. We update the pointer: k = k + S and we repeat the procedure starting from 2.

3 Conclusions
The described algorithms has beed implemented in the NAP library, and used to generate the data for stochastic
background software and hardware injections in VSR1/S5 scientific run.
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