

Simulation of pickoff beams using Zemax

Richard DAY

European Gravitational Observatory

Warning !

In this talk I am presenting the tool.

Simulation results have not been validated or cross-checked

- Need for 3D optical CAD software for Virgo
- Need for understanding where all pickoffs go in the interferometer

Note: none of the software discussed here is a replacement for DarkF, Oscar etc...

Optocad ideal tool for CAD design of interferometer But only $2D \rightarrow$ little chance of becoming 3D in near future

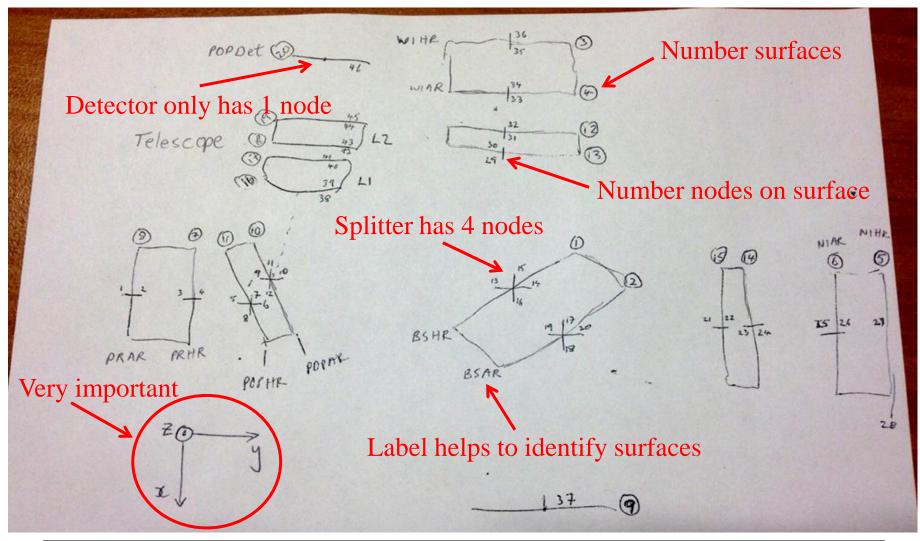
Zemax is a commercial tool with two modes of operation

Non-sequential mode:

Place all optics in 3D. Watch what happens when you send in rays

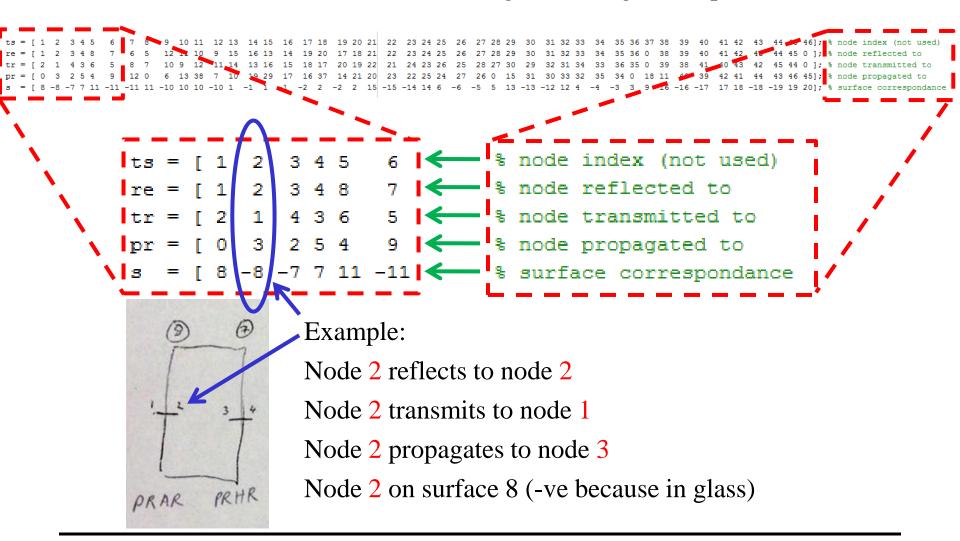
Limited functionality for gaussian beam propagation and aberration analysis

Sequential mode:


Place surfaces in order that beam will encounter them

Very very difficult to design interferometer with pickoffs

Solution


Use Matlab to interface with Zemax in sequential mode to make configurations and extract needed data

First design what you want to simulate

Next we connect nodes and surfaces all together using look-up tables

Next we define the properties of the surface by building a struct for each surface

Sdata(1)	= struct('com',	'BS_HR',	'pos',	BSHR ,	'dir',	BSHRdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	Inf,	'ref'	, 0.5,	'Type',	's',	'diam',	0.550);
Sdata(2)	= struct('com',	'BS_AR',	'pos',	BSAR ,	'dir',	BSARdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	Inf,	'ref'	, 100e-6,	'Type',	'A',	'diam',	0.550);
Sdata(3)	= struct('com',	'WI_HR',	'pos',	WIHR ,	'dir',	WIHRdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	-1420,	'ref',	0.986,	'Type',	'R',	'diam',	0.350);
Sdata(4)	= struct('com',	'WI_AR',	'pos',	WIAR ,	'dir',	WIARdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	1420.2,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(5)	= struct('com',	'NI_HR',	'pos',	NIHR ,	'dir',	NIHRdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	-1420,	'ref',	0.986,	'Type',	'R',	'diam',	0.350);
Sdata(6)	= struct('com',	'NI_AR',	'pos',	NIAR ,	'dir',	NIARdir ,	'ori',	Allori	,'Mp',	··.,	'Mm',	GlassType1,	'roc',	1420.2,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(7)	= struct('com',	'PR_HR',	'pos',	PRHR ,	'dir',	PRHRdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	-1431.4,	'ref',	0.95,	'Type',	's',	'diam',	0.350);
Sdata(8)	= struct('com',	'PR_AR',	'pos',	PRAR ,	'dir',	PRARdir ,	'ori',	Allori	,'Mp',	··.,	'Mm',	GlassType1,	'roc',	3.620,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(9)	= struct('com',	'D_DF',	'pos',	DDF ,	'dir',	DDFdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	Inf,	'ref',	0,	'Type',	'в',	'diam',	0.1);
Sdata(10)	= struct('com',	'POP_AR',	'pos',	POPAR ,	'dir',	POPARdir ,	'ori',	Allori	,'Mp',	···,	'Mm',	GlassType1,	'roc',	Inf,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(11)	= struct('com',	'POP_HR',	'pos',	POPHR ,	'dir',	POPHRdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	Inf,	'ref',	300e-6,	'Type',	's',	'diam',	0.350);
Sdata(12)	= struct('com',	'CPW_W',	'pos',	CPWW ,	'dir',	CPWWdir ,	'ori',	Allori	,'Mp',	··.,	'Mm',	GlassType1,	'roc',	Inf,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(13)	= struct('com',	'CPW_BS',	'pos',	CPWBS ,	'dir',	CPWBSdir ,	'ori',	Allori	,'Mp',	··.,	'Mm',	GlassType1,	'roc',	Inf,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(14)	= struct('com',	'CPN_N',	'pos',	CPNN ,	'dir',	CPNNdir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType1,	'roc',	Inf,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(15)	= struct('com',	'CPN_BS',	'pos',	CPNBS ,	'dir',	CPNBSdir ,	'ori',	Allori	,'Mp',	··.,	'Mm',	GlassType1,	'roc',	Inf,	'ref',	100e-6,	'Type',	'A',	'diam',	0.350);
Sdata(16)	= struct('com',	'L1_POP',	'pos',	L1POP ,	'dir',	L1L2dir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType2,	'roc',	2.188,	'ref',	ο,	'Type',	'T',	'diam',	0.23);
Sdata(17)	= struct('com',	'L1_Det',	'pos',	L1Det ,	'dir',	L1L2dir ,	'ori',	Allori	,'Mp',	··.,	'Mm',	GlassType2,	'roc',	7.3345,	'ref',	ο,	'Type',	ЧΤЧ,	'diam',	0.23);
Sdata(18)	= struct('com',	'L2_POP',	'pos',	L2POP ,	'dir',	L1L2dir ,	'ori',	Allori	,'Mp',	·'',	'Mm',	GlassType2,	'roc',	-2.979,	'ref',	ο,	'Type',	'T',	'diam',	0.23);
Sdata(19)	= struct('com',	'L2_Det',	'pos',	L2Det ,	'dir',	L1L2dir ,	'ori',	Allori	,'Mp',	··,	'Mm',	GlassType2,	'roc',	4.500,	'ref',	ο,	'Type',	'T',	'diam',	0.23);
Sdata(20)	= struct('com',	'POP_Det',	'pos',	POPDet,	'dir',	POPDetdir	,'ori',	Allori	,'Mp',	11,	'Mm',	11 ,	'roc',	Inf,	'ref',	ο,	'Type',	'D',	'diam',	0.1);
									•							-	/			

Comment appearing in Zemax

3D position of centre

Direction vector normal to surface

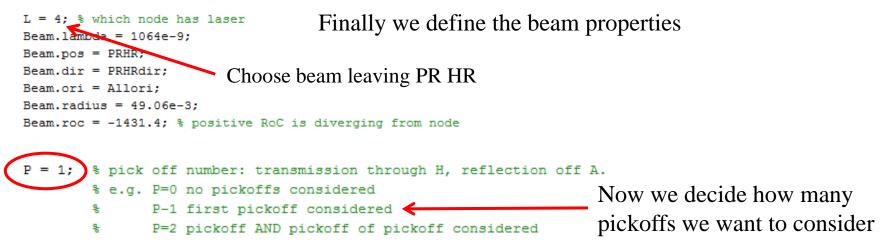
2nd vector that defines plane with direction vector giving orientation

Glass used in Zemax

 ∇

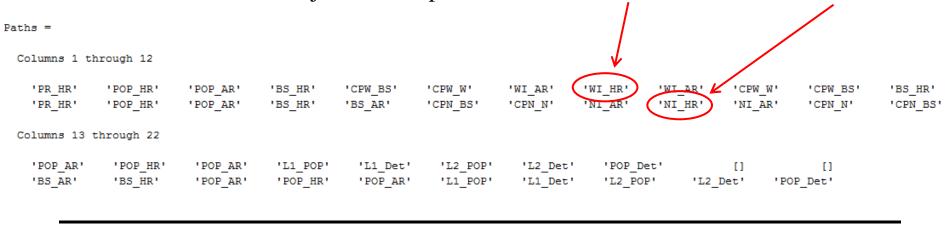
Super important ! Defines how surfaces behave

Stype = ['H' 'A' 'S' 'D' 'T' 'R' 'L' 'B']; % don't change


H=high reflectivity surface.	Main beam reflected. Pickoff beam transmitted
A=antireflection coating.	Pickoff beam reflected. Main beam transmitted
S=beamsplitter.	Main beam reflected. Main beam transmitted
D=detector	
T=perfect transmitter.	No beam reflected. Main beam transmitted
R=perfect reflector.	Main beam reflected. No beam transmitted
L=Laser.	Laser source. No reflection of transmission
B=Beam dump.	Beam dump. No reflection of transmission

웈

읗



Find beam paths

Now algorithm chooses all possible beam paths in optical configuration

If P = 0 is chosen there are just 2 beam paths: reflection of WI and reflection off NI

Find beam paths

If P = 1 is chosen there are 24 beam paths:

Paths =

Columns 1 through 13

'PR HR'	'POP HR'	'POP AR'	'POP HR'	'POP AR'	'BS HR'	'CPW BS'	'CPW W'	'WI AR'	'WI HR'	'WI AR'	'CPW W'	'CPW BS'
'PR_HR'	'POP HR'	'POP_AR'	'POP_HR'	'POP_AR'	'BS_HR'	'BS_AR'	'CPN BS'	'CPN N'	'NI AR'	'NI_HR'	'NI_AR'	'CPN_N'
'PR HR'	'POP HR'	'POP_AR'	'BS HR'	'CPW BS'	'BS HR'	'POP AR'	'POP HR'	'POP AR'	'L1 POP'	'L1_Det'	'L2 POP'	'L2_Det'
'PR_HR'	'POP HR'	'POP AR'	'BS HR'	'CPW BS'	'CPW W'	'CPW BS'	'BS HR'	'POP AR'	'POP HR'	POP AR'	'L1_POP'	'L1_Det'
'PR HR'	'POP HR'	'POP_AR'	'BS_HR'	'CPW_BS'	'CPW W'	'WI_AR'	'CPW W'	'CPW_BS'	'BS_HR'	'POP AR'	'POP_HR'	'POP_AR'
'PR HR'	'POP HR'	'POP_AR'	'BS_HR'	'CPW_BS'	'CPW W'	'WI AR'	'WI HR'	'WI AR'	'WI HR'	'WI_AR'	'CPW W'	'CPW_BS'
'PR HR'	'POP HR'	'POP AR'	'BS HR'	'CPW BS'	'CPW W'	'WI AR'	'WI HR'	'WI AR'	'CPW W'	'WI AR'	'WI HR'	'WI AR'
'PR HR'	'POP HR'	'POP AR'	'BS HR'	'CPW BS'	'CPW W'	'WI AR'	'WI HR'	'WI AR'	'CPW W'	'CPW BS'	'CPW W'	'WI AR'
'PR_HR'	'POP HR'	'POP_AR'	'BS_HR'	'CPW_BS'	'CPW W'	'WI_AR'	'WI_HR'	'WI_AR'	'CPW W'	CPW_BS'	'BS_HR'	'POP_AR'
'PR HR'	'POP HR'	'POP AR'	'BS HR'	'CPW BS'	'CPW W'	'WI AR'	'WI HR'	'WI AR'	'CPW W'	CPW BS'	'BS HR'	'POP_AR'
'PR HR'	'POP HR'	'POP AR'	'BS HR'	'CPW BS'	'CPW W'	'WI AR'	'WI HR'	'WI AR'	'CPW W'	CPW BS'	'BS HR'	'POP_AR'
'PR_HR'	'POP HR'	'POP_AR'	'BS_HR'	'CPW BS'	'CPW W'	'WI_AR'	'WI_HR'	'WI_AR'	CPW W'	CPW BS'	'BS_HR'	'BS_AR'
'PR_HR'	'POP_HR'	'POP_AR'	'BS_HR'	'BS_AR'	'BS_HR'	'BS_AR'	'CPN_BS'	'CPN_N'	'NI AR'	'NI_HR'	'NI_AR'	'CPN_N'
'PR HR'	'POP HR'	'POP AR'	'BS HR'	'BS AR'	'BS HR'	'CPW BS'	CPW W'	'WI AR'	'WI HR'	'WI AR'	'CPW W'	'CPW BS'
'PR_HR'	'POP HR'	'POP_AR'	'BS_HR'	'BS_AR'	'CPN_BS'	'BS_AR'	'BS_HR'	'POP_AR'	'POP_HR'	'POP_AR'	'L1_POP'	'L1_Det'
'PR HR'	'POP HR'	'POP_AR'	'BS_HR'	'BS_AR'	'CPN BS'	'CPN N'	'CPN BS'	'BS_AR'	'BS_HR'	'POP_AR'	'POP_HR'	'POP_AR'
'PR HR'	'POP HR'	'POP AR'	'BS HR'	'BS AR'	'CPN BS'	'CPN N'	'NI AR'	'CPN N'	'CPN BS'	'BS AR'	'BS HR'	'POP AR'
'PR_HR'	'POP HR'	'POP_AR'	'BS_HR'	'BS AR'	'CPN BS'	'CPN N'	'NI AR'	'NI HR'	'NI_AR'	'NI_HR'	'NI_AR'	'CPN_N'
'PR HR'	'POP HR'	'POP_AR'	'BS HR'	'BS_AR'	'CPN BS'	'CPN N'	'NI AR'	'NI HR'	'NI AR'	'CPN N'	'NI_AR'	'NI_HR'
'PR_HR'	'POP HR'	'POP_AR'	'BS HR'	'BS AR'	'CPN BS'	'CPN N'	'NI_AR'	'NI_HR'	'NI AR'	'CPN N'	'CPN BS'	'CPN N'
'PR HR'	'POP HR'	'POP_AR'	'BS_HR'	'BS_AR'	'CPN_BS'	'CPN N'	'NI AR'	'NI HR'	'NI AR'	'CPN N'	'CPN_BS'	'BS_AR'
'PR HR'	'POP HR'	'POP_AR'	'BS HR'	'BS AR'	'CPN BS'	'CPN N'	'NI AR'	'NI HR'	'NI_AR'	'CPN N'	'CPN BS'	'BS_AR'
'PR HR'	'POP HR'	'POP AR'	'BS HR'	'BS AR'	'CPN BS'	'CPN N'	'NI AR'	'NI HR'	'NI AR'	'CPN N'	'CPN BS'	'BS AR'
'PR_HR'	'POP_HR'	'POP_AR'	'BS_HR'	'BS_AR'	'CPN_BS'	'CPN_N'	'NI_AR'	'NI_HR'	'NI AR'	'CPN N'	'CPN_BS'	'BS_AR'
-	-	-	-	-	-	-	-	-	-	-	-	-
Columns 14	through 25											
'BS_HR'	'POP_AR'	'POP_HR'	'POP_AF	' 'L1_POB	'' 'L1_De	et' 'L2_PC)P' 'L2_I	Det' 'POP_	Det	[]	[]	[]

B5_RK	FOF_AR	FOF_RK	FOF_AR	LI_FOF	. TT_Dec.	LZ_FOF	. T5 Dec.	POP_Det	11	11	L J
'CPN_BS'	'BS_AR'	'BS_HR'	'POP_AR'	'POP_HR'	POP_AR	'L1_POP'	'L1_Det'	'L2_POP'	'L2_Det'	'POP_Det'	[]
'POP_Det'	[]	[]	[]	[]	[]	[]	[]	[]	[]	[]	[]
'L2_POP'	'L2_Det'	'POP_Det'	[]	[]	[]	[]	[]	[]	[]	[]	[]
'L1_POP'	'L1_Det'	'L2_POP'	'L2_Det'	'POP_Det'	[]	[]	[]	[]	[]	[]	[]
'BS_HR'	POP_AR	'POP_HR'	'POP_AR'	'L1_POP'	'L1_Det'	'L2_POP'	'L2_Det'	'POP_Det'	[]	[]	[]
CPW_W	CPW_BS	'BS_HR'	'POP_AR'	'POP_HR'	'POP_AR'	'L1_POP'	'L1_Det'	'L2_POP'	'L2_Det'	'POP_Det'	[]
'WI HR'	'WI AR'	'CPW W'	'CPW BS'	'BS HR'	'POP AR'	'POP HR'	'POP AR'	'L1 POP'	'L1 Det'	'L2 POP'	'L2 Det'

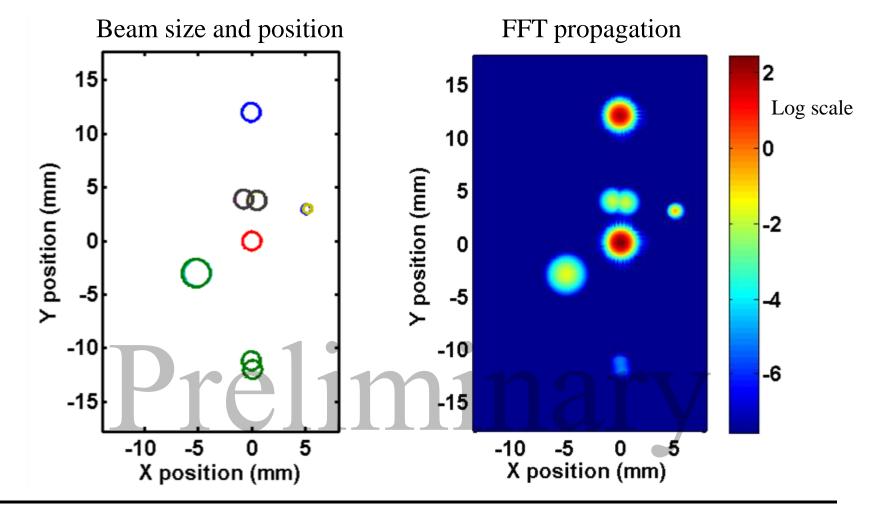
If P = 2 is chosen there are 140 beam paths:

Matlab opens a session in Zemax and builds sequential config for each path Matlab saves configs so user can interact with design using Zemax interface

		E L	ens Data										
		+	\varTheta 🛍 🔸 🤸 🛊 ቅ	• # O	• 쑲 🧲 🔲	😫 🕶 🔿 🌘							
💂 🖊 🗖 🦯 🗕 🗛 🔒 🔝 🖀 😂 3 x 4 • 🕑 St.	andard 🗸 🔞	 Surface 24 Properties Surface 24 Properties Surface 24 Properties 											
			Surf:Type		Comment	Radius	Thickness	Material	Coating	Semi-Diameter			
<u>[]</u>	\rightarrow	5	Stand	ndard 🔻	Beam Start	Infinity	95.116			2.885E-017			
		6	(aper and tilts) Stand	ndard 🔻	POP_HR	Infinity	35.000	SUPR		175.000 U			
		7	(aper and tilts) Stand	ndard 🔻	POP_AR	Infinity	5905.093			175.000 U			
		8	(aper and tilts) Stand	ndard 🔻	BS_HR	Infinity	-5248.102	MIRR		275.000 U			
		9	(aper and tilts) Stand	dard 🔻	CPW_BS	Infinity	-35.000	SUPR		175.000 U			
		10	(aper and tilts) Stand	ndard 🔻	CPW_W	Infinity	-200.000			175.000 U			
Config is sequential		11	(aper and tilts) Stand	ndard 🔻	WI_AR	-1.420E+	-200.000	SUPR		175.000 U			
U 1		12	(aper) Stand	ndard 🔻	WI_HR	-1.420E+	200.000	MIRR		175.000 U			
so surface added		13	(aper and tilts) Stand	ndard 🔻	WI_AR	-1.420E+	200.000			175.000 U			
every time ray hits it		14	(aper and tilts) Stand	ndard 🔻	CPW_W	Infinity	35.000	SUPR		175.000 U			
every time ray fints it	-	15	(aper and tilts) Stand	ndard 🔻	CPW_BS	Infinity	5248.102			175.000 U			
		16	(aper and tilts) Stand	ndard 🔹	BS_HR	Infinity	-5905.093	MIRR		275.000 U			
		17	(aper and tilts) Stand	ndard 🔻	POP_AR	Infinity	-35.000	SUPR		175.000 U			
		18	(aper) Stand	ndard 🔻	POP_HR	Infinity	35.000	MIRR		175.000 U			
		19	(aper and tilts) Stand	ndard 🔻	POP_AR	Infinity	1965.195			175.000 U			
	-	20	(aper and tilts) Stand	ndard 🔻	L1_POP	2188.000	30.000	BK7		115.000 U			
3D Layout	3D Lavout					-7334.500	1.319			115.000 U			
SD Edybac		22	(aper) Stand	ndard 🔻	L2_POP	-2979.000	19.000	BK7		115.000 U			
	Opt	23	(aper) Stand	ndard 🔻	L2_Det	-4500.000	4150.000			115.000 U			
		24	Stand	ndard 🔻	POP_Det	Infinity	0.000			50.000 U			
	Config	25	IMAGE Stand	ndard 🔻		Infinity	-			7.875E-005			

Real power of this approach is capability to automate analysis with Matlab

Easy to access ray data from Zemax for each configuration


- Fine tune tilts and positions of all optics in interferometer using simple loops in Matlab
- Full aberration analysis

Access to gaussian beam analysis tools

- Paraxial gaussian beams
- FFT propagation taking into account geometric aberrations of real optics

Combination of these tools allows us to simulate the pickoffs in CITF

Use telescope on POP (like Virgo+ end bench telescope) Build 24 configurations and for each one run analysis

Developed Matlab script to build sequential configurations in Zemax Simple interface to define optical configuration in 3D Algorithm to determine all possible beam paths Automated configuration analysis allows modeling of pickoffs

But:

Validation of current configurations required

Parabolic mirrors not yet integrated

I will make a version of the script available.

Antonino Chiummo has accepted to be the reference person for the scripts

