Characteristics of the PVC rotor R4-13 for the O4 NCal system VIR-0311A-24

Florian Aubin, Eddy Dangelser, Benoit Mours, Antoine Syx, Pierre Van Hove

IPHC-Strasbourg

March 28, 2024

Contents

1 Introduction 2
2 Measurement method 2
2.1 Thermal effects and density 2
3 Raw measurements of the rotor 2
4 Extracting the geometrical parameters 3
4.1 Thickness 3
4.2 Radius 4
5 Characterization of the rotor using a simple model 5
5.1 Theoretical model of the rotor 5
5.2 Thickness 5
5.3 Radius 6
5.4 Expected NCal signal and uncertainties 6
6 Characterization of the rotor using an advanced model 7
6.1 Thickness 7
6.2 Radius 7
6.3 Counterweights 7
6.4 Opening angles and asymmetry 8
6.5 Expected NCal signals and uncertainties 8
6.5.1 Advanced geometry including chamfers and counterweight 8
6.5.2 Remaining geometry uncertainty 9
6.5.3 Uncertainties 9
A Appendix 11

1 Introduction

This note discusses the metrology of a rotor machined at IPHC from the first batch of PVC material and follows a similar discussion made on the PVC rotor R4-10 in VIR-0203A-24 and the aluminum rotors R4-01 in VIR-0591C-22 and R4-05 in VIR-0859A-22. The drawings and figures of the PVC rotor can be found at the end of the R4-10 technical note. The rotor has been engraved IPHC-R4-13 on one side and painted on the other side.

2 Measurement method

To determine the geometry of the rotor we will use the same method as for R4-10 (see VIR-0203A-24). The thickness was measured using $16 * 2=32$ points for the sectors and $8 * 2=16$ points for the inner part. The outer diameter was measured using $4 * 3=12$ points. The measurement points are shown in fig. 1 . We will use the drawing values for the inner diameter.

Figure 1: Outline of the faces of the rotor with the measurement points. Left is face up, center is face down and right is the side view of the left sector. Sectors have been labelled L for left sector and R for right sector.

The tool used to measure the thickness and the outer diameter is a measuring column "Garant 44 5350_600 HC1" (see VIR-0160A-22) with a given precision of $1.8+\mathrm{L} / 600 \mu \mathrm{~m}$ (L the measured length in mm). Steel reference blocks of 100.000 mm and 90.000 mm (see certificate of inspection provided at the end of this note) were used to check the accuracy of the measuring column, the standard deviation from the nominal values is of the order of the uncertainty of the measuring column ($2 \mu \mathrm{~m}$).

The measuring column was operated on a metrology table with surface defects ranging from 0 to $2 \mu \mathrm{~m}$. The rms of the 16 values is $0.9 \mu \mathrm{~m}$.

We measured the opening angles of the sectors using a video measuring microscope "Garant MM2" (see VIR-0591C-22) with a given precision of $2.9+\mathrm{L} / 100 \mu \mathrm{~m}$ at 95% CL (L the measured length in mm).

2.1 Thermal effects and density

The rotor R4-12 has been machined from the same PVC block (see VIR-0193A-24) as R4-10 described in VIR-0859A-22. As for R4-10 the results will be expressed at a reference temperature of $23 \pm 1.5^{\circ} \mathrm{C}$.

3 Raw measurements of the rotor

This section presents the raw measurements made on the rotor at the ambient temperature of $21.7^{\circ} \mathrm{C}$ for the thickness and $21.4^{\circ} \mathrm{C}$ for the diameter. Table 1 shows the thickness measurements according to the
measurement points defined in fig. 1. The rotor is laying on the table. The rotor surface as well as the table are not perfectly flat. Some space could be present in between that should be substracted when computing the rotor thickness as discussed later.

Measurement point	L sector		Measurement point	R sector	
	Up	Down		Up	Down
a	104.403	104.387	q	104.394	104.392
b	104.404	104.387	r	104.393	104.392
c	104.402	104.393	s	104.396	104.396
d	104.402	104.396	t	104.398	104.398
e	104.412	104.394	u	104.382	104.373
f	104.412	104.395	v	104.382	104.380
g	104.412	104.398	w	104.381	104.383
h	104.412	104.398	z	104.387	104.389
i	101.570	101.424	m	101.565	101.424
j	101.568	101.424	n	101.563	101.423
k	101.566	101.424	o	101.563	101.423
l	101.565	101.424	p	101.564	101.423

Table 1: Raw measurements of the height in mm for each point at $21.7^{\circ} \mathrm{C}$ on L and R sectors of $\mathrm{R} 4-13$.

Table 2 displays the diameter measurements. The measurements were made on $4 * 3$ diameters (three parts of each diameter, the up, middle and down sides of the rotor).

Measurement point	Up	Middle	Down
1	207.768	207.772	207.769
2	207.770	207.773	207.771
3	207.773	207.772	207.771
4	207.774	207.773	207.771

Table 2: Raw measurements of the diameter in mm for each point at $21.4^{\circ} \mathrm{C}$ on $\mathrm{R} 4-13$.

Theoretical values were taken for the inner radius $r_{\text {min }}=29 \mathrm{~mm}$ and the radius for the counterweight $r_{\text {counterweight }}=40 \mathrm{~mm}$ (see drawing at the end of this note).

4 Extracting the geometrical parameters

4.1 Thickness

We need to correct the possible gap between the rotor and the measuring table. Assuming that the table is flatter than the rotor surface we can extract the gap from the measurement of the top surface considering the plane tangents to the highest points (asking them to be on both sectors). For this rotor these points are e, h, q for the $u p$ and f, g, s for the down face (see fig. 1). Using the measurements in table 1 we can compute a plane equation for each side of the rotor in cartesian coordinates:

$$
\begin{equation*}
\text { Up plane equation : } z=104.412 \tag{1}
\end{equation*}
$$

Down plane equation : $z=104.413$

Using eqs. (1) and (2) the gap can be determined, see table 3. The maximum rms of the gap for a sector is $6.5 \mu \mathrm{~m}$.

Measurement point	L sector		Measurement point	R sector	
	Up	Down		Up	Down
a	9	1		q	0

Table 3: Gap computed in $\mu \mathrm{m}$ on up and down sides of both sectors of R4-13.

We can then compute the rotor thickness for each point by removing these gaps. If one of the raw values is lower than the corrected thickness we take this lowest value. The thickness of the inner part is computed by taking into account the air between the closest measurement point on the sector and the measurement point on this part, the average value between up and down is taken as our final value. The value of each point is shown in table 4 at $23^{\circ} \mathrm{C}$.

Measurement point	L sector	Measurement point	R sector
a	104.414	q	104.423
b	104.415	r	104.420
c	104.413	s	104.419
d	104.411	t	104.421
e	104.423	u	104.415
f	104.423	v	104.408
g	104.423	w	104.403
h	104.421	z	104.405
i	98.592	m	98.587
j	98.590	n	98.586
k	98.588	o	98.584
l	98.588	p	98.581

Table 4: Measurements of the thickness in mm for each point at $23^{\circ} \mathrm{C}$ on L and R sectors of $\mathrm{R} 4-13$.

4.2 Radius

Using comparators while the rotor is rotating on its axis we can determine the deformation on both sectors and compute different radii values. Table 5 shows the raw measurements using comparators on L and R sectors. The measurements were made on the up, middle and down sides of L and R sectors using three comparators for a total of $5 * 3 * 2=30$ points (the first and last points are near the edge of the sectors).

Measurement point	L sector			R sector		
	Up	Middle	Down	Up	Middle	Down
A	2	-4	-10	10	4	0
B	0	-2	-10	15	3	0
C	0	-1	-5	20	3	-5
D	0	-1	0	20	2	-10
E	0	0	0	20	0	-12

Table 5: Raw measurements in $\mu \mathrm{m}$ of the comparators for the L and R sectors of R4-13.

The zeroing of the comparators was made arbitrarily close to the edge of the sector. The offsets shown in table 5 are measured relative to this reference.

To compute the radius per measurement point we use the following process: First we compute the mean deformation for one comparator. Then we remove this mean deformation to each measurement of this comparator. The corrected shift value is added to the mean of the associated up, middle or down diameter computed using table 2 at $21.4^{\circ} \mathrm{C}$. This process is repeated for each comparator. The final radius for each point are shown in table 6.

Measurement point	L sector			R sector		
	Up	Center	Down	Up	Center	Down
A	103.879	103.882	103.880	103.887	103.890	103.890
B	103.877	103.884	103.880	103.892	103.889	103.890
C	103.877	103.885	103.885	103.897	103.889	103.885
D	103.877	103.885	103.890	103.897	103.888	103.880
E	103.877	103.886	103.890	103.897	103.886	103.878

Table 6: Radius measurements in mm at $21.4^{\circ} \mathrm{C}$ for the L and R sectors of $\mathrm{R} 4-13$.

5 Characterization of the rotor using a simple model

5.1 Theoretical model of the rotor

Using the analytical strain equation at 2 f shown in eq. (3) with the rotor design parameters at a distance of 1.7 m , an angle to beam axis of 34.7° and a twist angle of 12° we compute a value of $1.1480 \times 10^{-18} /\left(2 f_{\text {rot }}\right)^{2}$.

$$
\begin{equation*}
h_{2 f}(\psi)=\frac{G \rho_{r o t} b \sin (\alpha)\left(r_{\max }^{4}-r_{\min }^{4}\right)}{32 L \pi^{2} f_{2 r o t}^{2}}\left(9 \cos ^{2} \psi \cos \phi+6 \cos \psi \sin \psi \sin \phi\right) \tag{3}
\end{equation*}
$$

When using FROMAGE v1r2 with the same parameters we obtain $1.1415 \times 10^{-18} /\left(2 f_{r o t}\right)^{2}$. The 0.569% between both results is due to the mirror and rotor finite element geometry computed in FROMAGE.
At 2.1 m the difference between the analytical formula and FROMAGE is 0.373% as it converges to the point mass approximation when the distance increases.

5.2 Thickness

A simple model can be used to determine a mean value for the thickness and its uncertainty.
As shown on fig. 1, a total of $16+8=24$ points were used to compute the thickness of each sector.

For the simple model we take the thickness as the mean value of table 4: 104.416 mm at $23^{\circ} \mathrm{C}$. Since we have a limited number of measurement points, to be conservative we take the thickness uncertainty as the rms of table $4(6.7 \mu \mathrm{~m})$ to which we add linearly the metrology table uncertainty $(0.9 \mu \mathrm{~m})$ and the tool uncertainty $(2.0 \mu \mathrm{~m})$. Therefore, for this simple model, the thickness is $104.416 \pm 0.009 \mathrm{~mm}$.

5.3 Radius

For the simple model we take the radius as the mean value of table 6: 103.899 mm at $23^{\circ} \mathrm{C}$. Using a linear sum of the rms of table $6(6.0 \mu \mathrm{~m})$ and the tool uncertainty $(2.2 \mu \mathrm{~m})$ we take an uncertainty of $8.2 \mu \mathrm{~m}$ on the mean radius.

5.4 Expected NCal signal and uncertainties

The simple model geometry used to describe this rotor is represented in fig. 2. As for R4-10 (see section 5.4 of VIR-0859A-22) we take into account the housing space for the counterweights on each side of the rotor as seen in the drawing at the end of the R4-10 technical note, each space is 3 mm thick and 40 mm of radius wide.

Figure 2: Simple model geometry including the counterweight spacings. Left top is a top view, right top is a side view (external sector) and bottom is a tilted view of the rotor.

Using FROMAGE on this geometry we compute the following 2 f strain on the mirror at a distance of 1.7 m , an angle to beam axis of 34.7° and a twist angle of 12° :

- $\operatorname{strain}(2 \mathrm{f})=\frac{1.1362 \times 10^{-18}}{\left(2 f_{\text {rot }}\right)^{2}}$

This last value will be compared to the advanced model.
The uncertainties considered for this model are displayed in table 7.

R4-13 rotor parameter simple model $\left(23^{\circ} \mathrm{C}\right)$		NCal 2f signal uncertainty		
name	value	uncertainty	formula	value (\%)
Density $\rho\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	1442.3	0.2	$\delta \rho / \rho$	0.014
Thickness $b(\mathrm{~mm})$	104.416	9×10^{-3}	$\delta b / b$	0.009
$r_{\max }(\mathrm{mm})$	103.899	8×10^{-3}	$4 \delta r_{\max } / r_{\max }$	0.032
$G\left(\mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2}\right)$	6.67430×10^{-11}	1.5×10^{-15}	$\delta G / G$	0.002
Temperature $T\left({ }^{\circ} \mathrm{C}\right)$	23	1.5	$\left\|\frac{\partial h}{\partial T}\right\| \frac{\Delta T}{h}$	0.024
Quadratic sum				

Table 7: Uncertainties on the amplitude of the calibration signal at 2 f from the $\mathrm{R} 4-13$ rotor simple model geometry.

6 Characterization of the rotor using an advanced model

6.1 Thickness

A more advanced model can be used considering the deformations on the surfaces of the sectors for better accuracy. Each measurement point of table 4 can be considered as a sub-sector with its own thickness.
The uncertainty on this value is more complex to evaluate. As a conservative approach we use the maximum rms of the deviation to a plane for each sector ($6.5 \mu \mathrm{~m}$ see section 4.1) to which we add linearly the uncertainty on the flatness of the measurement table $(0.9 \mu \mathrm{~m})$ as well as the measurement tool ($2.0 \mu \mathrm{~m}$). The total uncertainty on the thickness is $10.4 \mu \mathrm{~m}$.

6.2 Radius

On fig. 1 we divided the external sectors in 4 sub-sectors for each sector (blue points). We convert the point of table 6 to the grid of fig. 1 by averaging the two closest values and converting them to $23^{\circ} \mathrm{C}$. The results are shown in table 8 . We notice that the R sector is on average $7 \mu \mathrm{~m}$ larger than the L sector.

Radius	L sector			R sector		
	Up	Center	Down	Up	Center	Down
1	103.891	103.896	103.894	103.903	103.903	103.904
2	103.890	103.898	103.896	103.908	103.902	103.901
3	103.890	103.898	103.901	103.910	103.902	103.896
4	103.890	103.899	103.904	103.910	103.900	103.893

Table 8: Radius measurements (in mm at $23^{\circ} \mathrm{C}$) for the L and R sectors of $\mathrm{R} 4-13$.

The rms of the radii is $5.9 \mu \mathrm{~m}$. The tool uncertainty is $2.2 \mu \mathrm{~m}$. Like for the thickness we use a linear sum and find the uncertainty on both radii to be $8.1 \mu \mathrm{~m}$.

6.3 Counterweights

A pair of counterweights have been designed to reduce the unbalance of the rotor using the same method as R4-10 in section 6.3 of VIR-0203A-24. These counterweights are made of PVC ($\rho_{\text {PVC }}=1442.3 \mathrm{~kg} . \mathrm{m}^{-3}$).

Figure 3 shows the geometry of the machined counterweights to balance the rotor with a material cut following a chord of 60.36 mm (see black areas on fig. 3). the disk on the left was designed so the motor would fit in its center, the disk on the right fits the axle of the rotor. The thickness of the disks is 3 mm , with
an outer radius measuring 40 mm . On the motor side, the inner radius of the disk is 21.75 mm , while on the axle side, it measures 10 mm .

Figure 3: Outline of the counterweights for R4-12. The black areas represents the material removed.

6.4 Opening angles and asymmetry

The opening angles of the full and empty sectors have been measured using a video microscope with the same method as for R4-01.

The measurements are shown in table 9. The center value corresponds to the mean of up and down measurements.

Opening angle	Up	Center	Down
L	1.57098	1.57055	1.57013
R	1.57085	1.56982	1.56879
L-R	1.57099	1.57083	1.57066
R-L	1.57037	1.57198	1.57359

Table 9: Opening angle measurements in rad for the L, R full sectors and L-R, R-L empty sectors of R4-13.

These measurements allow us to compute the signal with different opening angles and an asymmetry between the sectors. These measured opening angles will be included in the advanced model described in the next section.

Using FROMAGE on the advanced rotor geometry we can compare the effects of the opening angles between perfectly symmetrical sectors and the values of table 9 . This gives a relative difference below 0.001% on the rotor signal at 2 f .

The uncertainty on $\alpha=0.2 \mathrm{mrad}$ is the same as for R4-01, we use FROMAGE to propagate it on the measurements shown in table 9 and find a relative deviation below 0.001% on the rotor signal at 2 f . This value will be taken as the opening angle and asymmetry uncertainty.

6.5 Expected NCal signals and uncertainties

6.5.1 Advanced geometry including chamfers and counterweight

The geometry used to describe the rotor as an advanced model is represented in fig. 4. The external parts of the sectors are divided in 3 sub-sectors each to correspond to the different radii determined. In addition we
include the counterweight, the opening angles and asymmetry of the sectors. The screws and screw holes are not taken into account since they are placed symmetrical they should not impact the 2 f signal.

Figure 4: Advanced model geometry used to describe the rotor. Top left is a front view, top right is a side view (external sub-sectors) and bottom is a tilted view of the sectors. Only the 4 external part sectors are divided in 3 sub-sectors each. The chamfers are visible on the inner radius.

Using FROMAGE at a distance of 1.7 m , an angle of 34.7° and a twist of 12° on this geometry gives the following strains:

- $\operatorname{strain}(1 f)=\frac{3.9633 \times 10^{-20}}{\left(1 f_{\text {rot }}\right)^{2}}$
- $\operatorname{strain}(2 f)=\frac{1.1361 \times 10^{-18}}{\left(2 f_{r o t}\right)^{2}}$

The relative deviation to the simple model at 2 f is 0.009%.

6.5.2 Remaining geometry uncertainty

Other geometrical defects are probed by the remaining 1f signal computed with the advanced geometry as described for the rotor R4-01 (see section 7.5.4 of VIR-0591C-22). For this rotor the 1 f signal is 2 times smaller than for R4-01. Nevertheless we will use the $5 \times 10^{-4} \%$ R4-01 remaining geometry uncertainty as a conservative approach.

6.5.3 Uncertainties

To set an uncertainty on the strain(2f) from the description of the geometry we take the difference between the simple model $\left(\operatorname{strain}(2 \mathrm{f})=1.1362 \times 10^{-18} /(2 f)^{2}\right)$ and the advanced model $(\operatorname{strain}(2 \mathrm{f})=1.1361 \times$ $\left.10^{-18} /(2 f)^{2}\right)$. This deviation of 0.009% is reported in table 10 as modelling uncertainty.

VIR-0311A-24 Characteristics of the PVC rotor R4-13 for the 04 NCal system
The uncertainties considered for this full model are displayed in table 10. We point out that the elongation of the material caused by the rotation is not taken into account in this technical note.

R4-13 rotor parameter advanced model ($23^{\circ} \mathrm{C}$)			NCal 2f signal uncertainty	
name	mean value	uncertainty	formula	value (\%)
Density ρ (kg.m ${ }^{-3}$)	1442.3	0.2	$\delta \rho / \rho$	0.014
Thickness b left sector (12 sub-sectors) (mm) Thickness b right sector (12 sub-sectors) (mm)	$\begin{aligned} & 104.418 \\ & 104.414 \end{aligned}$	1.0×10^{-2}	$\delta b / b$	0.010
$r_{\text {max }}$ left sector (12 ext sub-sectors) (mm) $r_{\text {max }}$ right sector (12 ext sub-sectors) (mm)	$\begin{aligned} & 103.896 \\ & 103.903 \end{aligned}$	8×10^{-3}	$4 \delta r_{\text {max }} / r_{\text {max }}$	0.031
$G\left(\mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} . \mathrm{s}^{-2}\right)$	6.67430×10^{-11}	1.5×10^{-15}	$\delta G / G$	0.002
Temperature $T\left({ }^{\circ} \mathrm{C}\right)$	23	1.5	$\left.\frac{\partial h}{\partial T} \right\rvert\, \frac{\Delta T}{h}$	0.024
Modelling Uncertainty				0.009
FROMAGE grid uncertainty				0.005
Opening angle and sector asymmetry uncertainty				0.001
Remaining geometry uncertainty				$<5 \times 10^{-4}$
Total uncertainty from the rotor (quadratic sum)				0.044

Table 10: Uncertainties on the amplitude of the calibration signal at 2 f from the $\mathrm{R} 4-13$ rotor advanced model geometry at $23^{\circ} \mathrm{C}$.

A Appendix

\#\#\# This is a cfg file for a more realistic geometry of the mirror and the Virgo NCal R4-13 (2024)
\#\#\# ALL THE OBJECTS ARE DEFINED IN THE MIRROR'S FRAME ($0, \mathrm{x}, \mathrm{y}, \mathrm{z}$),
\#\#\# with 0 the center of the mirror, x axis along the ITF's beam toward the beam-splitter,
\#\#\# y axis orthogonal to x in the plane of the ITF,
\#\#\# z axis orthogonal to the plane of the ITF upward
\#\#\# MIRROR DEFINITION
GRID_SIZE 12308

CYLINDER 2202. 00.1750 .2360000
GRID_SIZE 111
\# Defining the flats on the edge of the mirror
CUT_CYL 2202. 0.1750 .20 .0500
CUT_CYL 2202. 0.1750 .20 .050180
\# Defining the ears and anchors of the mirror
CUBOID 2202. $0.0900 .0100 .01500000001782-0.0125$
CUBOID 2202. 0.090 0.010 0.015 0 0 -0.1782 -0.0125
CUBOID 2202. 0.0390 .008 0.008 -0.02 -0.1772 -0.024
CUBOID 2202. 0.039 0.008 0.008-0.02 $0.1772-0.024$
CUBOID 2202. 0.039 0.008 0.008 $0.02-0.1772-0.024$
CUBOID 2202. $0.0390 .008 \quad 0.008 \quad 0.02 \quad 0.1772-0.024$
\#\#\# ROTOR DEFINITION: CYLINDER DENSITY INNER_RADIUS OUTER_RADIUS THICKNESS OPEN_ANGLE r z theta
ROTOR_CYLINDRICAL $1.7 \quad 34.7 \quad 0 \quad 0 \quad 12$
\#\#\# COUNTERWEIGHT AXLE
GRID_SIZE 81714
CYLINDER 1442.30 .0100 .0400 .00336000 .0507961262640
GRID_SIZE 111
CUT_CYL 1442.30 .0400 .0030 .060360 .050796126264314 .8
\#\#\# COUNTERWEIGHT MOTOR
GRID_SIZE 81714
CYLINDER $1442.3 \quad 0.02175 \quad 0.040 \quad 0.003 \quad 3600-0.0507961262640$
GRID_SIZE 111
CUT_CYL $1442.30 .0400 .0030 .06036-0.050796126264314 .8$
\# TRES RAPIDE
\#GRID_SIZE 444
\# RAPIDE
GRID_SIZE 81714
\# LENT
\#GRID_SIZE 86540
\#\#\# L sector
\#\# Inner part
OUTER_FILLET 1442.30 .0290 .09859200 .01 -11.2483 146.2552

```
CYLINDER 1442.3 0.029 0.04 0.098592 22.4965 O 0 146.2552
CYLINDER 1442.3 0.029 0.04 0.098590 22.4965 O 0 168.7517
CYLINDER 1442.3 0.029 0.04 0.098588 22.4965 0 0 191.2483
CYLINDER 1442.3 0.029 0.04 0.098588 22.4965 0 0 213.7448
OUTER_FILLET 1442.3 0.029 0.098588 0 0.01 11.2483 213.7448
## Middle part
CYLINDER 1442.3 0.04 0.072 0.104423 22.4965 0 0 146.2552
CYLINDER 1442.3 0.04 0.072 0.104423 22.4965 0 0 168.7517
CYLINDER 1442.3 0.04 0.072 0.104423 22.4965 0 0 191.2483
CYLINDER 1442.3 0.04 0.072 0.104421 22.4965 0 0 213.7448
## Outer part
CYLINDER 1442.3 0.072 0.103891 0.034804619304 22.5026 0 0.034804619304 146.2460
CYLINDER 1442.3 0.072 0.103896 0.034804619304 22.4965 0 0 146.2552
CYLINDER 1442.3 0.072 0.103894 0.034804619304 22.4904 0 -0.034804619304 146.2644
CYLINDER 1442.3 0.072 0.103890 0.034804952672 22.5026 0 0.034804952672 168.7487
CYLINDER 1442.3 0.072 0.103898 0.034804952672 22.4965 0 0 168.7517
CYLINDER 1442.3 0.072 0.103896 0.034804952672 22.4904 0-0.034804952672 168.7548
CYLINDER 1442.3 0.072 0.103890 0.034804285936 22.5026 0 0.034804285936 191.2513
CYLINDER 1442.3 0.072 0.103898 0.034804285936 22.4965 0 0 191.2483
CYLINDER 1442.3 0.072 0.103901 0.034804285936 22.4904 0-0.034804285936 191.2452
CYLINDER 1442.3 0.072 0.103890 0.0348036192 22.5026 0 0.0348036192 213.7540
CYLINDER 1442.3 0.072 0.103899 0.0348036192 22.4965 0 0 213.7448
CYLINDER 1442.3 0.072 0.103904 0.0348036192 22.4904 0-0.0348036192 213.7356
### R sector
## Inner part
OUTER_FILLET 1442.3 0.029 0.098587 0 0.01 11.2430 33.7623
CYLINDER 1442.3 0.029 0.04 0.098587 22.4860 0 0 33.7623
CYLINDER 1442.3 0.029 0.04 0.098586 22.4860 0 0 11.2763
CYLINDER 1442.3 0.029 0.04 0.098584 22.4860 0 0 348.7903
CYLINDER 1442.3 0.029 0.04 0.098581 22.4860 0 0 326.3042
OUTER_FILLET 1442.3 0.029 0.098581 0 0.01 -11.2430 326.3042
## Middle part
CYLINDER 1442.3 0.04 0.072 0.104423 22.4860 0 0 33.7623
CYLINDER 1442.3 0.04 0.072 0.104420 22.4860 0 0 11.2763
CYLINDER 1442.3 0.04 0.072 0.104419 22.4860 0 0 348.7903
CYLINDER 1442.3 0.04 0.072 0.104421 22.4860 0 0 326.3042
## Outer part
CYLINDER 1442.3 0.072 0.103904 0.034804952672 22.5007 0 0.034804952672 33.7843
CYLINDER 1442.3 0.072 0.103903 0.034804952672 22.4860 0 0 33.7623
CYLINDER 1442.3 0.072 0.103899 0.034804952672 22.4713 0-0.034804952672 33.7402
CYLINDER 1442.3 0.072 0.103903 0.034802619096 22.5007 0 0.034802619096 11.2836
CYLINDER 1442.3 0.072 0.103904 0.034802619096 22.4860 0 0 11.2763
CYLINDER 1442.3 0.072 0.103902 0.034802619096 22.4713 0 -0.034802619096 11.2689
CYLINDER 1442.3 0.072 0.103902 0.034800952256 22.5007 0 0.034800952256 348.7829
CYLINDER 1442.3 0.072 0.103905 0.034800952256 22.4860 0 0 348.7903
```

CYLINDER 1442.30 .0720 .1039010 .03480161899222 .5007000 .034801618992326 .2822
CYLINDER 1442.30 .0720 .1039050 .03480161899222 .486000326 .3042
CYLINDER $1442.30 .0720 .1039060 .03480161899222 .471300-0.034801618992326 .3263$
\#\#\# GENERAL PARAMETERS

STEP 22.516
ARM_LENGTH 3000

SIGNAL 2

