Advanced Virgo Commissioning

Gabriele Vajente

LSC-Virgo meeting – Rome September 11th 2012

Outline of the talk

What's inside

- Expected tough points in AdV commissioning
- Staging of installations to speed up partial commissioning
- Early ITF configurations to stage commissioning activities
- What configuration for early science runs?
- Some thoughts on the commissioning organization

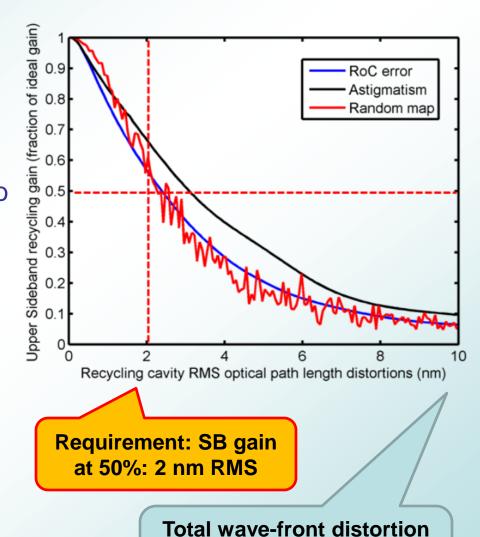
What's not inside

- A timeline for the commissioning of AdV
- Evolution of the sensitivity in the coming years

<u>Disclaimer:</u>

Most of the ideas shown in this talk have not been widely discussed within the Virgo collaboration yet

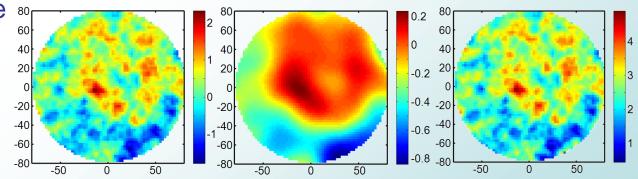
Take this talk as a trigger to start working on the AdV commissioning organization



WHAT DIFFICULTIES DO WE EXPECT IN ADV COMMISSIONING?

Sideband aberrations – problem

- Mirror cold defects and thermal effects will induce large aberrations in the RF sideband fields
 - In AdV this is very relevant due to marginally stable recycling cavities (AdV will be more degenerate than Virgo/Virgo+)
- Both axisymmetric and non-axisymmetric contributions are relevant
- This put since the beginning (and even with low input power) the TCS in the front line


(in cold state) in recycling

cavity will be 10 nm RMS

Sideband aberrations - strategy

- We foresee an additional, high frequency, modulation that will be less sensitive to defects: we will be able to control the ITF even in presence of large defects
- TCS is being carefully designed, based on Virgo+ experience
 - Phase cameras to sense the fields (proved to be very useful in Virgo+)
- Hartmann sensors to measure and actively cancel the thermal lensing
- Double axicon CO2 projector and scanning system for complete correction on input mirror compensation plates
- being carried out to
 understand how to best
 use ITF signals (and
 images) to characterize
 sideband aberrations

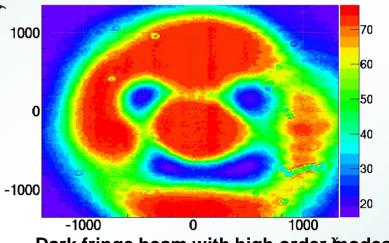
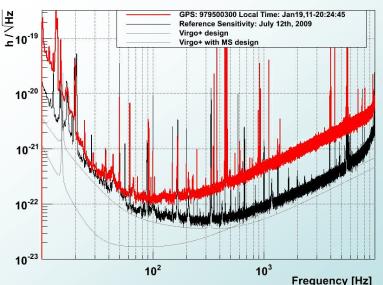


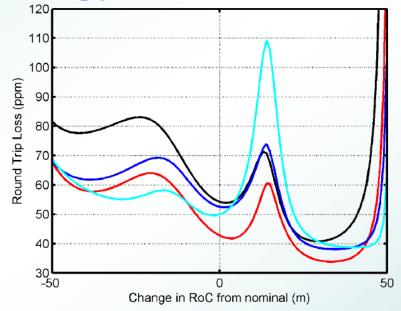
Figure 6.47: FOG simulation. Left: common aberration in recycling cavity (color scale in nm). Middle: phase difference between upper sideband and carrier (color scale in rad). Right: Resulting aberration map after filtering phase difference map (color scale in nm). Horizontal and vertical scales in mm.



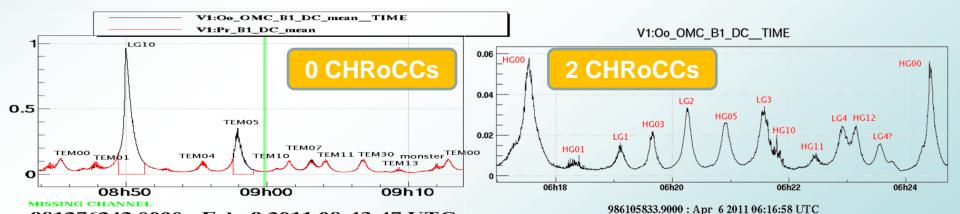
Carrier defects – problem

- In Virgo+ we had many troubles due to arm cavity asymmetries:
 - Radius of Curvature asymmetries generating high order modes reaching the dark fringe
 - High losses asymmetry spoiling the contrast defect
 - Finesse asymmetry
- Even in Advanced Virgo, coupling of laser frequency and power noises put stringent requirements on losses and finesse asymmetries
- High order modes at dark fringe create problems to alignment signals
- In AdV the modes of 8th order are close to resonance

Dark fringe beam with high order modes



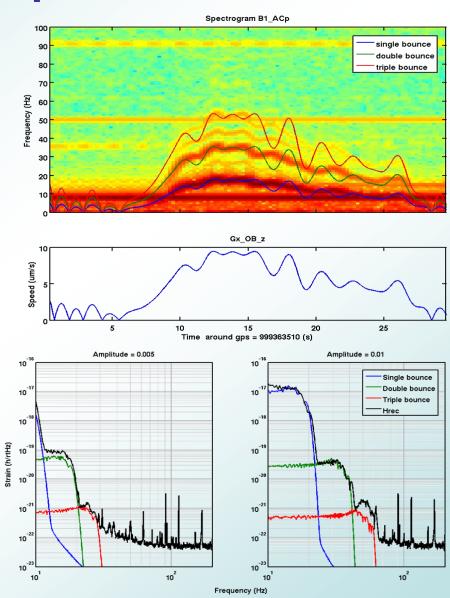
Some early Virgo+ sensitivity limited by frequency noise due to too large losses asymmetries



Carrier defects - strategy

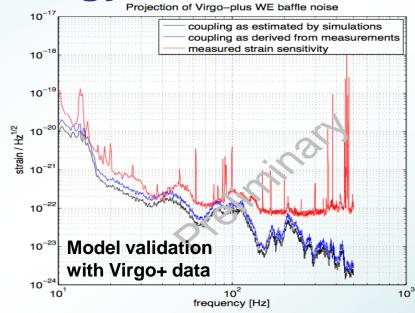
- Obvious thing: mirror surfaces must be as good as possible (coating is playing an important role)
- Ring heaters to fine tune RoCs (and possibly improve losses)
- We can optimize the contrast defect by applying a RoC asymmetry (done in Virgo+)
- Input mirror have parallel surface to tune cavity finesse using etalon effect
- Do we need some way to fine tune mirror shapes during operations?

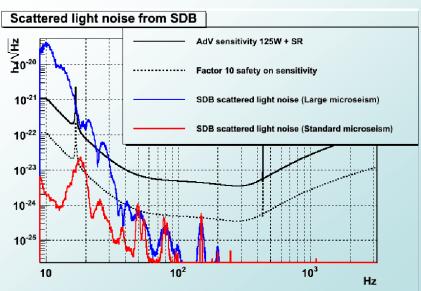
Round trip losses in AdV as a function of the RoC deviation from nominal value


981276242.0000 : Feb 9 2011 08:43:47 UTC

Dark fringe beam content analyzed doing a scan of the OMC

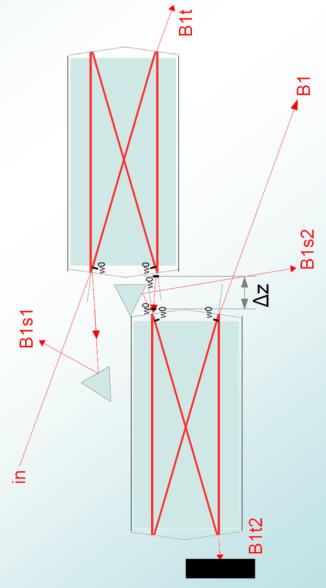
Scattered light - problem


- All first generation detectors suffered from scattered light
- We learnt a lot during Virgo/Virgo+ commissioning
- Beams reflected by secondary surfaces of core optics
- Light scattered and reflected by auxiliary optics (in particular anti-symmetric port high order modes)
- Light scattered by out-ofvacuum, not isolated objects



Scattered light - strategy

- All experience went into the AdV design (lot of simulations)
 - Suspended baffles integrated in payloads around each core optic
 - Careful evaluation of scattered light from input and output telescopes (need to control benches w.r.t. ITF)
 - Critical photodiodes are in vacuum and seismically isolated
- However, scattered light is the most tricky noise source
- We must be ready for quick actions (like changing part of telescope optics if in doubt)

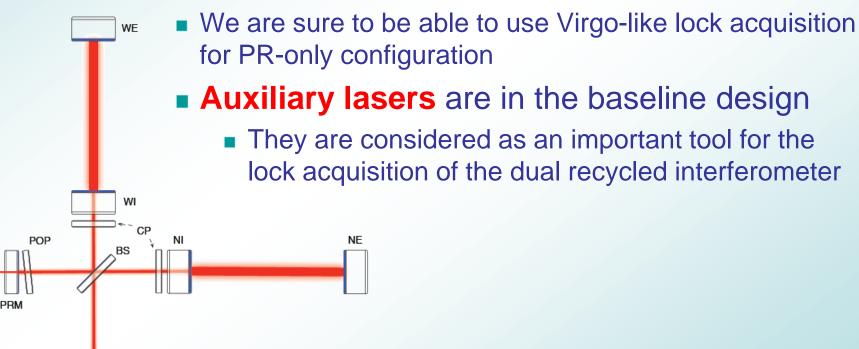

DC read-out

New technology for us

- New electronic for photodiode readout
- Photodiode under vacuum
- Power stabilization
- OMC has very stringent requirements for sidebands and HOMs filtering
 - It was chosen to have two OMCs in series
 - Difficult from the point of view of relative alignment, matching, losses, scattered light
 - Allows to maintain Virgo-like technology

Frequency [MHz]	PR 25 W	SR~25~W	SR 125 W
6	1/120	1/7	1/36
56	1/1700	1/460	1/2300

Sideband filtering requirements



SRM

Signal recycling

- Design of steady state control configuration of detuned SRC completed
 - Broad-band configuration is being studies, hear more later
- Started working on lock acquisition, so far no clear if Virgo-like variable finesse is doable

HOW CAN WE STAGE THE INSTALLATIONS TO SPEED UP COMMISSIONING?

Early subsystems

Suspensions and payloads

- No big differences in suspensions w.r.t. Virgo+ (some retuning to allow different weight of the payload, some additional filters added to short superattenuators)
- Payloads will be new, as well as the interface between payload and suspension: some re-commissioning of the controls will be needed.
- Injection system will be the first subsystem online
 - There will be plenty of commissioning to do:
 - Frequency stabilization on IMC
 - IMC control (local and global)
 - RFC lock
 - Input power control system and power stabilization
 - There will be some time before laser is really needed, good to (re) train commissioning group (hear more later)
- We will likely start with the Virgo+ laser amplifiers (60W available before IMC)

Intermediate configurations

- Organize installation to have first one full arm
 - Need everything on the arm: test masses, suspensions, vacuum links, cryotraps, end detection benches (possible also to have them simply sitting on ground, not yet seismically isolated)
 - But also need PR mirror (is part of the input telescope) and BS mirror (beam shift)
 - We might work without detection benches at anti-symmetric port
- We will be able to
 - Validate suspensions, payloads and local controls
 - Learn how to lock a 450 finesse cavity
 - Characterize mirror radii of curvature, losses, finesse, etc...
 - Use it to test auxiliary sensors (phase camera, Hartmann, etc...)
 and actuators (ring heaters, etalon control, etc...)
 - Characterize input beam control
- Lock the second arm quickly

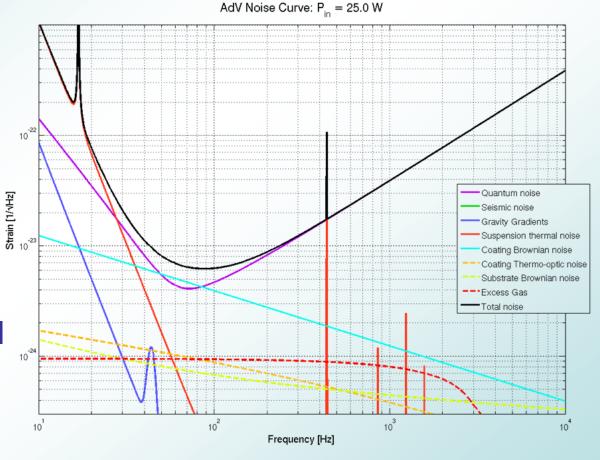
Power recycled configuration

- Second step is to commission power recycled interferometer
 - We know how to lock and control it
- To make PR configuration work we will have to
 - Characterize and correct sideband aberrations due to mirror defects (start at low input power)
 - Characterize and compensate thermal effects (present even when at low/moderate input power)
 - Make DC readout and OMCs work
 - Characterize and possibly correct or compensate losses asymmetries, high order modes at dark port, etc...

AR-coated SR mirror is needed, being part of the output matching telescope

Working with PR configuration is very useful: it is a simpler configuration (w.r.t. dual recycled) but with most of the main problems we are expecting!

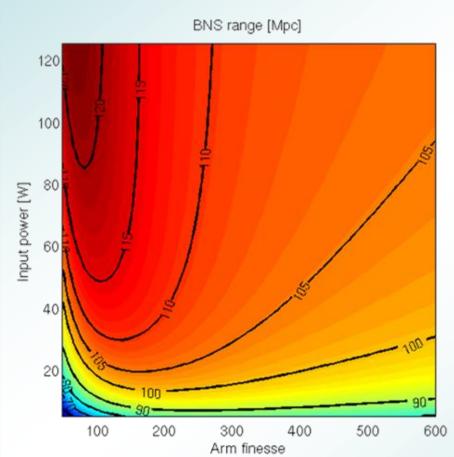
Power recycling potentiality

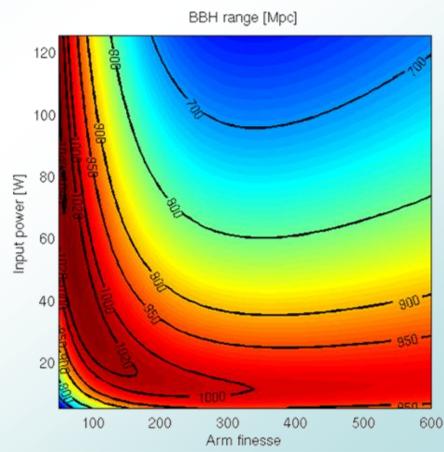

 PR configuration at 25W input power could reach good low frequency sensitivity and 106 Mpc BNS / 970 Mpc

BBH

 Enough sensitivity to see and track down scattered light

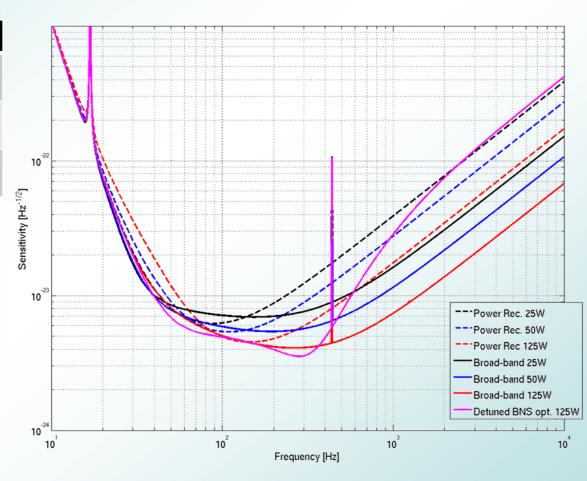
Enough sensitivity for first science
 runs


Remove all control issues related to SR cavity



Power recycling potentiality

- Increasing the power in PR configuration helps a bit for BNS, but not for BBH
- Not really worth to go above 50 W input power
 - We don't need the 200W amplifier since the beginning

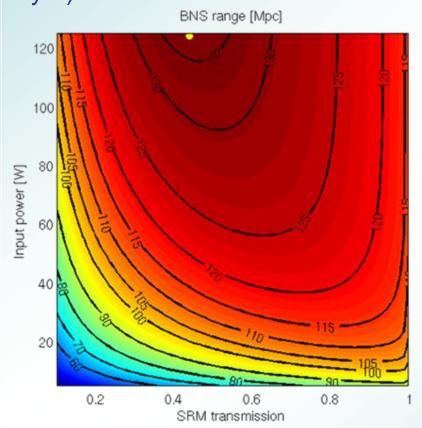


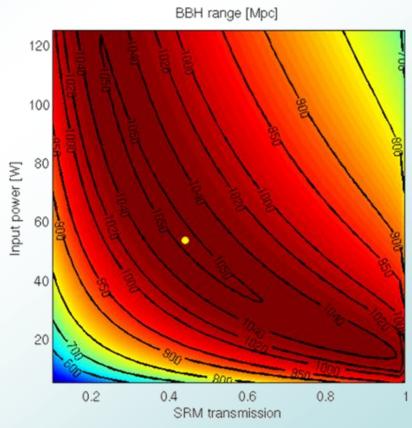
Configurations comparison

BNS	25 W	50 W	125 W
Power recycled	106	110	112
Broad band	106	121	133
Detuned NS optim	126		142

ввн	25 W	50 W	125 W
Power recycled	974	867	669
Broad band	1005	1050	986
Detuned NS optim	1217		1120

Moving to dual recycled


- It makes sense only after the main problems have been tackled in PR configuration
 - Sideband aberrations, arm cavity asymmetries, scattered light, DC-readout, OMC, etc...
 - If these things are working in PR configuration, they will be (almost) identically working in dual recycled one
- We might foresee one or two stops, after first science run(s) for the upgrade to dual recycling
 - Install SR mirror and laser power amplifier
 - Install SR mirror and only later laser power amplifier
- What configuration for signal recycling?



Broad-band optimization

- Best choice in broad-band configuration is SR transmission 45%
- Could achieve 132 Mpc BNS and 1050 Mpc BBH

If SR reflectivity is lower, control should be easier (not studied in detail yet)

SOME THOUGHTS ON THE COMMISSIONING ORGANIZATION

What do we need?

- We must be fast and efficient when AdV will be completely installed
 - Otherwise AdV commissioning will add delay
- Therefore, when construction will end we need a core group ready to work and already having some experience
 - Keep involved and motivated those people that commissioned Virgo/Virgo+
 - Involve new people (PhD, Post-docs) and train them (old commissioners might not be able to devote 100% to commissioning any more)
 - Learning curve is steep (one year to understand what's happening around you...)
 - People should spend time at the site

How to get it?

- Now is the right moment to start:
 - Ensure experienced people are present and motivated
 - Commit new people (Ph.D. students, post-doc) to commissioning
 - Start right now with a partial (50%) commitment, to be increased when needed
- Must profit of all subsystems that will be ready early
 - Involve the group in commissioning of, for example, injection system
 - Might slow down subsystem commissioning, but this is not a problem
 if not in the critical path
- Use all prototypes to train new people
 - Will provide fresh manpower to labs running the prototypes, speeding up their work
 - Will allow some experimental work before AdV is ready
- Reinforce Virgo-LIGO-GEO collaboration
 - Informal meetings and people exchange will be good for everyone

CONCLUSIONS

Conclusions

- Commissioning of Advanced Virgo will be a difficult job
 - We foresaw at design all the solutions we could devise for all known tough points
- Proper staging of the installations
 - To be able to commission subsystems that are ready early
 - It will be a good occasion to train new people that must be a significant part of the (to be formed) commissioning group
- Power recycled configuration will be very useful
 - We might spend a significant amount of time with it
 - It is a simple (from control point of view) configuration where many of the main difficulties are already there
 - It has a non negligible science potential
- Dual recycled will come later
 - We are considering to change over to broad band (at least as a first configuration)