Real Time Control Of Suspended Masses In Advanced VIRGO Laser Interferometer

Alberto Gennai for the VIRGO Collaboration

20th Real Time Conference 5-10 June 2016 Padova, Italy

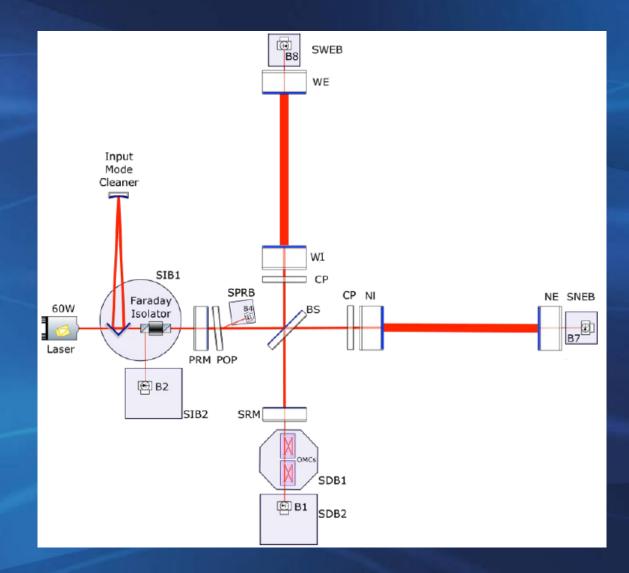
Virgo is a laser interferometer designed to detect and observe gravitational waves. It is operated in Cascina, near Pisa on the site managed by the consortium European Gravitational Observatory (EGO), by an international collaboration of scientists from France, Italy, the Netherlands, Poland, and Hungary

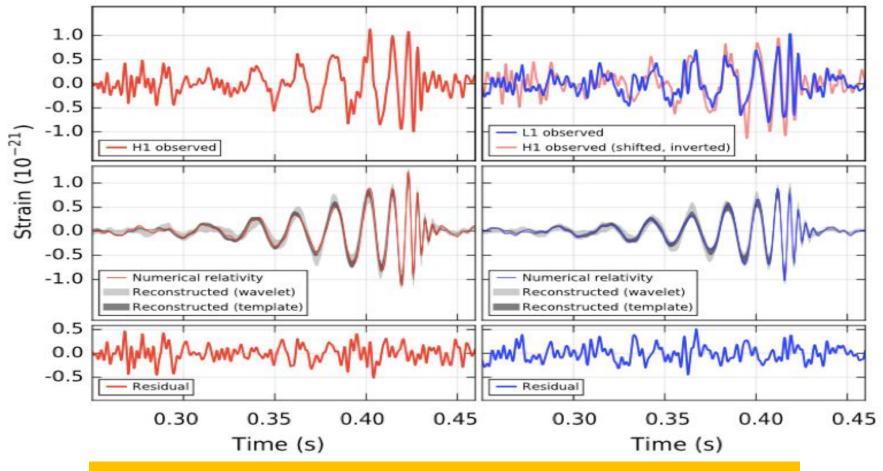
MOMVIK

CINIS

INFN

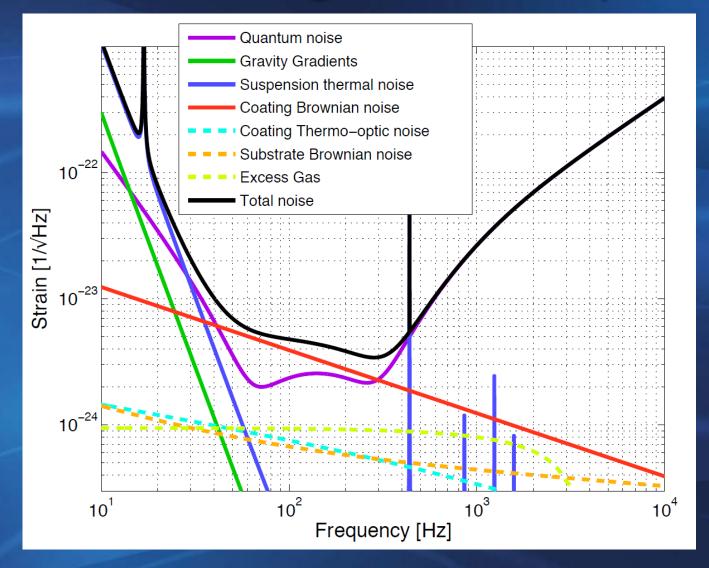
Istituto Nazionale di Fisica Nucleare White the first of the second states and all the

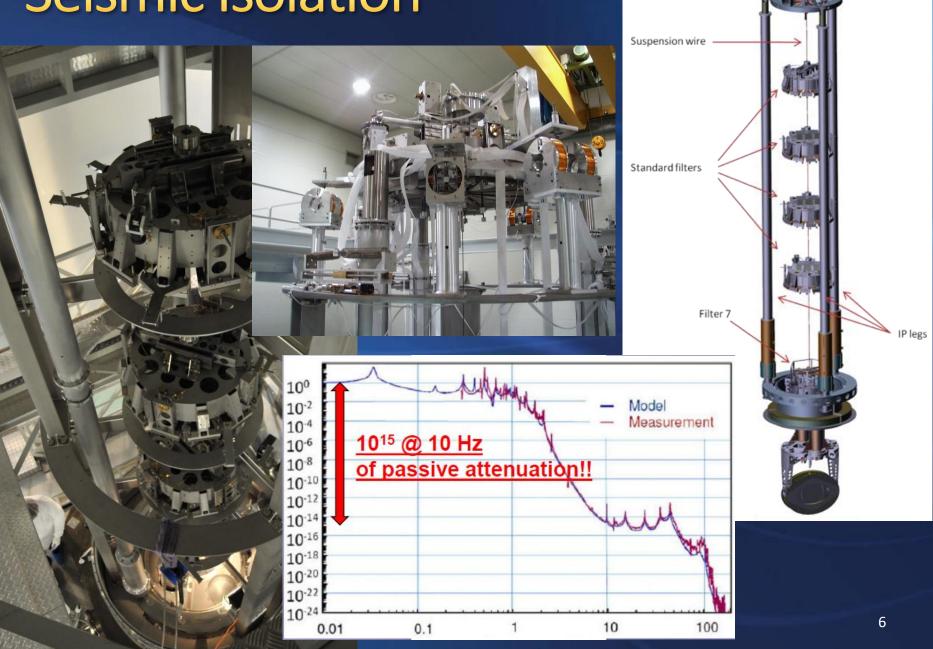



INSTITUTE OF MATHEMATICS Polish Academy of Sciences

VIRGO Interferometer

Gravitational Waves

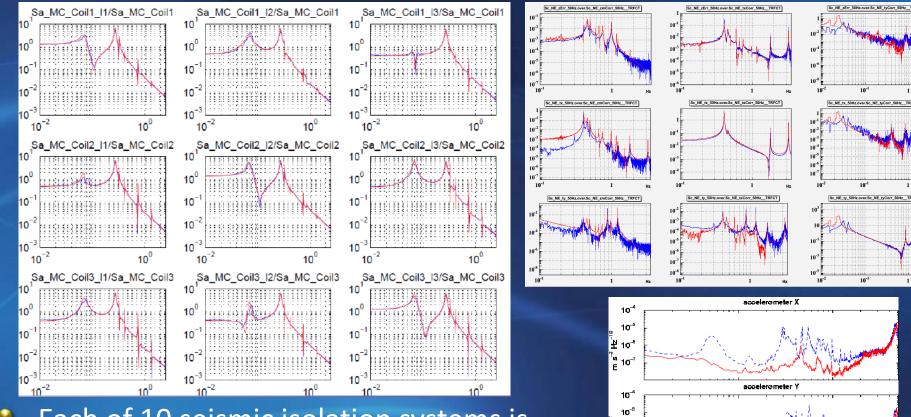

 GW Signal is incredibly small: actual relative displacement is in the order of 6-8 x 10⁻¹⁸ m (peak-to-peak)


LIGO Hanford & Livingstone data: first direct detection

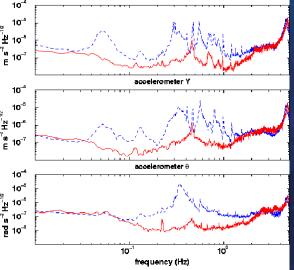
A. Gennai (INFN)

Adv VIRGO Design Sensitivity

Seismic Isolation


Filter 0

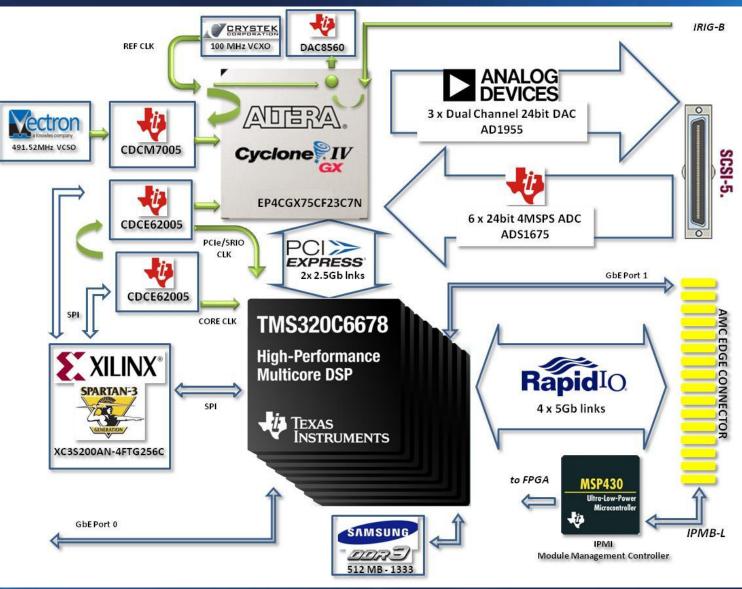
Mirrors



Control

 Each of 10 seismic isolation systems is equipped with inertial sensors (accelerometers), displacement sensors (LVDT and optical levers), stepping motors and magnet-coil actuators

New Control System: Design Drivers


- Move out of VME standard (limiting board-to-board communication bandwidth)
- Eliminate physical gap between analog-front end and data converters (in average we had more than 40 meters STP cabling, multiplied by about 100 signals for each of the 10 suspensions)
- Get out of rigid single sampling frequency operation (usually 10 kHz) and move on a more performing and flexible multi-rate system
- Further increase of locally available computation power to increase data quality analysis capabilities and properly assist control design and implementation mainly for the last stage of suspension and new payloads

UDSPT Board

- Result of design effort is a high performance signal conditioning, signal conversion and processing platform that enables users to implement state of the art hard real time control system. Board can be operated in standalone mode or in cooperation with other boards.
- Form factor is a variation of a Double Compact Module PICMG[®] AMC.0 R2.0 AdvancedMC module (variation consists in a wider board than what specified for a Double Module)
- Key features of the UDSPT board include:
 - Texas Instruments' multi-core DSP TMS320C6678
 - 512 Mbytes of DDR3-1333 Memory
 - Two Gigabit Ethernet ports supporting 10/100/1000 Mbps data-rate
 - 170 pin B+ style AMC Interface containing SRIO and Gigabit Ethernet
 - IRIG-B input
 - Module Management Controller (MMC) for Intelligent Platform Management Interface (IPMI)
 - Powered by DC power-brick adaptor (12V/3.0A) or AMC Carrier backplane
 - Two on board FPGA: one Xilinx Spartan3 dedicated to processing unit and one Altera Cyclone IV interfacing data converters
 - 6 x 24b 3.84 MHz ADC converters
 - 3 x 24b 320 kHz DAC stereo converters (6 channels individually addressable)
 - Converters sampling frequency DSP IRQs synchronous with IRIG-B signal
 - Fully differential input channels and balanced output channels

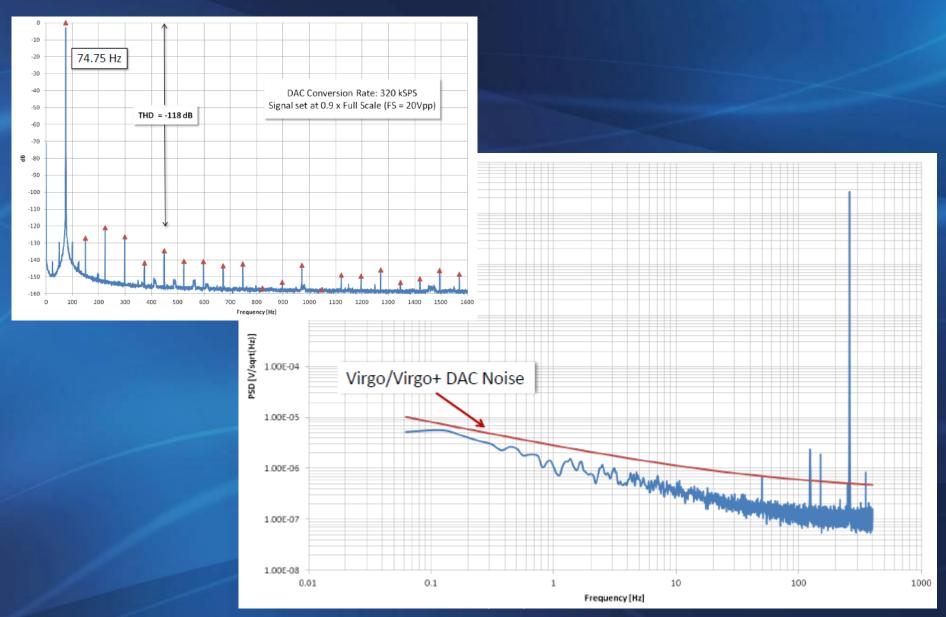
UDSPT Board

UDSPT Board

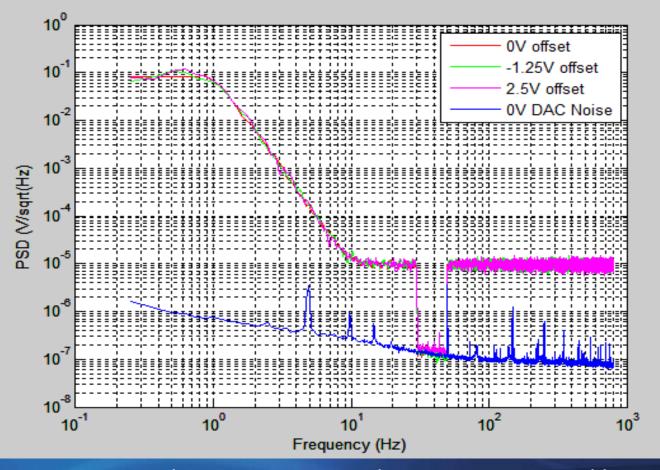
Board complexity (250 different parts, a total of 2500 components) was compensated by a modular design. Processing, data converters and front-end occupy pre-defined areas. Strong effort in interfaces design

Performances

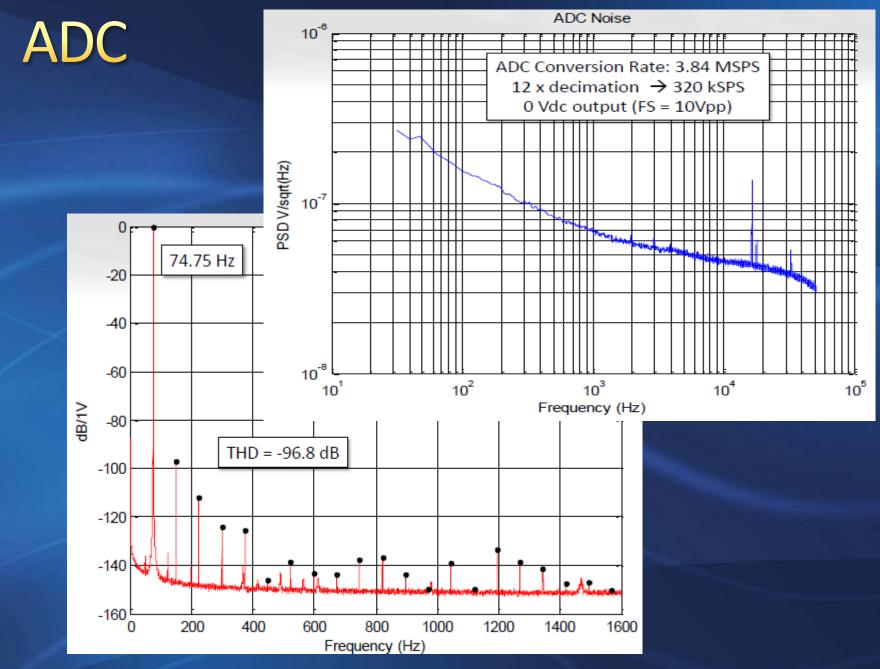
Digital I/O


Gb Ethernet Board- Rest of The World communication

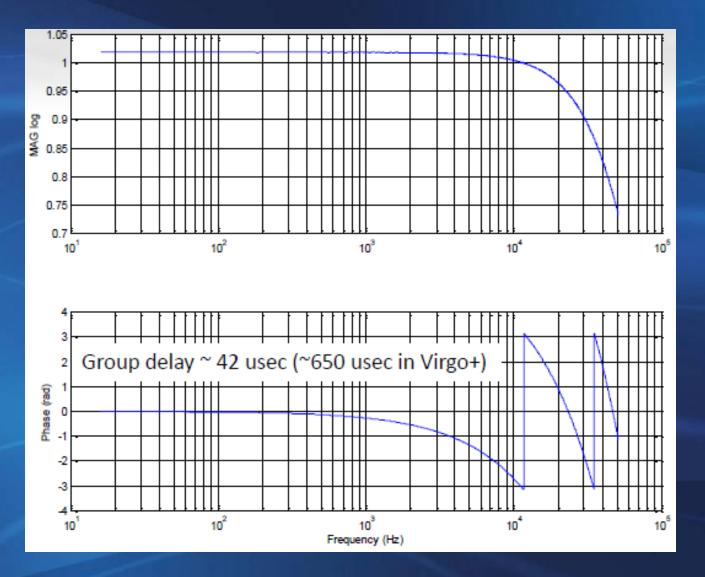
- PCIe (2 x 2.5 Gbps) On-Board communication
- SRIO (4 x 5 Gbps) Board-to-board communication


DSP Software

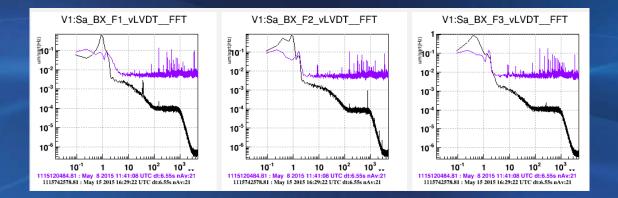
- Operation up to 320 kHz sampling rate (3.125 usec interrupt request repetition cycle)
- Matrix(n,m)*Vector(m,1) double precision multiplication requires 0.5*nm+n+m nanoseconds:
 - State space with 3 inputs, 3 outputs and 12 states requires less than 200 nsec


DAC Perfomances

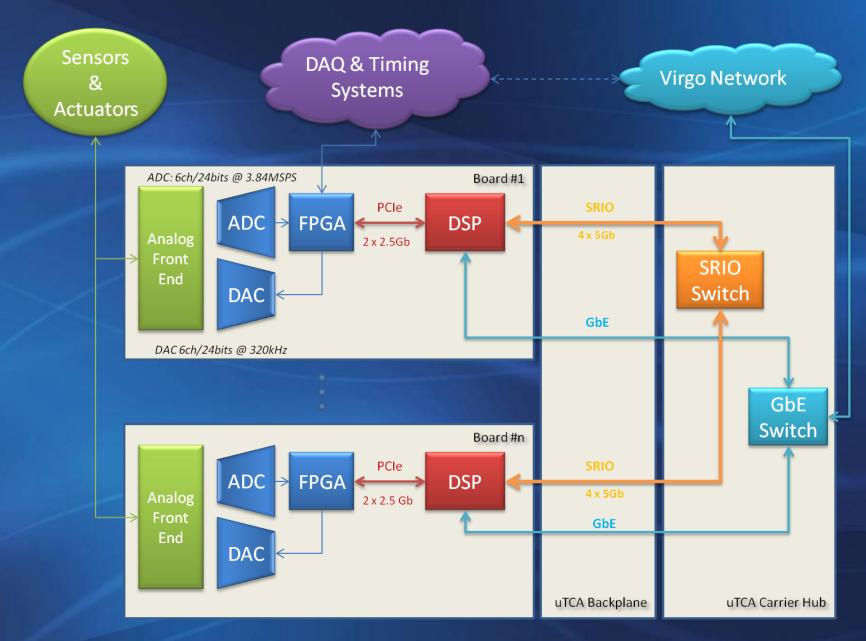
DAC Perfomances



DAC output spectrum when converting a white spectrum signal low pass filtered (4 poles @ 1Hz + 4 zeroes @ 10 Hz) and stopband (30-50 Hz, Bessel 12th order,0.1dB ripple, -60 dB stopband). Signal amplitude was set to 0.6Vpp



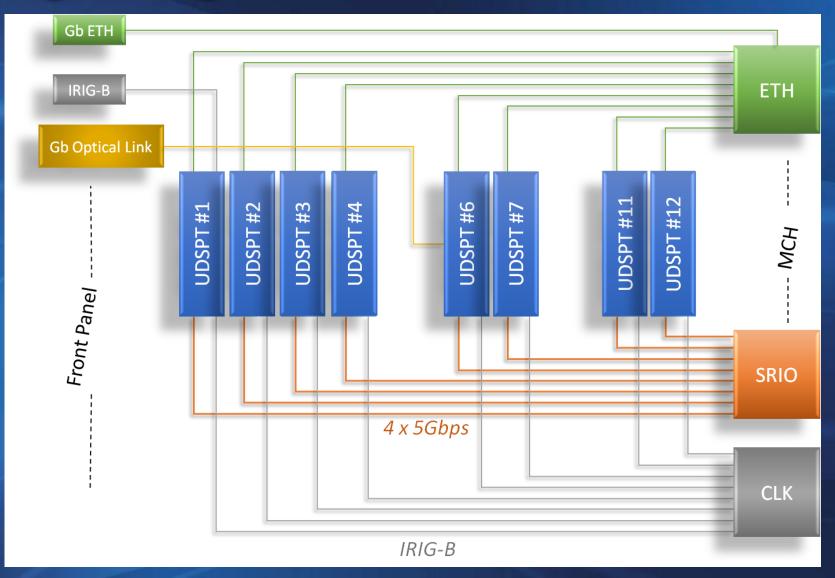
A. Gennai (INFN)


DAC-DSP-ADS Transfer Function

Performances: ADC Noise & EMI

Performances tests on suspensions went beyond our expectation. Placing converters at front-end electronics level, together with introduction of digital demodulation, drastically improved noise immunity. Following picture shows improvement in vertical position sensors readout.

Local Control Unit


In a single 6U x 19" crate we can concentrate 72 ADC + 72 DAC channels supported by 720 GFLOPs, 12 x 1 Gb Ethernet ports + 12 x 1 Gb Optical Link for digital IO and a total power consumption less than 500 Watts

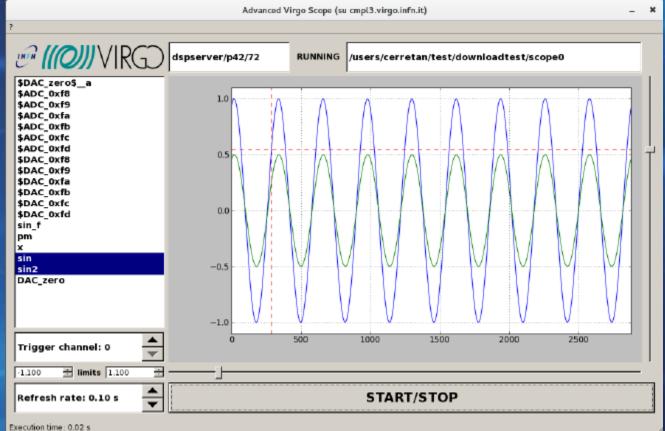
Deployment

Recently we completed the installation of 20 Local Contro Units for a total of 150 boards, 900 ADC channels and 900 DAC channels

Digital Signals Path

Software Supervisor

۲

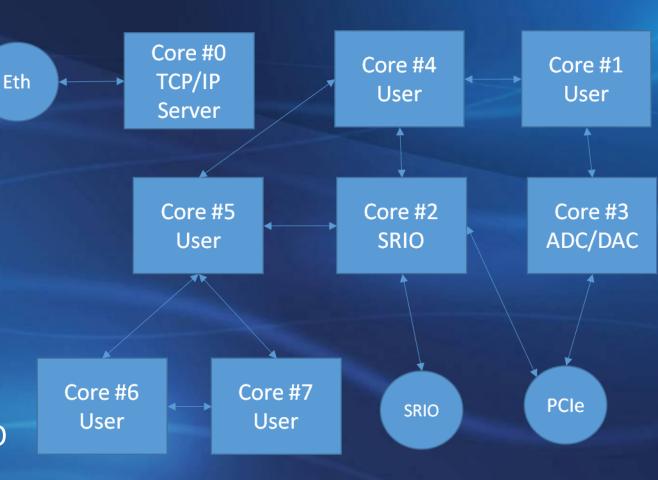

For initial AdV, software shall support about 150 boards. At system startup each board loads boot code via tfpt from a dedicated boot server. This code is actually a sort of basic OS. In a second phase software supervisor (based on software toolkit Tango Controls) downloads in each processor the hard real-time code.

SAT Supervisor (su cmpl3.virgo.infn.it)										
File										
Sa_BS SC_BS EE Sa_IB SC_IB Sa_GA SC_GA Lab Sa_MC SC_MC Sa_NE SC_NE Sa_NI SC_NI Sa_OB Sa_PR SC_PR Sa_SR SC_SR Sa_WE SC_WE Sa_WI SC_WI										
1		dspserver/p42/80	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_PSDi	OFF	ON	Supervisor	Scope	Properties	
2	\bigcirc				OFF	ON	Supervisor	Scope	Properties	
3		dspserver/p42/108	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_PSDm	OFF	ON	Supervisor	Scope	Properties	
4		dspserver/p42/110	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_PSDt	OFF	ON	Supervisor	Scope	Properties	
5		dspserver/p42/84	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_PSDf	OFF	ON	Supervisor	Scope	Properties	
6		dspserver/p42/119	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_Mir1	OFF	ON	Supervisor	Scope	Properties	
7		dspserver/p42/115	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_Mir2	OFF	ON	Supervisor	Scope	Properties	
8		dspserver/p42/72		/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_Mar1	OFF	ON	Supervisor	Scope	Properties	
9		dspserver/p42/85	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LC/BS_Mar2	OFF	ON	Supervisor	Scope	Properties	
10		dspserver/p42/120		/virgoDev/Sa/DSPCode_Adv/BS/F7/BS_F7_CD	OFF	ON	Supervisor	Scope	Properties	
11		dspserver/p43/139	RUNNING	/virgoDev/Sa/DSPCode_Adv/BS/LVDT/BS_F7_LVDT	OFF	ON	Supervisor	Scope	Properties	
12	\bigcirc				OFF	ON	Supervisor	Scope	Properties	
мс	н 🔵	mchserver/bs/2	j				Rebo	ot chassis	Properties	
PDL	ا	pduserver/bs/1	#8				OF	F ON	Properties	

TANG

Real Time Scope

 A nice tool for system debugging is a realtime scope that can access any single variable declared into the source code. Work is in progress to provide real-time fft and few more functionalities



DSP Cores

Each DSP core, excluding C#0, runs a single task activated at a fixed frequency lower or equal to 320 kHz

۵

- Communication is memory mapped using a 2 stages FIFO (ping-pong table)
- 5 out of the 8 cores available are user programmable

DSP Code

1 #include <asm header.net=""> 2 NETLIST { 3 4 START { 5 SAMPLING FREQ = 10000; 6 OVER SAMPLING = 1;</asm>	1 .tab 6 2 DAQ_header1 .equ 00055045h 3 DAQ_header2 .equ 00055046h 4 DMA7_chain .equ 000517e8h 5 tolm_in_dpm_buffer .equ 14831a00h 6 tolm_in_ser_buffer .equ 14831c00h
3 4 START { 5 SAMPLING_FREQ = 10000;	3 DAQ_header2 .equ 00055046h 4 DMA7_chain .equ 00051788h 5 tolm_in_dpm_buffer .equ 14831a00h 6 tolm_in_ser_buffer .equ 14831c00h
5 SAMPLING_FREQ = 10000;	4 DMA7 chain .equ 000517e8h 5 tolm_in_dpm_buffer .equ 14831a00h 6 tolm_in_ser_buffer .equ 14831c00h
5 SAMPLING_FREQ = 10000;	4 DMA7_chain .equ 000517e8h 5 tolm_in_dpm_buffer .equ 14831a00h 6 tolm_in_ser_buffer .equ 14831c00h
	5 tolm_in_dpm_buffer .equ 14831a00h 6 tolm_in_ser_buffer .equ 14831c00h
	6 tolm_in_ser_buffer .equ 14831c00h
6 OVER SAMPLING = 1;	
7 USE $\overline{ADC} = 1;$	7 tolm in glb buffer .equ 14831800h
8 DOWN SAMPLING = 1;	8 tolm1 out buffer .equ 00058300h
9 W COEFF = internal;	9 tolm2 out buffer .equ 00058700h
10 SOURCE = parent;	10 Guard1 to Core0 .equ 1087f000h
11 DOL ADDR = f94c0000;	
12 GRD ADDR = Guard4 to Core0;	11 Guard4_to_Core0 .equ 1483c400h
13 DICT NAME = SC NI;	12 .sect .textasm ; program section
14 KEEP VALUES = no;	13
15 DECAY TIME = 0x00000000;	14 SP .set b15
16	15
17 TOLM OUT N = 1;	16 .global dsp_irq
18 TOLM OUT = {	17 .global i_list
19 {	18 .global c_list
20 PAGE = 0x00000000;	19 .global w_list
21 NAME = PRB;	20 .global noise_table
22 ROUTING = 0xf94c0000;	21 .global cosine_table
23 TOLM = TOLM1;	22 .global input list
24 }	23 .global output list
25)	24 .global Guard4 to Core0
26 }	25 dsp_irq:
27	26 .asmfunc
28 ASM START {}	27
29	28 mvc CSR, B2 ; save old interrupt status
30 DAC SETUP {	29 add -8,SP,SP
31 NDAC = 6;	30 DINT ; disable interrupts
32 OUT = (\$DAC 0xf8, \$DAC 0xf9, \$DAC 0xfa, \$DAC 0xfb,	31 stdw A11:A10, *SP[1] ; a10 = call in
33 \$DAC 0xfc, \$DAC 0xfd);	32 stdw A13:A12, *SP[1] ; a12 = tolm out address
34	33 stdw A15:A14, *SP[1]
35	34 stdw B11:B10, *SP[1] ; b10 = call out
36 ASM CONTINUE {}	35 stdw B13:B12, *SP[1] ; b12 = tolm in address
37	36 stdw B13.B12, "SE[1] , b12 - tolm_ln_address 36 stdw B9:B8, *SE[1] ; b8 = From Slot buffer address
38 CALL {	
43 OUT = (lvdt1, lvdt2, lvdt3, vlvdt1, vlvdt2, vlvdt3, ratio 11, ratio 12,	41 stw B4, *SP[1] ; save DAC address
44 (ratio 13);	
<pre>39 NAME = NI_F7_LVDT_Demod.hrd; 40</pre>	37 stdw B3:B2, *SP[1] 38 stw A8, *SP[1] ; save To_Slot buffer address 39 stw B6, *SP[1] ; save signals buffer address 40 stw A6, *SP[1] ; save probe buffer address 41 stw B4, *SP[1] ; save DAC address

From a source code written in a simple objectoriented language we generate asm code for the cross-compiler that produces DSP binary code

Conclusions

A new system to control suspensions and mirrors was developed and installation is now completed.

- Extensive use of supervising software, mysql databases and third parties tools will simplify operation and maintenance
- Simple user interfaces allow writing real-time DSP code without having specific training

