# **SBE status** A. Bertolini (Nikhef) on behalf of SBE subsystem





# SBE status – Planning and budget

|    | Α                                                                | В       | С    |
|----|------------------------------------------------------------------|---------|------|
| 1  | SBE: First two minitowers order placed                           | 03/2012 | 100% |
| 2  | SBE: First two minitowers delivered                              | 01/2013 | 100% |
| 3  | SBE: MultiSAS production drawings ready                          | 03/2013 | 100% |
| 4  | SBE: Other minitowers design ready                               | 04/2013 | 70%  |
| 5  | SBE: Other minitowers order placed                               | 07/2013 | 0%   |
| 6  | SBE: MultiSAS for SPRB, SDB2, SIB2 construction finished         | 10/2013 | 0%   |
| 7  | SBE: EIB-SAS installed                                           | 09/2013 | 0%   |
| 8  | SBE: MultiSAS for end benches construction finished              | 11/2013 | 0%   |
| 9  | SBE: Minitowers for Central building installed                   | 05/2014 | 0%   |
| 10 | SBE: SIB2 MultiSAS installed on site (pre-tuning done at Nikhef) | 06/2014 | 0%   |
| 11 | SBE: Minitowers for end benches installed                        | 06/2014 | 0%   |
| 12 | SBE: SPRB MultiSAS installed on site (pre-tuning done at Nikhef) | 07/2014 | 0%   |
| 13 | SBE: SWEB MultiSAS installed on site (pre-tuning done at Nikhef) | 10/2014 | 0%   |
| 14 | SBE: SDB2 MultiSAS installed on site (pre-tuning done at Nikhef) | 08/2014 | 0%   |
| 15 | SBE: SNEB MultiSAS installed on site (pre-tuning done at Nikhef) | 10/2014 | 0%   |
| 16 |                                                                  |         |      |

#### **Minitowers**

- IPRB review of SIB2 and SDB2 minitowers last May 9<sup>th</sup>
- Call for the tender deadline June 3<sup>rd</sup>, orders to be placed soon right after the mechanical integration test at Nikhef
- PR minitower design in prep, PUMA procedure start soon

# **MultiSAS**

- IPRB review of MSAS on April 17<sup>th</sup>
- Procurement of off-the-shelf parts (sensors, motors, etc) done
- LVDT and actuator coils windings being done right now
- The mechanics for all the 5 systems is in production: lead time 4-6 weeks from today
- Cost change on the mechanics (mostly outsourced):

| MultiSAS subsystems    | Actual cost | October 2012 estimate |
|------------------------|-------------|-----------------------|
|                        |             |                       |
| LVDT/actuators OVERALL | 14520       | 15000                 |
| Filters OVERALL        | 118780      | 125000                |
| IP OVERALL             | 88080       | 65000                 |
|                        |             |                       |
| Total:                 | 221380      | 205000                |

### MultiSAS-Minitower integration test



## MultiSAS-Minitower integration test



- Check for installation issues:  $\rightarrow$  OK
- Check for effects of the vacuum forces on the chamber: the vertical sagging of the central cylinder has been measured with mechanical gauges both at LAPP and Nikhef: ~0.2mm uniform (same as predicted by FEM models) then OK (actually at Nikhef found a slight 0.05 mm asymmetry)
- Test with in-vacuum tilt sensor ongoing at Nikhef to confirm the compliance with the specs given in the TDR: ±0.1 mrad maximum acceptable tilt of the IP inner support platform (right now we are characterizing the sensor for stability in the air pressure to vacuum transition)
- green light for the order placement asap

# MultiSAS-Minitower integration test: recap so far



A vacuum compatible two-axes tilt sensor (Model 756 from App.Geomechanics,  $\pm$  5 µrad resolution) was installed on the IP base ring, to measure the effect of the Minitower deformation under vacuum forces.

### MultiSAS-Minitower integration test: are the specs too tight?



# Test of SAT cable – Setup

DET needs to feed 12V, 200W (16A) to the in-vacuum benches Is it doable without spoiling the seismic attenuation level?

**Coil Magnet Actuator** Top Stage IP leg Safety Strcture Dummy Payload **Base Ring** Flexure with PZT



- More representative: IP natural frequency 0.1 Hz, dynamic mass 150 kg
- Mass still not a problem; stiffness effect appears if we don't split



- Mass effects could be masked by the 420 kg size of the payload in this test
- Real intermediate filter mass is only 100 kg

# EIB-SAS – Closed loop stability vs time (one week)

#### RMS deviation from set point < $1\mu$ m, 0.5 $\mu$ rad in all 6 dof



M. Blom H.J. Bulten

# EIB-SAS – Closed loop stability vs temperature change (±1K)

...lowering the temperature...



Vertical dof (y) as expected is the most affected: nearly 2  $\mu$ m/K



# EIB-SAS – Closed loop stability vs temperature change (±1K)

How it would be in open loop



M. Blom H.J. Bulten

# EIB-SAS – Closed loop stability vs temperature change (±1K)



- Ordering of Minitowers for CB being finalized soon
- The whole mechanics for the 5 MSAS ordered and in production delivery of parts expected by the end of July
- Control electronics (geophone preamps, LVDT/act drivers) design reviewed and finalized
- MSAS-minitower integration test ongoing to provide feedback for the design of the remaining Minitowers
- MSAS long term in vacuum test should start beginning of July
- Feeding needed power to the in-vacuum benches seems feasible