GW150914: advanced interferometric detectors at the dawn of the gravitational wave astronomy

Journées SF2A – Lyon, 14 juin 2016

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>) Laboratoire de l'Accélérateur Linéaire (CNRS/IN2P3 & Université Paris-Sud) Pour la Collaboration Virgo et la Collaboration Scientifique LIGO

Outline

- See Tania Regimbau's plenary talk this morning
- Gravitational waves in a nutshell
 - Sources and properties
- Gravitational wave interferometric detectors
 - Principle and main characteristics
 - Advanced detectors
 - A worldwide network of detectors
- GW150914
 - The Advanced LIGO « Observation 1 » Run: September 2015 – January 2016
 - First direct detection of gravitational waves from a black hole binary merger
 - Physics results

Thanks to the many colleagues from the LAL Virgo group, from Virgo and LIGO from wich I borrowed ideas and material for this talk

• Outlook

Gravitational waves: sources and properties

Gravitational waves (GW)

- One of the first predictions of general relativity (1916)
 - Accelerated masses induce perturbations of the spacetime which propagate at the speed of light
 - Linearization of the Einstein equations $(g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, |h_{\mu\nu}| << 1)$ leads to a propagation equation far from the sources
- Traceless and transverse (tensor) waves
 - 2 polarizations: «+» and «×»
 - \rightarrow See next slide for the interpretation of these names
- Quadrupolar radiation
 - Need to deviate from axisymmetry to emit GW
 - No dipolar radiation contrary to electromagnetism
- GW amplitude h is dimensionless
 - Scales with the inverse of the distance from the source
 - GW detectors sensitive to amplitude ($h \propto 1/d$) and not intensity ($h^2 \propto 1/d^2$)
 - \rightarrow Important to define the Universe volume a given detector is sensitive to

Effect of gravitational waves on test masses

- GW: propagating perturbation of the spacetime metric
 - Acts on distance measurement between test masses (free falling)

• Effect of the two GW polarizations on a ring of free masses

A diversity of sources

- Rough classification
 - Signal duration
 - Frequency range
 - Known/unknown waveform
 - Any counterpart (E.M., neutrinos, etc.) expected?
- Compact binary coalescence
 - Last stages of the evolution of a system like PSRB 1913+16
 - \rightarrow Compact stars get closer and closer while loosing energy through GW
 - Three phases: inspiral, merger and ringdown
 - \rightarrow Modeled via analytical computation and numerical simulations
 - Example: two masses M in circular orbit ($f_{GW} = 2 f_{Orbital}$)

- Transient sources (« bursts »)
 - Example: core collapses (supernovae)
- Permanent sources
 - Pulsars, Stochastic backgrounds

radius

6

Gravitational wave spectrum

LIGO, Virgo, etc.

7

Gravitational wave interferometric detectors

1916-2016: a century of progress

• 1916: GW prediction (Einstein)

1957 Chapel Hill Conference

• 1963: rotating BH solution (Kerr)

Theoretical developments

Experiments

- 1990's: CBC PN expansion (Blanchet, Damour, Deruelle, Iyer, Will, Wiseman, etc.)
- 2000: BBH effective one-body approach (Buonanno, Damour)
- 2006: BBH merger simulation (Baker, Lousto, Pretorius, etc.)

(Bondi, Feynman, Pirani, etc.)

- 1960's: first Weber bars
- 1970: first IFO prototype (Forward)
- 1972: IFO design studies (Weiss)
- 1974: PSRB 1913+16 (Hulse & Taylor)
- 1980's: IFO prototypes (10m-long) (Caltech, Garching, Glasgow, Orsay)
- End of 1980's: Virgo and LIGO proposals
- 1990's: LIGO and Virgo funded
- 2005-2011: initial IFO « science » » runs
- 2007: LIGO-Virgo Memorandum Of Understanding
- 2012 : Advanced detectors funded
- 2015: First Advanced LIGO science run

Gravitational wave interferometric detectors

- Instructions to build a GW detector • Solution: a Michelson interferometer • Use free test masses \rightarrow Suspended mirrors Locate them far apart \rightarrow Kilometer-long arms \rightarrow Get rid of common mode noise Measure their relative displacement Make sure their motion is not \rightarrow Design + active control perturbated by any external source + noise mitigation/monitoring Mirror M_2 Mirror M₁ LASER Beam Splitter Mas \mathbf{P}_{in} Photodiode P_{det}
- Incident GW
 - \Rightarrow Optical path changes
 - \Rightarrow Output power variation

• Best sensitivity around the dark fringe

Interferometer sensitivity

- Output power: $\delta P_{det} \propto P_{in} L h$
- Shot noise
 - A fundamental quantum noise
 - Fluctuation of the number of photons detected during a duration ∆t
- Minimum detectable GW amplitude such that

- Improving the sensitivity
 - Increase incident power on the beamsplitter
 - Increase length of the interferometer arms
- Reaching $h_{min} \sim 10^{-22}$ or below requires
 - Kilowatts of laser power and
 - Arms about a hundred kilometer long

Improving the interferometer sensitivity

• Reminder: Interferometer (IFO) sensitivity \propto

(Arm length) $\times \sqrt{\text{Light power}}$

- \rightarrow Use high power laser, power- and frequency-stabilized
 - Tens to hundreds of watts
- → Kilometric arms (Virgo: 3km; LIGO: 4km)
- \rightarrow Add Fabry-Perot cavities in the kilometric arms
 - Light path length increased: $L \rightarrow L \times G_{FP}$ $G_{FP} \sim 300$ for Advanced Virgo
 - Low-pass filter on the IFO frequency response: processes faster than the light storage time are filtered

- \rightarrow Add recycling mirror between the input laser and the beamsplitter
 - IFO set to the dark fringe + highly reflecting mirrors All power reflected back to the laser! $P_{in} \rightarrow P_{in} \times G_{rec}, G_{rec} \sim 40$ for Advanced Virgo
- \rightarrow Minimize transmission and losses for all mirrors
 - Set the gains of the interferometer cavities

Improving the interferometer sensitivity

Noise & sensitivity

- Noise: any kind of disturbance which pollutes the dark fringe output signal
- Detecting a GW of frequency $f \leftrightarrow$ amplitude $h \ll$ larger \gg than noise at that frequency
- Interferometers are wide-band detectors
 - GW can span a wide frequency range
 - Frequency evolution with time is a key feature of some GW signals
 - \rightarrow Compact binary coalescences for instance
- Numerous sources of noise
 - Fundamental
 - \rightarrow Cannot be avoided; optimize design to minimize these contributions
 - Instrumental
 - \rightarrow For each noise, identify the source; then fix or mitigate
 - \rightarrow Then move to the next dominant noise; iterate...
 - Environmental
 - \rightarrow Isolate the instrument as much as possible; monitor external noises
- IFO sensitivity characterized by its power spectrum density (PSD, unit: $1/\sqrt{Hz}$)
 - Noise RMS in the frequency band $[f_{\min}; f_{\max}] = \sqrt{\int_{f_{\min}}^{f_{\max}} PSD^2(f) df}$

Main interferometer noises

From initial to advanced detectors

- Goal: to improve the sensitivity by one order of magnitude
 - Volume of observable Universe multiplied by a factor 1,000
 - Rate should scale accordingly
 - \rightarrow Assuming uniform distribution of sources (true at large scale)
- A wide range of improvements
 - Increase the input laser power
 - Mirrors twice heavier
 - Increase the beamspot size on the end mirrors
 - Fused silica bonding to suspend the mirrors
 - Improve vacuum in the km-long pipes
 - Cryotraps at the Fabry-Perot ends
 - Instrumentation & optical benches under vacuum

- Advanced LIGO (aLIGO) funded a year or so before Advanced Virgo (AdV)
 - Financial crisis in 2008-2010...
 - \rightarrow aLIGO ready for its first « observation run » in September 2015
 - AdV upgrade still in progress

A worldwide network of gravitational wave interferometric detectors

Interferometer angular response

- An interferometer is not directional: it probes most of the sky at any time
 - More a microphone than a telescope!
- The GW signal is a linear combination of its two polarisations $h(t) = F_+(t) \times h_+(t) + F_\times(t) \times h_\times(t)$
 - F₊ and F_× are antenna pattern functions which depend on the source direction in the sky w.r.t. the interferometer plane
 - \rightarrow Maximal when perpendicular to this plane
 - \rightarrow Blind spots along the arm bisector (and at 90 degres from it)

A network of interferometric detectors

- A single interferometer is not enough to detect GW
 - Difficult to separate a signal from noise confidently
 - There have been unconfirmed claims of GW detection
- → Need to use a network of interferometers
- Agreements (MOUs) between the different projects Virgo/LIGO: 2007
 - Share data, common analysis, publish together
- IFO: non-directional detectors; non-uniform response in the sky
- Threefold detection: reconstruct source location in the sky

Exploiting multi-messenger information

- •Transient GW events are energetic
 - Only (a small) part of the released energy is converted into GW
 - \rightarrow Other types of radiation released: electromagnetic waves and neutrinos
- Astrophysical alerts \Rightarrow tailored GW searches
 - Time and source location known ; possibly the waveform
 - → Examples: gamma-ray burst, type-II supernova
- GW detectors are also releasing alerts to a worldwide network of telescopes
 - Agreements signed with ~75 groups 150 instruments, 10 space observatories

- Low latency h-reconstruction and data transfer between sites
 Online GW searches for burst and compact binary coalescence
 - Online GW searches for burst and compact binary coalescences

The Advanced LIGO «Observation 1» Run (2015/09 – 2016/01)

aLIGO O1 Run: Observing time

- September 2015 January 2016
 - GW150914 showed up a few days before the official start of O1, during the « Engineering Run 8 »
 - \rightarrow Both interferometers were already working nominally

aLIGO O1 Run: Sensitivity

- Sensitiviy much improved with respect to the initial detectors
 - Factor 3-4 in strain
 - \rightarrow Factor 30-60 in volume probed
- Gain impressive at low frequency where the signal GW150914 is located

aLIGO O1 Run: GW150914-like horizon

- Sky-averaged distance up to which a given signal can be detected
 - In this case a binary black hole system with the measured GW150914 parameters

- Only depends on the actual sensitivity of the interferometer
 - Online monitoring tool used during data taking

GW 150914

Compact binary coalescence search

- Well-predicted waveform
 - → Matched-filtering technique (optimal)
 - Noise-weighted cross-correlation of data with a template (expected signal)
- Parameter space covered by a template bank
 - Analytical for NS-NS, BH-NS
 - Analytical + numerical for BH-BH
 - Parameters: mass and spin of the initial black holes
 - \rightarrow ~250,000 templates in total
- Look for triggers from the two IFOs using the same template and coincident in time
 - Check matching between signal and template
- Offline search
 - Part of the parameter space searched online
 - Two independent offline pipelines

Burst search

- Search for clusters of excess power (above detector noise) in time-frequency plane
 - Wavelets

GW150914 signal strong enough to be immediately identified on spectrograms

- Chirp-like shape: frequency and amplitude increasing with time
- Coherent excess in the two interferometers
 - Reconstructed signals required to be similar

• Efficiency similar to (optimal) matched filtering for binary black hole – short signal

Online last September for O1

Data quality

- Detector configuration frozen to integrate enough data for background studies
 - ~40 days (until end of October) corresponding to 16 days of coincidence data
 - \rightarrow Steady performances over that period
- Tens of thousands of probes monitor the interferometer status and the environment
 - Virgo: h(t) ~ 100 kB/s
 DAQ ~ 30 MB/s
- Help identifying couplings with GW channel
 - Quantify how big a disturbance should be to produce such a large signal
 - Not to mention the distinctive shape of the GW150914 signal
- Extensive studies performed
 - Uncorrelated and correlated noises
 - Bad data quality periods identified and vetoed
 - \rightarrow Clear conclusions: nominal running, no significant environmental disturbance 28

Background estimation

- Studies show that GW150914 is not due to issues with the interferometer running, nor the reflection of environmental disturbances (correlated or not)
 - \rightarrow How likely is it to be due to « expected » noise fluctuations?
 - Assess signal significance!
- Input: (only) 16 days of coincidence data
 → Time shift method to generate a much larger background dataset
- Reminder: real GW events are shifted by 10 ms at most between IFOs
 Light travel time over 2 000 km
 - Light travel time over 3,000 km
- By shifting one IFO datastream by a (much) larger time, one gets new datastreams in which « time » coincidence are necessarily due to noise

• 16 days of coincident data \rightarrow tens of thousands years of background « data »

Signal significance – CBC analysis

- x-axis: detection statistic used to rank events (the « SNR »)
 - GW150914: strongest event (true in both IFOs)
- Observed

 (zero-lag)
 events
- Solid lines:
 2 background estimations (from time-lag)

• SNR ~ 23.6; false alarm rate < 1 event / 203,000 years false alarm probability $< 2 \times 10^{-7} (> 5.1 \sigma)$

Why two black holes?

- Result of matched filtering!
 - Excellent match between the best template and the measured signal
- Two massive compact objects orbiting around each other at 75 Hz (half the GW frequency), hence at relativistic speed, and getting very close before the merging: only a few R_s away!
- → Black holes are the only known objects which can fit this picture
- About 3 M_{Sun} radiated in GW
- The « brighest » event ever seen
 - More powerful than any gamma-ray burst detected so far
 - Peak power larger than 10 times the power emitted by the visible Universe

31

Parameter estimation

• 15 parameters total

 Initial masses, initial spins, final mass, final spin, distance, inclination angle + precession angle (if exists)

• Bayesian inference

Probability density function for each parameter: mean value + statistical errors

Parameter estimation

• Impact of the black hole parameters on the waveform

GW150914:FACTSHEET

BACKGROUND IMAGES: TIME-FREQUENCY TRACE (TOP) AND TIME-SERIES (BOTTOM) IN THE TWO LIGO DETECTORS; SIMULATION OF BLACK HOLE HORIZONS (MIDDLE-TOP), BEST FIT WAVEFORM (MIDDLE-BOTTOM)

first direct detection of gravitational waves (GW) and first direct observation of a black hole binary

observed by	LIGO L1, H1	duration from 30 Hz	~ 200 ms		
source type	black hole (BH) binary	# cycles from 30 Hz	~10		
date	14 Sept 2015	peak GW strain	1 x 10 ⁻²¹		
time	09:50:45 UTC	peak displacement of	±0.002 fm 150 Hz, 2000 km		
likely distance	0.75 to 1.9 Gly	interferometers arms			
	230 to 570 Mpc	frequency/wavelength			
redshift	0.054 to 0.136	at peak GW strain			
signal-to-noise ratio	24	реак speed от вня	~ U.O C		
film to note rune		peak GW luminosity	3.6 x 10 ⁵⁰ erg s ⁻¹		
taise alarm prob.	< T in 5 million	radiated GW energy	2.5-3.5 M⊙		
false alarm rate	< 1 in 200,000 yr	remnant ringdown free	q. ~ 250 Hz		
Source Mas	ses M⊙	remnant damping time ~ 4 ms			
total mass	60 to 70	rompont sizo, oroo	180 km 3.5 x 10 ⁵ km ²		
primary BH	32 to 41	consistent with	noseses all tests		
secondary BH	25 to 33	general relativity?	performed		
remnant BH	58 to 67	graviton mass bound	$< 1.2 \times 10^{-22} \text{ eV}$		
mass ratio	0.6 to 1	graviton mass bound	ST.2 X TO SV		
nrimary BH spin	< 0.7	coalescence rate of	2 to 400 Gpc ⁻³ yr ⁻¹		
secondary BH spin	< 0.9	binary black holes			
secondary bit spin	- 0.7	online trigger latency	~ 3 min		
remnant BH spin	0.57 to 0.72	# offline analysis pipelines 5			
signal arrival time	arrived in L1 7 ms	V V	~ 50 million (=20.000		
delay	before H1	CPU hours consumed	PCs run for 100 days)		
likely sky position	Southern Hemisphere	napers on Eeb 11, 2016	13		
likely orientation	face-on/off	papers on reb 11, 2010	~1000_80 institutions		
resolved to	~600 sq. deg.	# researchers ~ 1000, 80 Institution			

Detector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds. Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 × 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc=10³ Mpc, fm=femtometer=10⁻¹⁵ m, M⊙=1 solar mass=2 × 10³⁰ kg

Skymap

- Sky at the time of the event
- Skymap contoured in deciles of probability
- 90% contour :
 - ~ 590 degres²
 - Full Moon: 0.5 degres²
- View is from the South Atlantic Ocean, North at the top, with the Sun rising and the Milky Way diagonally from NW to SE

Looking for GW150914 counterparts

• Observation timeline: no counterpart found – none expected for a binary black hole

Initial GW Burst Recovery		Initial GCN Circular			Update (identified)	ed GCN Circular as BBH candidate)	Final sky map
<i>Fermi</i> GBM, LAT, MAXI, IPN, <i>INTEGRAL</i> (archival)		Swift XRT	Swift XRT			-	<i>Fermi</i> LAT, MAXI (ongoing)
BOOTES-3 M	ASTER Sw Pan-ST	<i>ift</i> UVOT, SkyMa ARRS1, KWFC, O	pper, MA QUEST, D	STER, TOROS, DECam, LT , P2 (TAROT, VST 0, Pi of the S VISTA	, iPTF, Keck , Pan-STARRS1 ky, PESSTO, UH VST	TOROS
]	MWA	ASKAP, LOFAR	ASKAP, MWA	VLA, LOFAR	VLA, LOFAR VLA
	100			(days)	10 ¹		10 ²

Conclusions

Outlook

- The network of advanced gravitational wave interferometers is taking shape
 - The two aLIGO detectors started taking data last September and detected the first direct gravitational wave signal (GW150914)
 - Virgo is completing its upgrade and is fully committed to joining LIGO asap
 → The right time for new groups to join the collaboration...
 - KAGRA should then join the network in 2018
 - And possibly a third LIGO detector (LIGO-India) some years later
- Sensitivity already good enough to detect gravitational waves
 - Improvements expected in the coming years
 - R&D activities already ongoing for 3rd generation instruments

Outlook

https://aas.org/meetings/aas228

[]	Vednesday, 15 June, 10:15 am PDT est News from the LIGO Scientific Collaboration
	Gabriela González LIGO Scientific Collaboration Spokesperson <i>(Louisiana State University)</i> [305.01]
	Fulvio Ricci Virgo Spokesperson (University of Rome Sapienza & INFN Rome)
	Dave Reitze Executive Director of LIGO <i>(Caltech)</i>

erferometers is taking shape ist September and detected 50914) mmitted to joining LIGO asap ollaboration...

lia) some years later

ational waves

tion instruments

https://aas.org/aas-briefing-webcast

- LIGO and Virgo will release results from the full « Observation 1 » run analysis tomorrow night
 - Stay tuned...

• The

T

• V

• K

■ A

• Ser

I1

R

tł

39

GW detector peak sensitivity evolution vs. time

40