Known source detection

Hardware & software injections

S.Frasca for Rome Group

4-May-2010

Outline of the procedure (by Matlab, starting from our Short FFT database)

- Extraction of the band in a (single) sbl file
- Simulation of the two basic linear polarization signals (stored in sbl files)
- Reconstruction of the uniformly subsampled signal for the data, with correction of Doppler, Einstein effect and spin-down for the three signals (for data and simulations) – using the new resampling procedure
- Cleaning
- Parameter estimation.

Analyzed data

- Three hardware injections: Pulsar_2, Pulsar_3, Pulsar_4
- Three software injections, same as hardware, but 1 Hz more
- About 12 days of VSR2-v1 data (22-Sep -> 3-Oct)

New function pss_fd_resamp (used by pss_bandrecos_strob)

- Our sfdb data have, for each sft, the position and velocity of the detector in SSB of the center sample
- The data are oversampled in order to have at least 8 samples for source period
- From these data we compute for each (high frequency) sample the SSB position (by interpolating with a 3rd degree polynomial)
- Also the Einstein effect and the spin-down are converted in delay and then in position
- The resampling is done very easily

Resampling procedure

The idea of resampling is the construction of a new time abscissa:

$$t' = t + \Delta t_{Dop}(t) + \Delta t_{SD}(t) + \Delta t_{Einst}(t)$$

with

$$\Delta t_{Dop}\left(t\right) = \frac{\Delta D\left(t\right)}{c} \qquad \Delta t_{SD}\left(t\right) = \frac{1}{\omega} \cdot \left(\frac{d_1}{2} \cdot t^2 + \frac{d_2}{6} \cdot t^3\right) \qquad \Delta t_{Einst}\left(t\right) = -\int_0^t \Delta z\left(t\right) \cdot dt$$

Where D is the distance from the source, d_1 and d_2 are the first 2 spindown parameters and z the gravitational redshift.

The strobo function

The function that does the resampling is easily

function [out iout]=strobo(x,tt,dtout)
tt=tt/dtout;
tt1=floor(tt);
ii=find(diff(tt1));
out=x(ii+1);
iout=round(tt(ii(1)));

where **x** are the oversampled data, **tt** is the new time abscissa t' and **dtout** is the output sampling time (1 s). **out** are the output samples and **iout** the discrete abscissa

Programs and times (on my workstation)

What	Function	Time			
Band extraction	sfdb09_band2sbl	0.85 h			
Simulation (1 signal)	sfdb09_band2sbl	0.85 h			
Reconstruction(1 signal)	pss_band_recos_strob	0.85 ~ 2.28 h			
Estimation	ana_kpsour	few seconds			

The times are intended to process about 12 days.

The resampling procedure is about 100 times slower than the preceding ones (pss_band_recos1 and pss_band_recos2), but

- a) is much more precise
- b) it is not limited to a very narrow band

Reconstructed data (pulsar_3)

Data distribution

Spectrum of reconstructed data

Power spectrum distribution (in the band)

"Wiener filter"

Parameter estimation: definitions

The parameters are h (the amplitude), η and ψ (polarization parameters).

If the polarization ellipse has semi-axes a and b, with the convention to put b positive if the circular part is L (CCW) and negative if it is R (CW), the two polarization parameters are $\eta = \frac{b}{a}$ and the linear polarization angle ψ .

What is a 5-vect ?

A 5-vect is a 5 component complex vector that contains the whole information regarding the detection of the gravitational periodic signal. The 5 components are the Fourier components of the Doppler and spin-down corrected sampled data at the angular frequencies $\omega_0-2\Omega \quad \omega_0-\Omega \quad \omega_0 \quad \omega_0+\Omega \quad \omega_0+2\Omega \quad (\Omega \text{ is the sidereal angular frequency}).$

A "data" 5-vect has 10 degrees of freedom, a "signal" 5-vect has 4 degrees of freedom.

The operations on the time series (filtering, simulations,...) can be done on the 5-vect, obtaining practically the same results, with much higher efficiency.

Many equations regarding the 5-vect are formally identical to that regarding time series.

What is coherence

S is the signal 5-vect, g is the (complex) estimated amplitude, **X** is the data 5-vect

$$c = \left| \left(\tilde{\boldsymbol{X}} \cdot \tilde{\boldsymbol{S}} \right) \cdot \tilde{\boldsymbol{S}} \right|^2 = \left| \tilde{\boldsymbol{X}} \cdot \tilde{\boldsymbol{S}} \right|^2$$

the tilde indicates the normalization; note that it is independent on the amplitude of **X** and **S**

Here are the distributions (are both beta) in case of no signal, for the 2 dof and the 4 dof

$$f(x) = 4 \cdot \left(1 - x\right)^3$$

$$f(t) = 12 \cdot t \cdot (1-t)^2$$

2-dof coherence distribution (in case of only noise)

4-dof coherence distribution (in case of only noise)

Parameter estimation

(on 12 days starting at 22 September)

	Pulsar_2s	Pulsar_2	Pulsar_3s	Pulsar_3	Pulsar_4s	Pulsar_4
Frequency	576.163573	575.163573	109.857159	108.857159	1404.163331	1403.163331
Spin-down	-1.37E-13	-1.37E-13	-1.46E-17	-1.46E-17	-2.54E-08	-2.54E-08
alpha	215.26	215.26	178.37	178.37	279.99	279.99
delta	3.44	3.44	-33.44	-33.44	-12.47	-12.47
Threshold	0.06	0.06	0.03	0.03	0.06	0.06
h0 inj	5.28E-24	5.28E-24	8.30E-24	8.30E-24	2.76E-23	2.76E-23
h0 found	5.23E-24	5.42E-24	8.03E-24	7.55E-24	2.99E-23	2.64E-23
ratio f/i	0.99	1.03	0.97	0.91	1.08	0.95
eta inj	0.997	0.997	0.160	0.160	-0.515	-0.515
eta found	0.865	0.983	0.183	0.178	-0.422	-0.358
psi inj	77.292	77.292	25.439	25.439	-37.124	-37.124
psi found	72.835	1.954	25.681	26.949	-31.844	-32.937
SNR	11.6	14.0	27.4	19.8	22.9	20.2
coherence	0.988	0.997	0.999	0.997	0.975	0.978

Parameter estimation: new h-rec

(on 12 days starting at 22 September)

					V	SR2 v1 - v3						
5	Pulsa	ar_2s	Pulsar_2		Pulsar_3s		Pulsar_3		Pulsar_4s		Pulsar_4	
Frequency	576.1	63573	575.1	63573	109.857159		108.857159		1404.163331		1403.163331	
Spin-down	-1.37	'E-13	-1.37	'E-13	-1.46E-17		-1.46E-17		-2.54E-08		-2.54E-08	
alpha	215	. <mark>26</mark>	215	.26	178.37		178.37		279.99		279.99	
delta	3.	44	3.	44	-33.44		-33.44		-12.47		-12.47	
Threshold	0.	0.05		0.06 0.04		04	0.04		0.06		0.06	
Noise level	1.25E-22	1.30E-22	1.05E-22	1.10E-22	8.90E-23	9.13E-23	1.20E-22	1.23E-22	1.82E-22	1.93E-22	1.81E-22	1.92E-22
h0 inj	5.28	E-24	5.28	E-24	8.30	E-24	8.30E-24		2.76E-23		2.76E-23	
h0 found	5.24E-24	5.30E-24	5.42E-24	5.61E-24	8.03E-24	8.08E-24	7.55E-24	7.43E-24	2.99E-23	2.96E-23	2.64E-23	2.83E-23
ratio f/i	0.99	1.00	1.03	1.06	0.97	0.97	0.91	0.90	1.08	1.07	0.95	1.02
eta inj	0.997		0.997		0.160		0.160		-0.515		-0.515	
eta found	0.853	0.924	0.984	0.926	0.183	0.174	0.178	0.187	-0.422	-0.382	-0.358	-0.320
psi inj	77.	292	77.29		25.439		25.439		-37.124		-37.124	
psi found	72.184	44.668	1.110	69.486	25.674	25.375	26.949	26.938	-31.844	-29.341	-32.937	-30.889
SNR	13.7	13.8	16.7	17.1	33.1	33.6	23.7	23.6	27.9	23.6	24.6	22.6
coherence	0.985	0.984	0.997	0.995	0.999	0.999	0.997	0.996	0.975	0.963	0.978	0.966
		v3/v1	2	v3/v1	5	v3/v1		v3/v1	-	v3/v1	, ,	v3/v1
Noise ratio		1 0/E+00		1.0/5+00		1.035+00	60 - 6 0	1.025+00		1.065+00		1.055+00
Signal Patio		1.046+00	1	1.046+00		1.032+00	50 (0)	0.945-01	-	0.015-01		1.000+00
		0.745-01		0.025-01		0.915-01	50 - 50	0.625-01		0.265-01		1.015+00
SNID		1.000202		1.035265	-	1.016100	50 D)	9.022-01		9.302-01		0.01996
SINK		1.009205		1.025505		1.010103		0.995569		0.04004		0.91999

Mean of the estimators

(Virgo & Vela with η =0.3, ψ =30° - stationary gaussian noise)

Standard deviation of the estimators

(Virgo & Vela with η =0.3, ψ =30° - stationary gaussian noise)

Bias correction: just a check:

use the software injection to "correct" the hardware injections

	Bias or factor		Corrected values		Bias or factor		Corrected values		Bias or factor		Corrected values	
h	9.92E-01	1.00E+00	5.46E-24	5.60E-24	9.67E-01	9.74E-01	7.80E-24	7.63E-24	1.08E+00	1.07E+00	2.43E-23	2.64E-23
eta	-0.144	-0.073	1.000	0.998	0.023	0.014	0.155	0.173	0.093	0.133	-0.451	-0.454
psi	-5.108	-32.624	6.218	12.110	0.235	-0.064	26.714	27.002	5.280	7.783	-38.217	-38.672
			Residual error				Residual error				Residual error	
h			0.034	0.059			-0.060	-0.080			-0.119	-0.046
eta			0.003	0.001			-0.005	0.013			0.064	0.061
psi			18.926	24.818			1.275	1.563			-1.093	-1.548

Conclusions

- The correction of the Doppler, Einstein and spin-down is very good
- The estimated parameters are not completely satisfactory, there are biases due to the holes and Wiener correction that cause the non-orthogonality of the signal 5-vects
- We are working to reduce these biases.