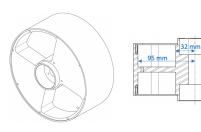
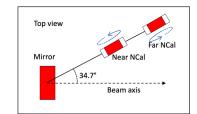
Virgo NCal update LVK March 2021 meeting

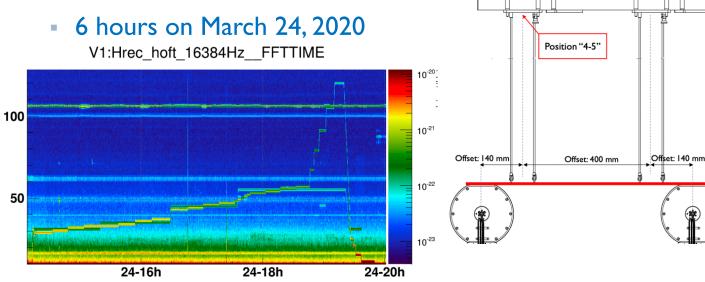
D. Estevez, B. Mours, T. Pradier

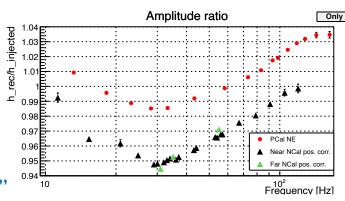
IPHC-Strasbourg

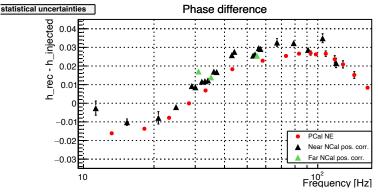




O3 setup


Ŧ


- Two NCals tested during O3
 - At 1.27 and 1.95 m from the mirror
- Most useful data set:

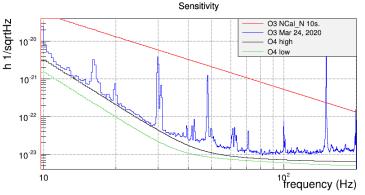


1269094100.00 : Mar 24 2020 14:08:02 UTC dt:2.00s nAv:10

O3 results

- Accurate FEM simulation
- Results published: <u>CQG 38, 075012</u>
 - "Newtonian calibrator tests during the Virgo O3 data taking"
- Probing h(t) up to 120 Hz (rotor @ 60 Hz)
- Same shape as PCal
- 3% amplitude offset between PCal and NCal
- Systematic uncertainties
 - At the level of the PCal uncertainties
 - Dominated by NCal-mirror distance

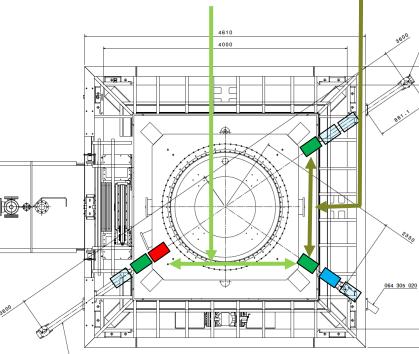
Parameter	uncertainty	formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
NCal to mirror distance d	$6.4 \mathrm{~mm}$	$4\delta d/d$	2.02	1.31
NCal to mirror angle Φ	5.0/3.3 mrad	$\delta\Phi\sin\Phi$	0.28	0.19
NCal vertical position z	$1.3 \mathrm{~mm}$	$5/2(z/d)^2$	0.03	0.01
Rotor geometry	see table 1		0.53	0.53
Modeling method	see end of section 4		0.018	0.017
Mirror torque from NCal	see end of section 4		0.05	0.03
Total	quadratic sum		2.1	1.4


O4 foreseen NCal operations

O4 goals

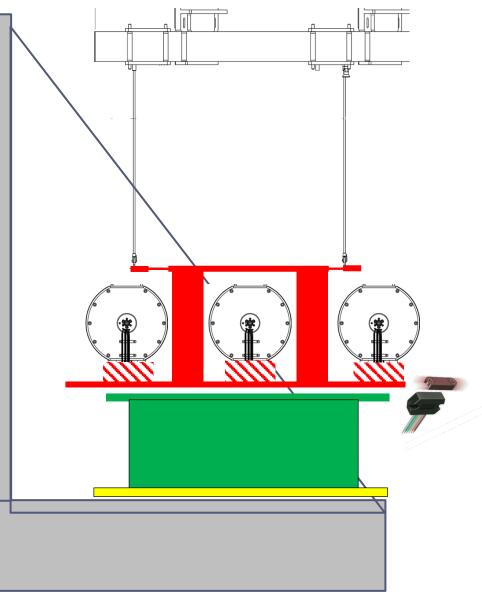
- Validate h(t) within 1% in the 10-200 Hz frequency range
- Add a permanent NCal monitoring line

NCal foreseen operations during O4

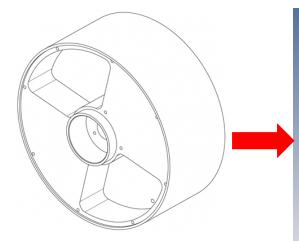

- Dedicated commissioning shifts to:
 - Compare NCals strength by swapping NCals,
 - Extract mirror-NCal relative position by comparing NCal amplitudes
 - Check vertical position by moving the NCal along the vertical axis
 - Search for induced NCal noises, …
- Weekly, calibration period:
 - Frequency scan and check of the mirror-NCal position
 - Should not take too much time (less than half an hour) \rightarrow NCal signal should be large enough
- Permanent line(s) for h(t) monitoring
 - Strong enough to get a meaningful result
 - Not to strong to avoid sidebands
- \rightarrow build more and better NCals and improve there position survey

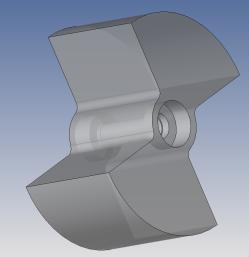
- I close NCal (red) for high frequency check
 - At I.3 m from the mirror
 - Same distance as O3 NCal_N
- 3 NCals (green) for mirror position control
 - Same mirror distance to reduce model uncertainties
 - At 1.7 m from the mirror
 - Attenuation factor vs O3 NCal_N: 2.9
- I Far NCal (blue) for permanent line
 - At 2.1 or 2.5 m from the mirror
 - Attenuation factor vs O3 NCal_N: 6.8/13.7
 - Could be installed on any side;
 - Around 30 Hz (in h(t)) ?
- ▶ \rightarrow Build 5+1 new NCals + positioning system

Tentative layout for O4


Expect to know the relative positions of North NCals within 0.1- 0.2 mm South NCals within 1-2 mm

New NCal supports


3 NCal slots


- Only one or two slots used
- Simple soft suspension
 - Coarse filtering of NCal vibrations
- Bottom reference
 - Fixed to the vacuum chamber base
 - Relative position measurement
- Design in progress

Improving the NCal rotor

- Remove:
 - the external ring
 - the central disk
- Make it thicker
- Benefit
 - Force x 2
 - Simpler geometry: better metrology and prediction
- Drawbacks:
 - Air motion \rightarrow limited rotation frequency
 - unless going under vacuum (not foreseen for O4)
 - Expect to reach close to 50 Hz (rotor speed)
 - Current test: 70 Hz achieved without the plexiglass cover but with the external ring
- Rotor to be used for the absolute calibration, mirror position control & permanent line

Other rotor improvements

Change motor

- 50 W motor replaced by a 70W motor
- → able to run the O3 NCal (with cover) up to 100 Hz (200 Hz for h(t))
 - Rotor be used for the high frequency check
- Reliability
 - Ongoing work to find the right bearings for
 - Noise reduction
 - Long lifetime for the periodic calibration and the permanent line
 - Rotor balancing
- Rotor speed control to be improved
 - Must slave the NCal rotation on the GPS

- There should be more and better Virgo Ncals for O4
- The NCal systematic uncertainties might be smaller than for Pcal
- ... but planning is tight and we are late (COVID doesn't help...)