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Abstract. Gravitational Wave (GW) burst detection algorithms typically rely on the
hypothesis that the burst signal is “locally stationary”, that is it changes slowly with frequency.
Under this assumption, the signal can be decomposed into a small number of wavelets with
constant frequency. This justifies the use of a family of sine-Gaussian templates in the
Omega pipeline, one of the algorithms used in LIGO-Virgo burst searches. However there
are plausible scenarios where the burst frequency evolves rapidly, such as in the merger phase of
a binary black hole and/or neutron star coalescence. In those cases, the local stationarity
of sine-Gaussians induces performance losses, due to the mismatch between the template
and the actual signal. We propose an extension of the Omega pipeline based on chirplet-
like templates. Chirplets incorporate an additional parameter, the chirp rate, to control the
frequency variation. In this paper, we show that the Omega pipeline can easily be extended
to include a chirplet template bank. We illustrate the method on a simulated data set, with a
family of phenomenological binary black-hole coalescence waveforms embedded into Gaussian
LIGO/Virgo–like noise. Chirplet-like templates result in an enhancement of the measured signal-
to-noise ratio.

1. Motivations

Current searches for gravitational wave transients in LIGO-Virgo data focus on two signal
classes: short unmodelled bursts and longer quasi-periodic signals from inspiralling black hole
and/or neutron star binaries as predicted by post-Newtonian approximations. To account
for intermediate scenarios, we consider “chirping burst” GW target signals that exhibit
characteristics from both the above categories: a short duration and a “sweeping” frequency.

We propose here an extension of the Omega pipeline [3] (originally known as Q−pipeline)
that searches for chirping bursts. The Omega pipeline projects the data over a family of sine-
Gaussian templates with fixed frequency. The idea is to replace these templates by frequency
varying waveforms, referred to as chirplets.

In this paper, we first define chirplets and the related chirplet transform. We discuss
the implementation of the chirplet transform and its insertion into the Omega pipeline, with
attention to how the chirplet template bank is built. Finally, we present a few examples using
simulated data.
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chirplet: f=350.0 Hz, Q=50, d=-5000.0 Hz/s

Figure 1. Example of a chirplet

2. From wavelets to chirplets

2.1. Definition of chirplets
Chirplets are defined in the time domain as:

ψ(τ) ≡ A exp

(

−(2πf)2

Q2
(τ − t)2

)

exp
(

2πi
[

f(τ − t) + d/2 (τ − t)2
])

, (1)

with A = (8πf2/Q2)1/4, a normalization factor ensuring that
∫

|ψ|2 = 1. t and f are the center
time and frequency, respectively and Q is the dimensionless quality factor. See in Fig. 1 for an
example of a chirplet.

The main difference from a sine-Gaussian waveforms is the chirp rate, an additional term in
the phase denoted d that changes the chirplet frequency linearly in time as f(τ) = f + d(τ − t).
The chirp rate controls the slope of the frequency evolution. When d = 0, we retrieve standard
sine-Gaussians. Chirplets are thus associated with a four-dimensional parameter space instead of
three for sine-Gaussians. In the sequel, we will concatenate all those parameters into a descriptor
θ ≡ {t, f,Q, d}.

2.2. Chirplet transform
The chirplet transform T is obtained by correlating the data with the chirplets defined in the
previous section. In the frequency domain, it reads:

T [x;θ] =
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where X(·) and Ψ(·;θ) denotes the Fourier transform of the (whitened) data stream x(·) and
chirplet ψ(·) with descriptor θ resp.

The chirplet Fourier transform can be expressed as

Ψ(ξ;θ) = A exp

(

−Q̃
2

4

(ξ − f)2

f2

)

, (3)



where A = [(Q̃4/Q2)/(2πf2)]1/4 is written in terms of a “complex-valued” quality factor
Q̃ = Q

√
z/|z| where z = 1 + id∆2

t with the chirplet duration1 ∆t = Q/ (2
√
πf).

3. Building template banks with chirplets

By varying the chirplet parameters, we obtain a continuous signal space. In this space, we
need to select a finite-size family of representatives which will be used to analyze the data.
The coverage of the chirplet space has to meet two conflicting goals i.e., satisfy a worst case
mismatch with a minimum number of templates. We adopt the method proposed in [4, 3] which
consists of sampling the space with equi-spaced templates using the intrinsic metric deduced
from the mismatch T

[

ψ(θ′);θ
]

between two neighboring templates with a small discrepancy
δθ ≡ θ′ − θ in their parameters. The metric results from the second-order expansion of the
mismatch µθ(δθ) ≡ 1− T [ψ(θ + δθ);θ] ≈ δs2 when δθ → 0 and leads to2:

δs2 =
Q4d2 + 16π2f4

4Q2f2
δt2 +

2 +Q2

4f2
δf2 +

δQ2

2Q2
+

Q4

128π2f4
δd2 − Q2d

2f2
δtδf − δfδQ

Qf
. (4)

There are several differences and additional terms from the sine-Gaussian metric, due to
the non-zero chirping rate. Along the time axis and for small f . Q

√
d, the sampling step

δt ∝ f/(Qd) is finer than that of the sine-Gaussian case δt ∝ Q/f . We note also that the
sampling step along the chirping rate axis scales with δd ∝ (f/Q)2. We thus expect to get many
chirplets in the low-frequency band and for large values of Q.

The chirplet space equipped with the above metric (off-diagonal terms being neglected) can
be discretized by a cubic lattice with templates placed at the vertices. The worst case occurs
when the real signal is farther apart from all vertices, at the center of the cube. Let us denote
δs = µ1/2, this worst-case distance, which corresponds to the half-length of the cube diagonal

and assign a maximum value µ
1/2
max that we can tolerate. Since we are in a four-dimensional

space, the length ℓ of the cube edge is equal to that of its half-diagonal. Therefore, we must
have ℓ ≤ √

µmax. The discretization along each axis of the parameter space which results directly
from this condition ensures that µθ(θ − θn) ≤ µmax for any θ with θn the closest vertex of the
lattice. Fig. 2 shows an example of a chirplet bank resulting from this template placement
scheme.

In Fig. 3, we apply the same scheme in two different settings. In both cases we computed the
number of templates necessary to cover the signal space in the sine-Gaussian (standard Omega)
and chirplet (chirpletized Omega) cases. This computation is done at a fixed time t. We compare
the result to the estimate given by the ratio of the whole space volume V =

∫

|µ⋆|1/2d3θ⋆ (where
θ⋆ = {f,Q, d} and δs2 = |µ⋆| denotes the metric in Eq. (4) without the components associated
to the time axis) to the size of a cubic element of the lattice. We find:

N ≡ V/ℓ3 ∝ f−2
minQ

3
maxdmax, (5)

where we assume that for each coordinate the lower boundaries (min) are much smaller than
the higher boundaries (max).

It is important to note that both the count and estimate are obtained assuming an infinite
bandwidth. Since the data are sampled, we are restricted to a limited Nyquist frequency.
Chirplets with frequency exceeding this limits are aliased and have to be discarded. Fig. 3
also show the number of non-aliased chirplets. This number is about a factor of 10 larger than
the number of sine-Gaussians required to cover the entire parameter space.

1 By definition, ∆t ≡ 2
√
π
∫
(τ − t)2ψ2(τ )dτ .

2 This calculation assumes that the detector is white. Contrarily to the sine-Gaussian case, this approximation
has significant effect since the chirplet frequency varies across the detector bandwidth.
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Figure 2. Example of a chirplet family resulting from the template placement procedure
presented in Sec. 3. In this graph, each box represents the time-frequency tile associated with
a chirplet.

102

103

104

105

101 102 103

nu
m

be
r 

of
 te

m
pl

at
es

max chirping rate (Hz/s)

f=[16.0 Hz, 1024.0 Hz] Q=[3, 50] mu=0.20

chirplet (asymptotic estimate)
chirplet (count, includes aliased chirplets)

chirplet (count, aliased chirplets discarded)
 standard Omega pipeline

102

103

104

105

106

101 102

nu
m

be
r 

of
 te

m
pl

at
es

maximum chirp mass (solar mass)

f=[16.0 Hz, 1024.0 Hz] Q=[3, 50] min chirp mass =1.0 solar mass mu=0.20

chirplet (asymptotic estimate)
chirplet (count, includes aliased chirplets)

chirplet (count, aliased chirplets discarded)
 standard Omega pipeline

Figure 3. Size of the chirplet template bank in two cases: (left) assuming chirp rate limits
between ±dmax uniformly in frequency; (right) assuming frequency dependent limits consistent

with the Newtonian model of the inspiralling binary chirp: CM
5/3
minf

11/3 . d . CM
5/3
maxf11/3.

Two comments can be made at this point: the larger number of templates indicate that
with chirplets, we define and explore a much larger signal space than with sine-Gaussians (we
investigate this question further in Sec. 5). As the computing cost scales approximately linearly
with the number of templates, analyzing the data with chirplets requires with a ten-fold increase
in computing resources (a factor that will be rapidly absorbed by the exponential growth of
computing power).



4. From “standard” to “chirpletized” Omega

In this session we discuss other aspects of the analysis pipeline, in addition to the implementation
of the chirplet template bank.

4.1. Filtering
The modulus of Ψ(·) in Eq. (3) is a Gaussian function as in the sine-Gaussian case. This
allows the use of the same filtering scheme as in the standard Omega pipeline to generate the
chirplet transform. The Omega scheme [3] operates in the frequency domain following Eq. (2).
It consists in multiplying the Fourier transform of the data, computed with the FFT algorithm,
with that of the templates and take the inverse Fourier transform of the product. Omega uses
a bi-square frequency window that approximates the Gaussian shape. The compact support of
the bi-square window prevents aliasing.

This scheme can be applied to the chirplet case with two differences. First, the template Ψ is
now complex, thus we need to multiply the data spectrum both in modulus and phase. Second,

the template bandwidth now results from the quadratic sum ∆2
f = (∆finite size

f )2+(∆chirp
f )2 of two

components, one due to the finite size of the chirplet ∆finite size
f = 1/∆t and the other due to its

sweeping frequency ∆chirp
f = d∆t, where ∆t is the chirplet duration (defined above). According

to [3], the width of the bi-square window should be set to the chirplet frequency bandwidth ∆f

rescaled by a factor of
√
11.

4.2. Pre- and post-processing
In this paper we focus on a single-detector network, where most of the pre- and post-processing
can be adopted from the standard Omega pipeline. Pre-processing consists of whitening the
input data stream. Post-processing consists of selecting among the chirplets with partial time
and frequency overlap to the one with maximum correlation with the data. Each chirplet is
associated with a time-frequency tile, defined by [t ± ∆t/2, f ± ∆f/2] where ∆t and ∆f are
the chirplet duration and bandwidth, respectively. Two chirplets overlap if their time-frequency
tiles overlap.

5. Performances of Chirpletized Omega

In this section we present a comparison between the standard version of the Omega pipeline,
which uses sine-Gaussian templates, and its chirpletized version. We identify cases where we
can expect advantages from analyzing the data with chirplets.

5.1. Analyzing chirplets with sine-Gaussians
The signal space associated with sine-Gaussians is contained in the larger space associated with
chirplets. We estimate the signal-to-noise ratio (SNR) loss occurring when analyzing a chirplet
by correlating this signal against a sine-Gaussian template bank. The chirplet parameters have
been set to Q = 50, f = 256 Hz and d = 2048 Hz/s. Those parameters correspond to observable
physical signals in the LIGO/Virgo frequency band (for instance, the selected chirping rate is
approximately that of an inspiralling binary chirp with total mass M ∼ 3M⊙ – assuming equal
masses – at f = 256 Hz according to the Newtonian model). Fig. 4 presents the result of this
analysis. Consistently to the metric estimate, the loss is

√
128πf2/(dQ2) ∼ 50% in the present

case. Note also that the maximum correlation is shifted to lower Q which may lead to a possible
bias in the estimation of this parameter.

5.2. Analyzing inspiralling binary chirps with chirplets
One case study — As an illustration, we show here results from chirpletized Omega on
simulated Gaussian noise, colored with the spectral characteristics of LIGO/Virgo noise with
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Figure 4. Correlation measurement between a chirplet and a sine-Gaussian template bank.
The parameters of analyzed waveform is indicated with a black cross in this diagram.

simulated gravitational wave signals. The signal we consider here is the phenomenological
approximation introduced in [2] of a coalescing binary black-hole chirp signals (including the
inspiral, merger and ringdown parts of the coalescence).

In Fig. 5, we compare results from the standard and chirpletized Omega pipeline for this
signal embedded in simulated Gaussian noise at large SNR. Chirplets with a positive slope are
preferred to sine-Gaussian with constant frequency: the correlation of the most significative
chirplet is, in this example, ∼ 45% larger than the most significative sine-Gaussian. Work is
currently in progress to understand how the background in chirpletized Omega is different from
standard Omega. Preliminary studies in Gaussian noise suggest that the background rates are
comparable, so that we can expect an increase of ∼ 30−40% in distance reach by using chirplets.

Note that the chirplet slope provides indication of the frequency evolution of the observed
signal and thus may be very useful in the a posteriori interpretation of an event.

Systematic study — We also performed a more systematic comparison over a population of
inspiralling binaries. We considered a total of 5500 binaries with equal mass components. The
total massM is extracted from a flat distribution in the 4−100M⊙ range. The signal amplitudes
are scaled so that the SNR is distributed over an interval ranging from ∼ 10 to ∼ 103.

We obtain a measurement of the injected SNR from the amplitude of the most significant
template. In the ideal case where signal and template are identical, the measurement equals the
injected value. In Fig. 6, we show the relative difference of the SNR measured by chirpletized
Omega and standard Omega. Chirpletized Omega measures a higher SNR across the mass range.
However, there are two regimes: for the high-mass range M & 60M⊙, the SNR improvement is
small (∼ 5%) while it is more pronounced (∼ 20%) for the low-mass range M . 60M⊙. The
improvement may go upto ∼ 40% for M . 20M⊙.

Generally speaking, the spectrum of the GW chirp is shifted toward low frequencies when the
binary mass increases. The frequency associated with the innermost stable circular orbit (ISCO),
which corresponds to the transition between inspiral and merger phase of the coalescence, is



Figure 5. (top/left) Coalescing black-hole binary (with m1 = 14M⊙ and m2 = 16M⊙)
signal in simulated Gaussian LIGO/Virgo-like noise. (top/right) Spectrogram (bottom/left)
Eventgram for standard Omega (using sine-Gaussian templates only) (bottom/right) Eventgram
for chirpletized Omega (using chirplets).

below 70 Hz for masses M & 60M⊙. In this condition, the chirp phase of the waveform with
a spectral content at frequencies below ISCO is outside the detector sensitive band and thus
does not contribute significantly to the SNR. Sine-Gaussian waveform provides a good enough
fit of the remaining few waveform cycles associated with the merger and ringdown parts of the
coalescence. This explains the two regimes in Fig. 6.

6. Status and future plans

The single-detector network search code is ready and it can be downloaded [1] and used to
produce chirpletized Omega scans similar to the one we show in Fig. 5.

We continue to study the response of the code to real noise and we aim at a complete,
operating pipeline using chirplets as templates, and new clustering strategies tailored to these
templates, as well as a multi-detector network strategy.
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