MONVIRG

Advanced Virgo DQ Model

Virgo detchar group

Virgo note VIR-0261A-15

 \rightarrow Target = search groups

Rule #1: Keep it simple

Searches only need 2 inputs:

1/ when to run

2/ what to discard

Rule #2: Optimize

Limit the use of generic DQ input

 \rightarrow be search-specific

\mathbb{R} State flags (1/0)

State flags = DQ flags monitoring the Virgo experiment

- high-level detector status (science, locked...)
- sub-system status (Detector Monitoring System)
- environment (Band-limited RMS)
- processes (h(t) reconstruction, frame generation/transfer...)
- hardware injections

How are they used?

1/ For detchar noise investigations

2/ To define valid time segments for analyses

3/ To define a veto recipe

Input for online analyses

→ A relevant selection of state flags is provided in a 16-bit state vector (@1Hz) → An appropriate bit mask is to be applied by online searches to define valid time segments

Input for offline analyses (transient & continuous)

 \rightarrow All the state flags will be uploaded in DQSEGDB

 \rightarrow A relevant selection of state flags is to be downloaded from DQSEGB and combined to define valid time segments

Old-fashioned language: valid segments = (science – CAT1 flags – injections)

A veto is defined by 3 ingredients

1/ a veto recipe: set of conditions (solely based on aux. data). The veto is **ON** if all conditions are met, **OFF** otherwise

2/ a veto procedure: when a veto is ON, a search trigger is rejected if a set of conditions using the trigger parameters is checked

3/ a veto validity period: a veto recipe/procedure is only valid for a limited time.

In general, a veto is no longer a pre-defined list of time segments. It should be seen as another rejection cut in an analysis pipeline (no associated dead-time!)

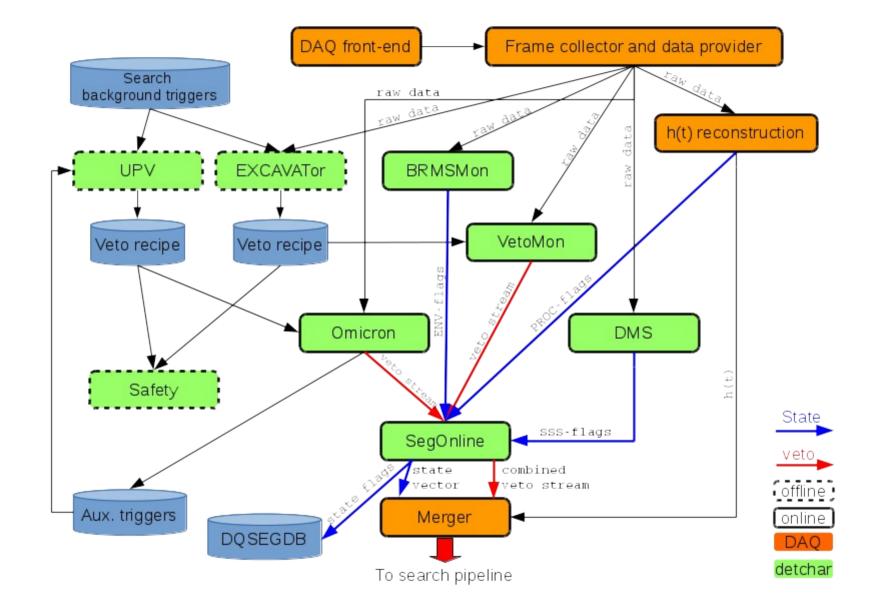
Veto procedure → mainly search group's responsibility

Veto recipe \rightarrow "cooked" for every search Statistic tools (UPV+EXCAVATor) over the search background triggers

Veto safety to be checked systematically!

Online searches: "we provide the best we can"

→ one veto stream/pipeline (V1:MBTA_VETO, V1:CWB_VETO...) sampled @100Hz taking 3 values: 1 = the veto is ON, 0 = the veto is OFF, -1 = UNKNOWN


 \rightarrow the veto stream is a combination of many veto recipes

 \rightarrow the veto recipes are tuned offline using the most recent search triggers over the last 2 or 3 days.

 \rightarrow the veto recipes are applied to online raw data and triggers (omicron) \rightarrow veto streams

→ all the veto streams are combined into one: V1: [PIPELINE]_VETO

Veto implementation

Offline searches: "vetoes must be optimal"

- \rightarrow develop search-specific veto procedures
- \rightarrow tune and apply the veto recipe on the same data set.
- \rightarrow tailor ad-hoc vetoes based on the experience of the run
- $\rightarrow\,$ define veto validity periods based on the noise stationarity
- \rightarrow tune the vetoes for every LIGO-Virgo searches. Search group's involvement is mandatory

Spectral noise rejection

- $\rightarrow\,$ Topic still in discussion in the Virgo detchar group
- \rightarrow Lines are tracked by NoEMi and stored in a database (LineDB)
- \rightarrow Lines are identified individually
- \rightarrow Search pipelines must query LineDB to discard false candidates