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Abstract : in a preceding note (VIR-0164A-15), we addressed the case of a slab heated by absorption 
of light power at the surface. We derived a simple model allowing to numerically compute the 
temperature field, the deformation and the lensing  for an arbitrary 2D distribution of incident power 
through analytical transfer functions. We now do the same for a bulk absorption. 

1) Basic equations 

The plate (typically a compensation plate) is assumed of thickness  h  and infinite in the transverse 
plane (which means that we consider the heated zone small compared to its overall diameter) the 
coordinates are as follows : [0 ] , ] , [z h x y≤ ≤ − ∞ < < ∞ .  A light beam of power profile  ( , )H x y is 

incident on the face 0z = . The material the plate is made of has a linear absorption coefficient 
-1(m )β , so that there is a source of heat -3( , ) exp( ) (W.m )H x y zβ β− inside the slab. The 

Fourier equation reads therefore :  

( , , ) ( , ) exp( )K T x y z H x y zβ β− ∆ = −  

Where ( , , )T x y z  is the temperature field, and K  the thermal conductivity. We firstly look for a 

special solution 0( , , ) ( , ) exp( )t x y z t x y zβ= − .  By taking the Fourier transform of the equation, we 

get : 
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The general solution is the sum of the preceding, plus a harmonic function (thus satisfying the 
homogeneous heat eq.), of Fourier transform 

1( , ) ( , ) ( , )kz kzt p q A p q e B p q e−= +ɶ  

The arbitrary functions A and B are determined by the boundary conditions. The boundary conditions 
express the thermal equilibrium of the plate which evacuates heat by thermal radiation. We consider a 

weak excess of temperature with respect to the external 0T , so that we take a linear version of the 

Stefan heat flux : 3
0 14 ( )sT t t+  where s  is the Stefan constant. The boundary condition at 0z = gives  

[ ]3
0 1

0

( , , )
4 ( , ,0) ( , ,0)

z

T x y z
K sT t x y t x y

z =

∂ − = − + ∂ 
 

After a Fourier transform, we get 
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We introduce the reduced radiation constant 3
04 /sT Kκ ≡  ( -1m ),  and we obtain a first equation 

0(1) ( ) ( ) ( )k A k B tκ κ κ β+ − − = − + ɶ  

The same way, for the face z h= , we obtain : 

0(2) ( ) ( ) ( )kh kh hk e A k e B e tβκ κ κ β− −− − + = − ɶ  

1.1  Transfer function for the temperature field 

The solution of the system (1)-(2) is such that finally, for the excess temperature with respect to the 

xternal temperature 0T   : 
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making clear that there is no singularity for k β= . Anyway, in the case of a realistic numerical 

implementation, the two lowest values of k  are 0k =  and  2 /k Fπ=  where F F×   is the square 

window on which the plate is discretized. Even for a 1m side window, the value of  2 / Fπ  is much 

larger than even strong absorption coefficients, so that the case  k β=  does not exist in practice . We 

have thus the isotropic,( i.e. function of  k  only) transfer function relating the 2D Fourier transform of 
the temperature field to the 2DFT of the incoming light power distribution : 

[ ]1(4) ( , , ) [ , , ] ( , )T x y z p q z H x y = Θ × 
-1
F F  

with  

[ ] [ ]{ }
( )

/ 2 ( / 2)

1 2 2

cosh ( / 2) sinh ( / 2)
(5) ( , , )

h z he e U k z h V k z h
p q z

K k

β ββ
β

− − − − − + −
Θ =

−
 

For 0p q k= = = , this is : 
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For very small values of β h, eq.(5) reduces, at first order in β   to : 
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so that in this case, we have : 

[ ]1(0,0, ) ( ) ( 1)
2

z h z h z h
K

β κ β
κ

Θ = + − ≪  

1.2  Transfer function for the thermal lens 

If now we are interested with the thermal lensing, we know that the lens ( , )L x y  is related to the 

excess temperature field by : 
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So that we obtain for the transfer function : 
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Which for very small values of hβ  is simply : 
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It is useful to know the value of  (7) at 0k =  : 
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Which for small hβ   reduces to: 
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2) Numerical processing 

The process to obtain a temperature, then a lens from an arbitrary incoming heating beam is as follows 

(see note VIR-0164A-15 for details) :  Take the 2D-FT of ( , )H x y , giving ( , )H p qɶ . Multiply by the 

transfer function ( , )n p qΘ , then take the inverse 2D-FT  (Eq. 4). We give three fancy examples. 



 

2.1  Example 1 

The heating beam has a square transverse power pattern and is located anywhere (see Fig.1) 

Fig.1 : a squared beam (arb. Units) 

The surface temperature (at 0z = ) is as follows, using 1Θ  (see Fig.2) 

 



Fig.2 : Surface temperature (arb. Units) 

The thermal lens has the following pattern, using 2Θ  (see Fig.3) 

 

Fig.3 : Thermal lens (arb. Units) 

2.2 Example  2 : the  incoming beam has an exotic pattern, with 4 power peaks (see. Fig.4) :

 



Fig.4 

The surface temperature is as follows (see Fig.5) : 

 

Fig.5 

Whereas the lens has the following pattern (see Fig. 6) : 

 

Fig.6 



2.3  Example 3 : the heating beam has a ring-like  power profile (Fig.7) : 

 

Fig.7 

 

The resulting temperature at the surface is as follows (Fig.8) : 

 

Fig.8 

 

 



The thermal lens is (Fig.9) : 

 

Fig.9 

 


