Heating of a plate by absorption of light

II - Bulk absorption

Jean-Yves Vinet 30/05/15
VIR-0260A-15

Abstract : in a preceding note (VIR-0164A-15), we addressed the case of a slab heated by absorption of light power at the surface. We derived a simple model allowing to numerically compute the temperature field, the deformation and the lensing for an arbitrary $2 D$ distribution of incident power through analytical transfer functions. We now do the same for a bulk absorption.

1) Basic equations

The plate (typically a compensation plate) is assumed of thickness h and infinite in the transverse plane (which means that we consider the heated zone small compared to its overall diameter) the coordinates are as follows : $[0 \leq z \leq h],]-\infty<x, y<\infty$ [. A light beam of power profile $H(x, y)$ is incident on the face $z=0$. The material the plate is made of has a linear absorption coefficient $\beta\left(\mathrm{m}^{-1}\right)$, so that there is a source of heat $\beta H(x, y) \exp (-\beta z) \quad\left(\mathrm{W} . \mathrm{m}^{-3}\right) \quad$ inside the slab. The Fourier equation reads therefore :

$$
-K \Delta T(x, y, z)=\beta H(x, y) \exp (-\beta z)
$$

Where $T(x, y, z)$ is the temperature field, and K the thermal conductivity. We firstly look for a special solution $t(x, y, z)=t_{0}(x, y) \exp (-\beta z)$. By taking the Fourier transform of the equation, we get :

$$
\tilde{t}_{0}(p, q)=\frac{\beta \tilde{H}(p, q)}{K\left(k^{2}-\beta^{2}\right)} \quad, \quad k \equiv \sqrt{p^{2}+q^{2}}
$$

The general solution is the sum of the preceding, plus a harmonic function (thus satisfying the homogeneous heat eq.), of Fourier transform

$$
\tilde{t}_{1}(p, q)=A(p, q) e^{-k z}+B(p, q) e^{k z}
$$

The arbitrary functions A and B are determined by the boundary conditions. The boundary conditions express the thermal equilibrium of the plate which evacuates heat by thermal radiation. We consider a weak excess of temperature with respect to the external T_{0}, so that we take a linear version of the Stefan heat flux : $4 s T_{0}^{3}\left(t+t_{1}\right)$ where s is the Stefan constant. The boundary condition at $z=0$ gives

$$
-K\left[\frac{\partial T(x, y, z)}{\partial z}\right]_{z=0}=-4 s T_{0}^{3}\left[t(x, y, 0)+t_{1}(x, y, 0)\right]
$$

After a Fourier transform, we get

$$
K\left[\beta \tilde{t}_{0}+k A-k B\right]=-4 s T_{0}^{3}\left[\tilde{t}_{0}+A+B\right]
$$

We introduce the reduced radiation constant $\kappa \equiv 4 s T_{0}^{3} / K\left(\mathrm{~m}^{-1}\right)$, and we obtain a first equation

$$
\text { (1) }(k+\kappa) A-(k-\kappa) B=-(\kappa+\beta) \tilde{t}_{0}
$$

The same way, for the face $z=h$, we obtain :

$$
\text { (2) }(k-\kappa) e^{-k h} A-(k+\kappa) e^{k h} B=(\kappa-\beta) e^{-\beta h} \tilde{t}_{0}
$$

1.1 Transfer function for the temperature field

The solution of the system (1)-(2) is such that finally, for the excess temperature with respect to the xternal temperature T_{0} :
(3) $\tilde{T}(p, q, z)=\frac{\beta \tilde{H}(p, q)}{K\left(k^{2}-\beta^{2}\right)} e^{-\beta h / 2}\left\{e^{-\beta(z-h / 2)}-U \cosh [k(z-h / 2)]+V \sinh [k(z-h / 2)]\right\}$
with

$$
\begin{aligned}
& U(k, \beta) \equiv \frac{\kappa \cosh (\beta h / 2)+\beta \sinh (\beta h / 2)}{\kappa \cosh (k h / 2)+k \sinh (k h / 2)} \\
& V(k, \beta) \equiv \frac{\kappa \sinh (\beta h / 2)+\beta \cosh (\beta h / 2)}{\kappa \sinh (k h / 2)+k \cosh (k h / 2)}
\end{aligned}
$$

making clear that there is no singularity for $k=\beta$. Anyway, in the case of a realistic numerical implementation, the two lowest values of k are $k=0$ and $k=2 \pi / F$ where $F \times F$ is the square window on which the plate is discretized. Even for a 1 m side window, the value of $2 \pi / F$ is much larger than even strong absorption coefficients, so that the case $k=\beta$ does not exist in practice. We have thus the isotropic, (i.e. function of k only) transfer function relating the 2D Fourier transform of the temperature field to the 2 DFT of the incoming light power distribution :

$$
\text { (4) } T(x, y, z)=\mathcal{F}^{-1}\left[\Theta_{1}[p, q, z] \times \mathcal{F}[H(x, y)]\right]
$$

with
(5)

$$
\Theta_{1}(p, q, z)=\frac{\beta e^{-\beta h / 2}\left\{e^{-\beta(z-h / 2)}-U \cosh [k(z-h / 2)]+V \sinh [k(z-h / 2)]\right\}}{K\left(k^{2}-\beta^{2}\right)}
$$

For $p=q=k=0$, this is:
$\Theta_{1}(0,0, z)=\frac{e^{-b}}{K \beta}\left[\cosh b+\frac{\beta}{\kappa} \sinh b-\frac{(z-h / 2)(\kappa \sinh b+\beta \cosh b}{1+\kappa h / 2}-e^{-\beta(z-h / 2)}\right] \quad(b \equiv \beta h / 2)$

For very small values of βh, eq.(5) reduces, at first order in β to :
(6) $\Theta_{1}(p, q, z)=\frac{\beta}{K k^{2}}\left[1-\frac{\kappa \cosh [k(z-h / 2)]}{\kappa \cosh (k h / 2)+k \sinh (k h / 2)}\right] \quad(\beta h \ll 1)$
so that in this case, we have :

$$
\Theta_{1}(0,0, z)=\frac{\beta}{2 K \kappa}[h+\kappa z(h-z)] \quad(\beta h \ll 1)
$$

1.2 Transfer function for the thermal lens

If now we are interested with the thermal lensing, we know that the lens $L(x, y)$ is related to the excess temperature field by :

$$
L(x, y)=\left[\frac{d n}{d T}+\alpha(1+\sigma)(n-1)\right] \int_{0}^{h} T(x, y, z) d z
$$

So that we obtain for the transfer function :

$$
\begin{equation*}
\Theta_{2}(p, q)=\left[\frac{d n}{d T}+\alpha(1+\sigma)(n-1)\right] \frac{2 \beta e^{-\beta h / 2}}{K\left(k^{2}-\beta^{2}\right)}\left[\frac{\sinh (\beta h / 2)}{\beta}-U \frac{\sinh (k h / 2)}{k}\right] \tag{7}
\end{equation*}
$$

Which for very small values of βh is simply :
(8)

$$
\Theta_{2}(p, q)=\left[\frac{d n}{d T}+\alpha(1+\sigma)(n-1)\right] \frac{2 a}{K k^{2}}\left[1-\frac{\kappa \sinh (a)}{a[\kappa \cosh (a)+k \sinh (a)]}\right] \quad(a \equiv k h /
$$

It is useful to know the value of (7) at $k=0$:

$$
\Theta_{2}(0,0)=\left[\frac{d n}{d T}+\alpha(1+\sigma)(n-1)\right] \frac{h e^{-b}}{K \beta}\left[\cosh b+\sinh b\left(\frac{\beta}{\kappa}-\frac{1}{b}\right)\right] \quad(b \equiv \beta h / 2)
$$

Which for small βh reduces to:

$$
\Theta_{2}(0,0)=\left[\frac{d n}{d T}+\alpha(1+\sigma)(n-1)\right] \frac{\beta h^{2}}{2 K \kappa}(1+\kappa h / 6)
$$

2) Numerical processing

The process to obtain a temperature, then a lens from an arbitrary incoming heating beam is as follows (see note VIR-0164A-15 for details) : Take the 2D-FT of $H(x, y)$, giving $\tilde{H}(p, q)$. Multiply by the transfer function $\Theta_{n}(p, q)$, then take the inverse 2D-FT (Eq. 4). We give three fancy examples.

2.1 Example 1

The heating beam has a square transverse power pattern and is located anywhere (see Fig.1)

Fig. 1 : a squared beam (arb. Units)
The surface temperature (at $z=0$) is as follows, using Θ_{1} (see Fig.2)

Fig. 2 : Surface temperature (arb. Units)
The thermal lens has the following pattern, using Θ_{2} (see Fig.3)

Fig. 3 : Thermal lens (arb. Units)
2.2 Example 2 : the incoming beam has an exotic pattern, with 4 power peaks (see. Fig.4):

Fig. 4
The surface temperature is as follows (see Fig.5) :

Fig. 5
Whereas the lens has the following pattern (see Fig. 6) :

Fig. 6
2.3 Example 3 : the heating beam has a ring-like power profile (Fig.7) :

Fig. 7

The resulting temperature at the surface is as follows (Fig.8) :

Fig. 8

The thermal lens is (Fig.9) :

Fig. 9

