WAVEGRAPH CLUSTERING FOR COHERENT WAVEBURST PRINCIPLES, APPLICATIONS AND IMPROVEMENTS.

P. Bacon<sup>1</sup> E. Chassande-Mottin<sup>1</sup> F. Salemi<sup>2</sup> G. Vedovato<sup>3</sup> Gayathri V.<sup>4</sup> A. Pai<sup>4</sup>

<sup>1</sup>APC, France

<sup>2</sup>AEI Hannover, Germany

<sup>3</sup>INFN Padova, Italy

<sup>4</sup>IISER TVM, India

Virgo week meeting - 2 May, 2016

#### Wavegraph :

- > is a new clustering scheme dedicated to cWB.
- Goal : Incorporate astrophysical informations in coherent GW burst searches at clustering step.
- improves performances of coherent searches for "chirp"-like signals
- has potential applications : BBH (considered here), eBBH, long bursts (could be connected to GRBs)

 $\rightarrow\,$  Sensitivity study of Wavegraph compared to cWB (standard configuration) for BBH waveforms.

# WAVEGRAPH : PRINCIPLES (2/3)

- > cWB represents data in a 3D space (time *t*, frequency *f*, timescale a)  $\rightarrow$  WDM transform
- > Chirp signals in this space are 1D paths : set of linked pixels.



## WAVEGRAPH : PRINCIPLES (3/3)

- > Exploring parameter space, one gathers many chirps
- > Wavegraph apply a clustering algorithm on this graph.



...so that a single cluster containing the observation is produced !

## WAVEGRAPH : APPLICATION TO MDC

- Mock Data Challenge description on O1 data : Sept 12 to Jan 19 → 49 days of effective live time
  - > SEOBNR non-spinning BBH waveforms
  - > Total mass range : 30 -150  $M_{\odot}$
  - > 20,000 injections
  - > Isotropic ( $\alpha, \delta$ ) distribution
- 2 Cuts : Minimal cWB cuts :  $c_c > 0.7$  and  $\rho > 6$
- Graph used for WG searches :
  - > same mass range as MDC
  - > timescales : 3 to 9
  - > 563 nodes in graph

# Application : reconstructed events vs. INJECTED SNR / RHO VS. NETCC



Number of reconstructed events as a function of injected SNR

(1) : SNR < 14 : cWB is more efficient ( $\sim 10 - 20\%$ )

(2): 14 < SNR < 30 : WG is more efficient (few % on few bins)

Recovered WG AND missed cWB : 545 events : complementarity WG identifies pixels for which correlation is the largest between detectors.

## EFFECTIVE RADIUS : CWB VS. WAVEGRAPH



Slightly lower effective radius for wavegraph due to missed low-SNR injection – to be investigating

Comparable in the high-mass range.

### **EXAMPLES** : RECOVERED INJECTIONS

Likelihood 208 - dt(ms) [7.8125:250] - dt(hz) [2:64] - npix 6 Likelihood 228 - dt(ms) [7.8125:250] - df(hz) [2:64] - npix 8 250 60 200 200 Frequency (Hz) Frequency (Hz) 40 150 150 40 100 50 50 43.5 43.2 43.4 43.6 43.8 44 44.2 42 42.5 43 Time (sec) : GPS OFFSET = 1127402990.000 Time (sec) : GPS OFFSET = 1127402990.000

FIGURE: Recovered injection by cWB. FIGURE: Recovered injection by cWB+WG.

Wavegraph recovers more pixels from the chirp signal,

and does not reconstruct non physical pixels.

### EXAMPLES : MISSED INJECTION

Likelihood 175 - dt(ms) [7.8125:62.5] - df(hz) [8:64] - npix 6





FIGURE: Recovered injection by cWB. FIGURE: Missed injection by cWB+WG.

Large null value  $\rightarrow$  low  $c_c \rightarrow$  event does not pass internal cWB cuts.

 $\Rightarrow$  Same margin for improvement.



 chirp path currently computed via stationary phase approximation :

$$t(f) = -\frac{1}{2\pi} \dot{\Psi}(f) \qquad a(f) = \frac{f_s}{2\pi} \sqrt{\frac{\ddot{\Psi}(f)}{2}}$$

- Exact numerical calculation directly from Wilson Daubechies Meyer (WDM) transform.
  - > Good agreement
  - > With WDM : lower number of pixels in the path
  - > Will build a full graph with this new algorithm.



- Wavegraph clustering uses phase information only
- χ<sup>2</sup> test : Amplitude information can be used to reject transient noise

Lead to reduction of the background tail

(Gayathri V., A. Pai)

- Wavegraph is a new clustering algorithm for cWB → include astrophysical information.
- For BBH waveforms, Wavegraph shows complementarity with cWB in the mid mass range.
- Pixels selected by WG have a larger correlation between detectors on average (larger c<sub>c</sub>).
- Margin for improvement :
- > Exact graph computed numerically directly from WDM.
- > Rejection of glitches thanks to a consistency test.