

NCal uncertainties NCal review for O4

VIR-0237A-24

March 8, 2024

F. Aubin, E. Dangelser, B. Mours, A. Syx, P. Van Hove

O4 NCal uncertainty budget

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\leq 10^{-3}$	$\leq 3 imes 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual co	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

NCal to NCal distance

North to South (N-S) Far reference hole distance

- Results from <u>2021</u> and <u>2023</u> geometrical surveys
 - Surveys provide several measurements per point Ο
 - Compute all N-S distances possible Ο
 - N-S Far reference hole distance = 4797.57 ± 0.23 mm \bigcirc
 - Uncertainty is taken as the RMS of the measurements Ο

NS far distance VRS 2021+2023

NCal to NCal distance NCal to reference hole distance

In order to compute the distance between two NCals on the North to South axis we will use the distance between the North and South far reference holes of 4797.57 ± 0.23 mm from the last row of table 3. To this value we will subtract the distance between the considered NCals rods (slot of the NCal on the suspended plate) and their associated far reference hole.

Table 10: Distances between each NCal to the far reference hole of the associated setup.

Table 10 from VIR-0029A-24 in TDS

NCal to NCal distance

Using the results of table 10 we can compute the distance between two NCals on the North to South axis shown in table 12. The uncertainty on these distances is taken as the quadratic sum of the North to South far reference hole distance uncertainty (0.23 mm from last row of table 3), twice the table 10 uncertainty (0.37 mm) due to the two NCals, and the plane uncertainty of 0.067 mm (see section 3 of VIR-1009C-22 on a possible horizontal tilt defect) for a total uncertainty of 0.58 mm.

NCals	Distance [mm]
NNN-NSN	3397.39 ± 0.58
NNF-NSF	4197.81 ± 0.58
NNN-NSF	3797.33 ± 0.58
NNF-NSN	3797.87 ± 0.58

Table 12 from VIR-0029A-24 in TDS

Table 12: Distances between two NCals on the North to South axis.

- NCal to NCal distance uncertainty = 0.58 mm
 - Near NCals (1.7 m) = 0.14 %
 - Far NCals (2.1 m) = 0.11 %

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\le 10^{-3}$	$\leq 3 \times 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Rotor	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual co	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

NCal to beam axis angle

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\leq 10^{-3}$	$\leq 3 \times 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual co	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

Worst case scenario with South Near reference hole position

Uncertainty on ϕ = 0.06° (1.05 mrad) = 0.06 %/sqrt(2) for 2 NCals \rightarrow

Table 4 from VIR-0029A-24 in TDS

x [mm]

 -1315.15 ± 0.34

 -2137.68 ± 0.34

y [mm]

 -908.40 ± 0.35

 -1477.12 ± 0.36

Object

North near

North far

Beam axis Х Figure 5 from VIR-0029A-24 in TDS

NCal to mirror distance

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\le 10^{-3}$	$\leq 3 \times 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	Rotor deformation at 21 Hz		0.03	$\leq 10^{-2}$
Residual co	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

Mirror position constrained within 5 mm around the mechanical center of the tower

• Using 2 NCals, the strain relative variation is about 0.01 %

Strain relative variation of 2 NCals as seen by the mirror

NCal twist

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\leq 10^{-3}$	$\leq 3 \times 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual co	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

Normalized strain h/ho for twisted rotor

→ Twist uncertainty (mechanical) = 0.1°

Setup with $\psi = 12^{\circ}$	Amplitud	le deviation [%]	at 1.7 m	Amplitu	de deviation [%] 2.1 m
North		5.2×10^{-4}			2.4×10^{-3}	
East	_	3.8×10^{-3}			3.2×10^{-3}	
South		6.6×10^{-4}			1.3×10^{-3}	

Table 9: Relative amplitude deviations for different NCal to mirror distances at a fixed $\psi = 12^{\circ} \pm \delta \psi = 0.1^{\circ}$.

Figure 1 from <u>VIR-0530A-23</u> in TDS

- Optimal twist ψ for maximal signal \approx 12°
 - Minimize the uncertainty

Setup	$\psi_{ m max}$ at 1.7 m	$\psi_{ m max}$ at 2.1 m
North	12.03°	11.68°
East	11.45°	11.55°
South	12.05°	12.15°

Table 8: Twist $\psi_{\rm max}$ associated to the maximum signal for each setup distances.

Tables 8 and 9 from VIR-0029A-24 in TDS

NCal vertical position

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\le 10^{-3}$	$\leq 3 imes 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual c	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

Using the survey measurements of the elevation of the reference plates we transfer this value to the elevation of the NCals relative to the reference plates.

NCal	axis elevation [mm]
NNN (1.7 m)	-3.52 ± 0.64
NNF (2.1 m)	-3.40 ± 0.78
NEN (1.7 m)	-3.87 ± 0.12
NEF (2.1 m)	-3.35 ± 0.12
NSN (1.7 m)	-8.18 ± 0.90
NSF (2.1 m)	-8.57 ± 0.90

Table 7: Axis elevation of each NCal.

Table 7 from VIR-0029A-24 in TDS

In the worst case scenario (8.57 mm with a 0.90 mm error) the elevation offset for a NCal is below 10 mm. This offset translates to a signal variation of $9 \times 10^{-3}\%$ at 1.7 m and $6 \times 10^{-3}\%$ at 2.1 m, using the simple analytic formula. The results of a FROMAGE computation are similar: $8 \times 10^{-3}\%$ at 1.7 m and $5 \times 10^{-3}\%$ at 2.1 m.

Rotor induced strain

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\le 10^{-3}$	$\leq 3 imes 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual coupling (including magnetic)		see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

,						
R4-10 rotor parameter advance	R4-10 rotor parameter advanced model (23°C) NCal 2f signal uncertainty					
name	mean value	uncertainty	formula	value (%)		
Density ρ (kg.m ⁻³)	1442.3	0.2	$\delta \rho / \rho$	0.014		
Thickness b left sector (12 sub-sectors) (mm)	104.416	0×10^{-3}	Sh /h	0.009		
Thickness <i>b</i> right sector (12 sub-sectors) (mm)	104.415	9 × 10	00/0	0.008		
r_{max} left sector (12 ext sub-sectors) (mm)	103.840	5×10^{-3}	Asr Ir	0.018		
r_{max} right sector (12 ext sub-sectors) (mm)	103.838	0 ~ 10	407 max / max	0.010		
$G (m^3.kg^{-1}.s^{-2})$	$6.67430 imes 10^{-11}$	1.5×10^{-15}	$\delta G/G$	0.002		
Temperature T (°C)	23	1.5	$\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$	0.024		
Modelling	Modelling Uncertainty					
FROMAGE grid uncertainty						
Opening angle and sector asymmetry uncertainty						
Remaining geon	netry uncertainty			$< 5 \times 10^{-4}$		
Total uncertainty from t	he rotor (quadratic	sum)		0.034		

Table 10 from VIR-0203A-24 in TDS

Density of the material

Metrology of machined rotors

FEM software for signal computing

11

Rotor induced strain Density of the material VIR-0160A-22 and VIR-0193A-24 on TDS

Figure 2 shows an outline of the faces and side of the cylinders with each measurement points shown as colored dots. There is a total of 40 points of measure on each cylinder to determine the volume. Points on one face are mirrored on the opposite face meaning for instance that " x_u " point on face up is associated to " x_d " on face down.

Figure 2: Outline of the faces and side of the cylinders, colored dots represent where the measures will be taken. From left to right, face up, face down, side.

In figure 2 we notice that the inner points (red colored points) are closer to each other than the outer points (blue colored points), the perimeter described by the outer points compared to the inner points is larger by a factor 2. To not bias the density we will then apply a weight of 0.5 on the interior points while computing the mean height.

- \rightarrow Density know up to 0.2 kg.m⁻³
 - Aluminum density uncertainty = 0.007 %
 - ► PVC density uncertainty = 0.014 %

R4-10 rotor parameter advanced model (23°C) NCal 2f signal					
name	mean value	uncertainty	formula	value (%)	
Density ρ (kg.m ⁻³)	1442.3	0.2	$\delta \rho / \rho$	0.014	
Thickness b left sector (12 sub-sectors) (mm) 104.416 9×10^{-3} $\delta b/b$ Thickness b right sector (12 sub-sectors) (mm) 104.415 9×10^{-3} $\delta b/b$					
r_{max} left sector (12 ext sub-sectors) (mm) 103.840 r_{max} right sector (12 ext sub-sectors) (mm) 103.838 5×10^{-3} $4\delta r_{max}/r_{max}$					
$G (m^3.kg^{-1}.s^{-2})$ 6.674 30 × 10 ⁻¹¹ 1.5 × 10 ⁻¹⁵ $\delta G/G$					
Temperature T (°C) 23 1.5 $\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$					
Modelling	Uncertainty			0.001	
FROMAGE grid uncertainty					
Opening angle and sector asymmetry uncertainty					
Remaining geometry uncertainty				$<5 \times 10^{-4}$	
Total uncertainty from the rotor (quadratic sum)				0.034	

Computation method	R4-01	R4-02	R4-03	R4-04
Weighted density [kg.m ⁻³]	2808.0	2808.2	2808.2	2808.1
Density ρ _{23°C} [kg.m^-3] =	2808.1			

Table 8 from VIR-0160A-22 in TDS

Measurements	Column 1 (21.2°C) Column 2 (21.35°C			
Mean diameter D [mm]	210.028	210.023		
Mean height <i>h</i> [mm]	109.864	109.865		
Mass m [kg]	10.6998			
Density ρ (kg.m ⁻³)	2811.0 2811.2			
Density $\rho_{23^{\circ}C}$ (kg.m ⁻³)	2810.8			

Table 1 from VIR-0859A-22 in TDS

Average v	alue	Cylinder 1	Cylinder 2 Cylinder 3 C		Cylinder 4	
D [mm	D [mm] 211.040 211.047 211.029		211.034			
h (weighted)	(weighted) [mm] 114.021 113.987 114.042		114.028			
m _{rescaled}	<i>m</i> _{rescaled} [kg] 5.7554 5.7535 5.7562		5.7554			
$a \left[\log m^{-3} \right]$	21°C	1443.0	1442.9	1443.1	1443.0	
p [kg.m]	23°C	1442.3	1442.2	1442.4	1442.3	
Density $\rho_{23^{\circ}C}$ [kg.m^-3] = 1442.3						

Table 4 from VIR-0193A-24 in TDS

Rotor induced strain Metrology of machined rotors

VIR-0203A-24 and 9 others on TDS

R4-10 rotor parameter advanced model (23°C) NCal 2f signal						
name	mean value	uncertainty	formula	value (%)		
Density ρ (kg.m ⁻³)	Density ρ (kg.m ⁻³) 1442.3 0.2 $\delta \rho / \rho$					
Thickness b left sector (12 sub-sectors) (mm)	104.416	9×10^{-3}	$\delta b/b$	0.008		
r_{max} left sector (12 sub-sectors) (mm) r_{max} left sector (12 ext sub-sectors) (mm)	104.415	F 10-3	15 1	0.010		
r_{max} right sector (12 ext sub-sectors) (mm)	r_{max} right sector (12 ext sub-sectors) (mm) 103.838 5×10^{-3} $4\delta r_{max}/r_{max}$					
$G (m^3.kg^{-1}.s^{-2})$ $6.674.30 \times 10^{-11}$ 1.5×10^{-15} $\delta G/G$						
Temperature T (°C) 23 1.5 $\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$						
Modelling	Uncertainty			0.001		
FROMAGE grid uncertainty						
Opening angle and sector asymmetry uncertainty						
Remaining geometry uncertainty				$<5 \times 10^{-4}$		
Total uncertainty from the rotor (quadratic sum)						

To determine the geometry of the rotor we will use the same method as for R4-01 (see VIR-0591C-22). The thickness was measured using 16*2 = 32 points for the sectors and 8*2 = 16 points for the inner part. In addition we measured the outer diameter using four more points than the previous rotors for a total of 4*3 = 12 points. The measurement points are shown in fig. 1. We will use the drawing values for the inner diameter.

Figure 1: Outline of the faces of the rotor with the measurement points. Left is face up, center is face down and right is the side view of the left sector. Sectors have been labelled L for left sector and R for right sector.

→ Rotor dependant

Rotor induced strain : Temperature

VIR-0203A-24 and 9 others on TDS

Operating temperatures at f = 21 Hz in the NE building : T = 23 \pm 1.5 °C

- Signal uncertainty due to temperature uncertainty
 - Aluminum rotors = 0.007 %
 - PVC rotors = 0.024 %

R4-10 rotor parameter advanced model (23°C) NCal 2f signal						
name	mean value	uncertainty	formula	value (%)		
Density ρ (kg.m ⁻³) 1442.3 0.2 $\delta \rho / \rho$						
Thickness b left sector (12 sub-sectors) (mm) 104.416 9×10^{-3} $\delta b/b$ Thickness b right sector (12 sub-sectors) (mm) 104.415 9×10^{-3} $\delta b/b$						
r_{max} left sector (12 ext sub-sectors) (mm) 103.840 r_{max} right sector (12 ext sub-sectors) (mm) 103.838 5×10^{-3} $4\delta r_{max}/r_{max}$						
G (m ³ .kg ⁻¹ .s ⁻²) 6.674 30 × 10 ⁻¹¹ 1.5 × 10 ⁻¹⁵ $\delta G/G$						
Temperature T (°C) 23 1.5 $\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$						
Modelling Uncertainty						
FROMAGE grid uncertainty						
Opening angle and sector asymmetry uncertainty						
Remaining geometry uncertainty						
Total uncertainty from the rotor (quadratic sum)						

Rotor induced strain : Modelling

VIR-0203A-24 and 9 others on TDS

R4-10 rotor parameter advanced model (23°C) NCal 2f signal						
name	mean value	uncertainty	formula	value (%)		
Density ρ (kg.m ⁻³)	Density ρ (kg.m ⁻³) 1442.3 0.2 $\delta \rho / \rho$					
Thickness b left sector (12 sub-sectors) (mm) 104.416 9×10^{-3} Thickness b right sector (12 sub-sectors) (mm) 104.415 9×10^{-3}						
r_{max} left sector (12 ext sub-sectors) (mm) 103.840 r_{max} right sector (12 ext sub-sectors) (mm) 103.838 5×10^{-3} $4\delta r_{max}/r_{max}$						
$G (m^3.kg^{-1}.s^{-2})$ $6.674.30 \times 10^{-11}$ 1.5×10^{-15} $\delta G/G$						
Temperature T (°C) 23 1.5 $\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$						
Modelling	Uncertainty			0.001		
FROMAGE grid uncertainty						
Opening angle and sector asymmetry uncertainty						
Remaining geometry uncertainty						
Total uncertainty from the rotor (quadratic sum)						

Rotor modelling uncertainty = difference between a simple and a more refined geometry in FROMAGE* → Rotor dependant

Simple rotor geometry, averaged values for sectors

Advanced rotor geometry, sub-sectors with different thickness and radius, opening angles...

Each block is made of 8x17x14 sub blocks (grid size) for both cases

Figures 2 and 5 from VIR-0203A-24 in TDS

*FROMAGE is a simulation tool developed for gravitational effects induced by rotating masses using a Finite Element Analysis (FEA) and written in C/C++ (see VIR-0759B-20 in TDS)

Rotor induced strain : Opening angles

VIR-0203A-24 and 9 others on TDS

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	R4-10 rotor parameter advanced model (23°C) NCal 2f signal							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	name	name mean value uncertainty formula						
$ \begin{array}{c c} \mbox{Thickness b left sector (12 sub-sectors) (mm) \\ Thickness b left sector (12 sub-sectors) (mm) \\ r_{max} left sector (12 ext sub-sectors) (mm) \\ r_{max} right sector (12 ext sub-sectors) (mm) \\ r_{max} right sector (12 ext sub-sectors) (mm) \\ G (m^2, kg^{-1} s^{-2}) \\ \hline \\ $	Density ρ (kg.m ⁻³) 1442.3 0.2 $\delta \rho / \rho$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Thickness b left sector (12 sub-sectors) (mm) 104.416 9×10^{-3} $\delta b/b$ Thickness b right sector (12 sub-sectors) (mm) 104.415 9×10^{-3} $\delta b/b$							
G (m ³ , kg ⁻¹ , s ⁻²) 6.674 30 × 10 ⁻¹¹ 1.5×10^{-15} $\delta C/G$ 0.002 Temperature T (°C) 23 1.5 $\frac{\partial h}{\partial t} \frac{\Delta T}{h}$ 0.024 Modelling Uncertainty 0.001 $\frac{\partial h}{\partial t} \frac{\Delta T}{h}$ 0.024 FROMAGE grid uncertainty 0.005 0.002 Bernaining second sector asymmetry uncertainty 0.002	r_{max} left sector (12 ext sub-sectors) (mm) 103.840 r_{max} right sector (12 ext sub-sectors) (mm) 103.838 5×10^{-3} $4\delta r_{max}/r_{max}$							
Temperature T (°C) 23 1.5 $\left \frac{\partial h}{\partial T}\right \frac{\Lambda T}{h}$ 0.024 Modelling Uncertainty 0.001 FROMAGE rid uncertainty 0.002 Opening angle and sector asymmetry uncertainty 0.002 0.002 Bemaining sequentry uncertainty 0.002 0.002	$G (m^3.kg^{-1}.s^{-2})$ $6.674 \ 30 \times 10^{-11}$ 1.5×10^{-15} $\delta G/G$							
Modelling Uncertainty 0.001 FROMAGE and uncertainty 0.005 Opening angle and sector asymmetry uncertainty 0.002 Bemaining sequentry uncertainty 0.002	Temperature T (°C) 23 1.5 $\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$							
FROMAGE grid uncertainty 0.002 Opening angle and sector asymmetry uncertainty 0.002 Remaining segmetry uncertainty 65 × 10	Modelling Uncertainty							
Opening angle and sector asymmetry uncertainty 0.002 Remaining geometry uncertainty <5 × 10	FROMAGE grid uncertainty							
Remaining geometry uncertainty <5 × 10	Opening angle and sector asymmetry uncertainty							
Tentaning geometry uncertainty 40 × 10	Remaining geometry uncertainty							
Total uncertainty from the rotor (quadratic sum) 0.034	Total uncertainty from the rotor (quadratic sum)							

Opening angles and asymmetry uncertainty (rotor dependant)

 0.002 %

Figure 15: Method used to determine the uncertainty on the opening angles using the video microscope. In red are shown the points used to determine the two lines for the opening angle computation, the red dotted circles represent their uncertainty ($\pm 2 \ \mu m$). The theoretical angle α_{theo} is equal to $\pi/2$, α_+ and α_- are the maximum and minimum values of the error on this angle. The proportions have been amplified for the visualization. This method combines the uncertainties in the most pessimistic way making them conservative.

• Remaining uncertainty geometry < 5e-4 %

Figure 19: Offset of the centers of the centers to the axis center in mm. Left is face up, right is face down. L sector is shown in blue and R sector in red.

Video Measuring microscope

Rotor deformation at 21 Hz

Parameter Formula h_{rec}/h_{inj} near [%] h_{rec}/h_{inj} far [%] NCal to NCal distance $4\delta d/d$ 0.14 0.11 NCal to beam axis angle (ϕ) $\delta\phi\sin(\phi)$ 0.04 0.04 NCal to mirror distance (d) 0.01 Positioning numerical 0.01 NCal twist (ψ) $< 10^{-3}$ $\leq 3 imes 10^{-3}$ numerical NCal vertical position (z) $5/2(z/d)^2$ 8×10^{-3} 5×10^{-3} Rotor induced strain see end of section 4 0.0570.061 Rotor deformation at 21 Hz numerical 0.03 $\leq 10^{-2}$ Residual coupling (including magnetic) see section 5 ≤ 0.1 0.2Total quadratic sum 0.190.24

PVC is expected to undergo more deformation than aluminum

- Compute the rotor elongation
 - Using simple analytical model (spring and mass)
 - Using FEM of rotor geometry to confirm
- Impact on signal for a 21 Hz rotation
 - Aluminum rotor = < 1e-2 %
 - PVC rotor = 0.03 %

Residual coupling

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\le 10^{-3}$	$\leq 3 \times 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual co	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24

- Rotate the rotor about 90°
 - Actually 89.7° due to rotor/mirror size
- Expect cancelation of NCal signal
- Measured residual signal : 0.1 %
 - Aluminum rotor
 - Part is due to alignment/twist uncertainty
 - Other part from parasitic coupling : residual magnetic field

O4 NCal uncertainty budget

PVC rotors

Aluminum rotors

	Parameter	Formula	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
	NCal to NCal distance	$4\delta d/d$	0.14	0.11
	NCal to beam axis angle (ϕ)	$\delta\phi\sin(\phi)$	0.04	0.04
Positioning	NCal to mirror distance (d)	numerical	0.01	0.01
	NCal twist (ψ)	numerical	$\leq 10^{-3}$	$\leq 3 imes 10^{-3}$
	NCal vertical position (z)	$5/2(z/d)^2$	8×10^{-3}	5×10^{-3}
R	otor induced strain	see end of section 4	0.057	0.061
Roto	r deformation at 21 Hz	numerical	0.03	$\leq 10^{-2}$
Residual co	oupling (including magnetic)	see section 5	≤ 0.1	0.2
	Total	quadratic sum	0.19	0.24