UPV is now documented:

https://wwwcascina.virgo.infn.it/DataAnalysis/GWOLLUM/Friends/upv.html

Coincidences are established in frequency bands of the auxiliary channel (the number of frequency bins is determined by the available statistic)

The threshold is tuned to have UP>50%

UPV: a tool for detector characterization

"Frequency propagation" plot

UPV: a tool for detector characterization

"Frequency propagation" plot

4

UPV matrix to study the internal coupling of a sub-system

Coupling 0 scale: 0	.00 <mark><0.05</mark> <0.10	<0.15 <0.20 <0.2	5 <0.30 <0.35	<0.40 <0.45	<0.50	<0.55	<0.60	<0.65	<0.70	<0.75	<0.80	<0.85	<0.90	<0.95	<1.00
lick on a	ick on a given cell to plot the frequency propagation SOURCE \rightarrow TARGET														
SOURCES ->	Bs_BMS_NFv	Bs_BMS_NFh	Bs_BMS_MUv	Bs_BMS_I	MUh	Bs_BMS_MDv		v B	Bs_BMS_MDh		Bs_BMS_FFv		v B	Bs_BMS_FFh	
TARGETS 1															
Bs BMS NFv	<u>1.000</u>	<u>0.004</u>	<u>0.005</u>	0.003		<u>0.005</u>			<u>0.004</u>		<u>0.005</u>			0.002	
Bs BMS NFh	<u>0.149</u>	<u>0.999</u>	<u>0.040</u>	<u>0.056</u>		<u>0.0</u>)36		0.056		<u>0.037</u>			<u>0.072</u>	
Bs BMS MUv	<u>0.002</u>	<u>0.002</u>	<u>1.000</u>	<u>0.179</u>		<u>0.869</u>			<u>0.535</u>		<u>0.839</u>			<u>0.312</u>	
Bs BMS MUh	<u>0.002</u>	<u>0.007</u>	<u>0.128</u>	<u>1.000</u>		<u>0.1</u>	83		<u>0.858</u>			<u>0.178</u>		<u>0.935</u>	
Bs BMS MDv	<u>0.002</u>	<u>0.002</u>	<u>0.963</u>	<u>0.087</u>		<u>1.0</u>	00		<u>0.422</u>			<u>0.951</u>		<u>0.187</u>	
Bs BMS MDh	<u>0.002</u>	<u>0.005</u>	<u>0.548</u>	<u>0.617</u>		<u>0.4</u>	36		<u>1.000</u>		<u>0.430</u>			<u>0.747</u>	
Bs BMS FFv	0.002	0.002	<u>0.931</u>	<u>0.109</u>		<u>0.9</u>	<u>154</u>		<u>0.114</u>			<u>1.000</u>		<u>0.208</u>	
Bs BMS FFh	<u>0.002</u>	<u>0.006</u>	<u>0.176</u>	<u>0.627</u>		<u>0.2</u>	<u>811</u>		<u>0.711</u>			<u>0.190</u>		<u>1.000</u>	

UPV is run NxN times for every possible pairs of channels.

If a matrix cell is colored, it means that there is a "real" coupling between the 2 channels The strength of the coupling is measured by the veto efficiency (here "coupling scale") Online examples:

https://wwwcascina.virgo.infn.it/DataAnalysis/UPVmatrix/