Photon Calibrator h(t) Preliminary Characterisation

VIR-0186A-10.pdf

T. Accadia, L.Rolland Arcadia March 15, 2010

Setup and Power Calibration

h(t) Cross-Check

Arcadia Meeting

((O))**Experimental Setup and Calibration**

March 15 2010

Build PCal Calibration Maps

Issues: Powermeter centering

Procedure

•The motorised sensor of the powermeter scans the beam on 5x5 positions

 For each position the conversion factor is measured

$$a_i = \frac{P_{mes,i} - offset}{Ca_NI_PCal_{m,i} - offset}$$

Build the map

combined function

over the different injected powers

Arcadia Meeting

PCal Calibration Results

Reference	Injection	Reflection	Transmission	Losses
	(W/V)	(w/v)	(W/V)	(% of reflection)
Fit (all scans)	0.624	0.550	0.082	-0.2

Method	Losses (% of reflection)	Variation of the reflection factor (%)
Fit (scans 80 mW)	-1.3	0.4
Fit (scans 350 mW)	-2.6	0.1
4 points (all scans)	1.3	0.1
1 point (all scans)	1.5	-0.7

Systematic errors ±2.6%

Calibration Systematic Errors

	Systematic errors (+-)
Geometry	1%
Sensor non uniform spatial response	1.5%
Powermeter absolute calibration	3%
Power measurements	2.6%

Pref , $\Delta L_{pend}~$ is understood within $\pm~8.0\%$

Principle: Produce known motion by acting NI mirror

Frequency domain comparison:

$$\mathbf{TF}\left[\frac{h_{rec}.L}{\Delta L_{pend}}
ight]$$

Ideal case:Modulus \rightarrow 1Phase \rightarrow 0Evaluation of h(t) reconstruction errors

Elastic Deformations Induced by PCal

Origin

Localized force acting on an object induces localized deformations (thermo elastic, in phase with the force, flat in frequency).

• GEO (Stefan Hild) [1]

Induced deformations with photon calibrator is confirmed

Local deformations are seen and interpreted by the interferometer as a **global displacement**.

Overlap of ITF beam and deformations

$$\Delta L_{tot} = \Delta L_{pend} + \Delta L_{dej}$$

■Our analysis Beams offset x₀ impact in

overlap calculus

$$\Delta L_{tot} = \Delta L_{pend} + \Delta L_{def}(x_0)$$
$$= (1 - \frac{f^2}{f_0^2(x_0)}) \Delta L_{pend}$$

$$10^{-8}$$

$$10^{-8}$$

$$10^{-8}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$1$$

$$\frac{\Delta L_{rec}}{\Delta L_{pend}} = \left(1 - \frac{f^2}{f_0^2(x_0)}\right)$$

9

[1] Photon pressure induced test mass deformation in gravitational-wave detectors S. Hild and al, Classical And Quantum Gravity (2007)

Elastic Deformations Induced by PCal

0 phase [deg]

-200

Origin

Localized force acting on an object induces localized deformations (thermo elastic, in phase with the force, flat in frequency).

GEO (Stefan Hild) [1]

Induced deformations with photon calibrator is confirmed

Local deformations are seen and interpreted by the interferometer as a **global displacement**.

Overlap of ITF beam and deformations

$$\Delta L_{tot} = \Delta L_{pend} + \Delta L_{def}$$

■Our analysis Beams offset x₀ impact in

. overlap calculus

$$\Delta L_{tot} = \Delta L_{pend} + \Delta L_{def}(x_0)$$
$$= (1 - \frac{f^2}{f_0^2(x_0)}) \Delta L_{pend}$$

 ΔL_{rec}

 ΔL_{pend}

10

10

frequency (Hz)

[1] Photon pressure induced test mass deformation in gravitational-wave detectors S. Hild and al , Classical And Quantum Gravity (2007)

(((0)))

Conclusion

Photon Calibrator is installed

Power calibration: 8 % systematic errors

h(t) checked with PCal:

 Amplitude and phase within systematic errors
 Mirror deformations must be included: leading effect above 1840 Hz