GPU version of the Polgraw all-sky time-domain F-statistic pipeline

Michał Bejger (Polgraw/Copernicus Center)

VDAS, 26.04.16

- $\star~$ Input data generation (Raw time domain data $\sim~$ PB)
- ★ Pre-processing $\rightarrow \sim TB$ (input time series, detector ephemerids and grid of parameters),
- Stage 1: F-statistic search for candidate GW signals (the most time-consuming part of the pipeline)
- \rightarrow 10¹⁰ candidates/detector, 100 TB of output.
 - Stage 2: Coincidences among candidate signals from different time segments,
 - Stage 3: Followup of interesting coincidences evaluation of F-statistic along the whole data span.

Methods of data analysis

Computing power $\propto T_0^5 \log(T_0)$. Coherent search of $T_0 \simeq 1 \ yr$ of data would require zettaFLOPS (10²¹ FLOPS) \rightarrow currently impossible $\ddot{\neg}$

Solution: divide data into shorter length time frames ($T_0 \simeq 2$ days)

$$f_{i} \underbrace{\begin{array}{c} T_{0} \\ (i,j) \\ (i-1,j) \end{array}}^{T_{0}} T_{0} \\ (i,j+1) \\ B = \frac{1}{2\delta t}$$

* narrow frequency bands sampling time $\delta t = 1/2B$, number of data points $N = T_0/\delta t \rightarrow N = 2T_0B$

→ feasible on a "normal" supercomputer.

Example search space (Virgo Science Run 1). Red: no data, yellow: bad data, green: good data.

Calculation of the F-statistic

To estimate how well the model matches with the data x(t), we calculate \mathcal{F} ,

$$\mathcal{F} = rac{2}{S_0 T_0} \left(rac{|F_a|^2}{\langle a^2
angle} + rac{|F_b|^2}{\langle b^2
angle}
ight)$$

where S_0 is the spectral density, T_0 is the observation time, and

$$F_a = \int_0^{\tau_0} x(t) a(t) \exp(-i\phi(t)) dt, F_b = \dots$$

and a(t), b(t) are amplitude modulation functions (depend on the detector location and sky position of the source),

$$h_1(t) = a(t) \cos \phi(t), \quad h_2(t) = b(t) \cos \phi(t),$$

 $h_3(t) = a(t) \sin \phi(t), \quad h_4(t) = b(t) \sin \phi(t),$

related to the model of the signal $(h_i, i = 1, ..., 4)$

$$h(t)=\sum_{i=1}^{4}A_{i}h_{i}(t).$$

For triaxial ellipsoid model: dependence on extrinsic (h_0, ψ, ι, ϕ_0) and intrinsic (f, f, α, δ) parameters.

F-stat all-sky search description

Main parameters in coherent search for continuous wave signals:

- * bandwidth 0.25 Hz
- * sampling time 2 s
- data length N = 86164 (two sideral days)

 \star 4D grid: $\alpha,\,\delta,\,f,\,\dot{f}\,$ - sky positions, frequency and spindown

* Uses the F-statistic defined in Jaranowski, Królak & Schutz (1998), algorithm described and tested in Astone et al. (2010)

* No. of F-statistic evaluations $\propto f^3$ (no. of sky positions $\propto f^2$, spindown $\propto f$)

F-stat all-sky search description

Basically the whole loop over sky (α , δ) can be computed in parallel since the sky positions are independent of each other

The majority of computing is spent on

- $\star\,$ calculating the phase (trigonometric functions, \gtrapprox 20%)
- \star FFT (\geqq 70%)

Efficient FFT requires 2^N data points $(N_{data} = 86164 < 2^{17}) \rightarrow$ padding with zeros to $N = 2^{17}$

FFT: resampling

- * Resampling to barycentric time FFT and inverse:
 - \star nearest-neighbour (\simeq 5% error),
 - \star splines ($\simeq 0.1\%$ error)

The only part that has to be done in double-precision.

F-stat: parallelization strategy

- \star How to do FFT with GPU:
 - * use CUDA cuFFT library:
 - well-optimized (Cooley-Tukey, Bluestein), 1D/2D/3D double precision complex/real transforms, multiple transforms, in- and out-of-place transforms,
 - cannot launch many instances at the same time (at least not with every card/CUDA version).
 - write custom kernel for FFT, launch concurrently.

* cuSPARSE (sparse matrix routines)

Results of implementation on GPUs

- * Input data loaded to device once. For each detector (V1, L1 & H1),
 - * time-series ($N \times sizeof(double) = 674 \text{ KB}$)
 - * ephemerids $(3N \times sizeof(double)) = 2 \text{ MB})$
 - + a grid-generating matrix (388 B).
- * Sequence of kernels launched in a loop from CPU,
- Time resampling done using double precision, everything else (main spindown loop) using single precision,
- * Asynchronous output transfer to host.

Current GPU results: $\sim \times 10$ speedup with respect to the optimized CPU code

Estimated time τ to match one template:

- $\star\,$ CPU (Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz) $\simeq 5 \times 10^{-3}$ s
- $\star\,$ GPU (GeForce GTX Titan) $\simeq 3 \times 10^{-4}$ s

Performance scaling - favorably for high frequencies (no. of spindowns \propto *f*).

Summary/references

We have two search codes for candidate signals for a network of detectors:

- * a well-optimized CPU code,
- * and a working GPU version that still needs some optimization (improve kernel concurrency).

- P. Astone, K. M. Borkowski, P. Jaranowski, M. Piętka and A. Królak, PRD, 82, 022005 (2010)
- https://developer.nvidia.com/cuFFT
- P. Jaranowski, A. Królak, and B. F. Schutz, PRD 58, 063001 (1998).
- Polgraw-allsky github repository: https://github.com/mbejger/polgraw-allsky.git