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In the context of the thermal compensation systems studies, it could be of 
some help to have a simple and fast simulation tool for deducing the properties 
of a compensation plate from the profile of the heat source at the surface. We 
propose  hereafter a basic model and a corresponding algorithm. 

 

We consider a slab, i.e. a refractive medium of finite thickness and infinite transverse extension. The 
spatial domain of the medium is   ] , [ [0 ]x y z h− ∞ < < ∞ × ≤ ≤ .  This model could represent for 

instance a compensation plate or a mirror if we assume the illuminated zone small compared to its 
diameter. We assume the slab illuminated by a light beam according to some pattern ( , )H x y  (W.m-2)  

representing the source of heat, or absorbed intensity.  The questions are : 

1) Find the temperature field caused by the incoming heat flux in the slab 
2) Find  the distortion induced by the excess of  temperature  
3) Find the effect on the wavefront of a transmitted test beam 

 
 
 
I -  Temperature field 
 
The slab is assumed suspended in a vacuum in such a way that the only gain of heat is caused by the 
incoming absorbed light power, and the only heat loss is due to the thermal radiation. We assume a 

temperature field sum of the external temperature 0T  assumed constant, plus an excess of temperature 

represented by the field ( , , )T x y z .  The flux of heat equivalent to the thermal radiation is given by 

the Stefan law:   4 4
0 0( )s T T T + −   where  s  (W.m-2K-4) is the Stefan-Boltzmann constant (maybe 

corrected for the emissivity of the medium). We assume the excess temperature small compared to the 

external :    0T T≪ , so that we adopt a linearized radiation flux :  3
04sT T  (W.m-2).  

According to the Fourier eq., the temperature field is harmonic.  A harmonic function relevant for our 
problem is : 
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Where 1 2,θ θ  are arbitrary functions to be determined by the boundary conditions. The balance of heat 

fluxes on the face 0z =  is : 
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Where K  (W.m-1.K-1) is the thermal conductivity.  We introduce the reduced radiation constant   
3

04 /sT Kκ ≡  (m-1). ( , )H x y is the distribution of absorbed light power. 

After a Fourier transform of the preceding equation, we get 

1 2( ) ( )
H

k k
K

κ θ κ θ+ − − =
ɶ

 

The same way, for the face z h=  (no incoming heat flux), we get 
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The solution of the system is thus : 
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So that  the Fourier transform of the temperature field is : 
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The FT of the temperature is therefore related to the FT of the heat flux by the transfer function 
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II – Thermal distortion 
 
We consider the following real function :  
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Where 1 2,θ θ  are the functions o (p,q) found above. Its  Fourier transform is : 
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It is clear that the limit 0k → leads to a singularity. In view of the discretization of  ,p q , we 

therefore assume in the following  0k ≠  (the case k=0 will be addressed below). 
It can be checked that the displacement vector field defined as : 
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(Where ,λ µ  are the Lamé coefficients and  ν  the stress temperature modulus) , satisfies the Navier-

Cauchy equations (equilibrium) and the boundary conditions (no applied forces on the two faces) . The 
strain tensor being defined by 
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And the stress tensor by : 

( ) 2ij kk ij ijE T Eλ ν δ µΘ = − +  

We have (NC) : 

0 ( 1,2,3)i ij j∂ Θ = =  

Moreover, 

13 23 33, ,Θ Θ Θ are null, so that the resultant force normal to both  two faces are zero.  

Finally, we have   ( ) ( , , ) ( , )zu z p q z H p q= Φ × ɶɶ  with  the transfer function :  
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Note that  (1 )
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 where α   is the linear dilatation coefficient and σ  the Poisson ratio. 

Eq. (3) Shows the transfer function relying the imposed heat flux to the displacement. As already 
mentioned, the expression (3) is singular at  k=0, more specifically, 
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This has no effect in the following step, when computing the lensing effect because 

( , , ) ( , ,0)z zu p q h u p q−ɶ ɶ remains finite for 0k → . But if we are interested in the distortion pattern, 

we need a regular version of (3).  In fact, the displacement vector field is defined up to an arbitrary 

constant offset vector.  The quantity (0,0, / 2)zu hɶ  which is divergent for 0k → ,  represents such an 

offset. We can choose to have a zero displacement at  / 2z h= by ignoring the value 0k =  in a 
discrete approach (FFT), which removes any divergence and acts like a renormalization.  
 
 
III – Thermal lensing 
 
If we interpret the slab as a compensation plate, it is interesting to compute the excess optical path for 
a transmitted wave caused by the heating of the medium.  We have two contributions : 

- One due to the change of index caused by the temperature 
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- One due to the geometric  increase of path due to dilatation 

2 0
0

( , ) ( 1) ( , , ) ( 1) ( , , )
2( )

h
h

zzz p q n E p q z dz n T p q z dz
ν

λ µ
∆ = − = −

+∫ ∫ɶ ɶɶ  

With the equivalence (1 )
2( )

ν α σ
λ µ

≡ +
+

 we get for the total excess optical path : 

0
( , ) (1 )( 1) ( , , )

hdn
z p q n T p q z dz

dT
α σ ∆ = + + −  

∫ ɶɶ  



Or, explicitly : 

( , ) ( , ) ( , )z p q p q H p q∆ = Φ × ɶɶ  

With the transfer  function 
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This should allow to compute numerically the thermal lens by taking the FFT of the heat flux, 
multiplying by the transfer function, and taking the inverse FFT. Note that the transfer function is 
regular at  k=p=q=0, namely : 
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Note finally  that the transfer function depends only of  k , being thus  isotropic. 
 

 

IV – Numerical treatment 
 
It could be useful to investigate numerically the effect of an arbitrary ( , )H x y  distribution  of heat. 

The algorithm for exploiting the precedent calculations could be as follows : 
- Define a square window of size  F  containing the illuminated zone plus a safety margin, and  

a N N× sampling grid 
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- Compute once for ever the discretized transfer function (DTF) corresponding to the effect you 
want to study (temperature, distortion, lensing).  The Fourier coordinates are 

1 2 1 2

2 2
, ( , 0,..., 1)p m q m m m N

F F

π π= = = −  

The DTF is an array  ( , 1,..., )ij i j NΦ =   obtained by correctly sorting the indices  (recall that 

in a FFT of size  N, the first  N/2+1  components of the array represent the positive or zero 
frequencies, whereas the N/2+2 to N  following are the negative frequencies) :   

1 1if   1 / 2 1 then  1else 1i N m i m i N≤ ≤ + = − = − −  

                 2 2if  1 / 2 1 then  1else 1j N m j m j N≤ ≤ + = − = − −  
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π= + and we can use the preceding formulas, giving  ( , 1,..., )ij i j NΦ =

use (3) for the temperature,  (6) for lensing ,  (and (7) in the special case 1 2 0m m= = ). For 

distortion, use (4) with 11 0Φ =  

- Sample the intensity pattern  ( , )H x y  on the N N×  grid , giving the array

( , ) ( , 1,..., )ij i jH H x y i j N= =  

- Take the 2D FFT   ijH→ ɶ   

- Multiply by the discretized transfer function (for instance (6,7) for thermal  lensing) : 

ij ij ijz H∆ = Φ × ɶɶ  

- Take the inverse 2D FFT :  ijz→ ∆  which is the sampled thermal lens 



 

Two basic examples of such a calculation with the following parameters : 

8 -1 -45.6710 W.m .Ks −= ,  
-1 -11.38W.m .KK = , 0.1 mh = ,  0 320 KT = ,  so that -15.39mκ ≈  

N = 128 

Example #1 : a pure Gaussian heating beam of width  w = .03m   units = m: 

 

 

 

Corresponding distortion of the input face (arbitrary units) (0)zu  : 

 

 

 



 

 

Distortion in the bulk, using the transfer functions  ( , , )p q zΦ  for  0.01m, ( =0,1,...,10)z n n= ×  : 

 

Thermal lens : 

 

 

 



Example #2 :  Arbitrary heating beam with 4 peaks : 

 

Corresponding distortion of the input face (0)zu  : 

Thermal lens : 

 



 


