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In the context of théhermal compensation systemstudies, it could be of
some help to have a simple and fast simulationftralleducing the properties
of a compensation plate from the profile of thetlsearce at the surface. We
propose hereafter a basic model and a corresppatgorithm.

We consider a slab, i.e. a refractive medium afdithickness and infinite transverse extensiore Th
spatial domain of the medium i§—oco < X, y <oo[ X[0 < z< h] . This model could represent for

instance a compensation plate or a mirror if weimssthe illuminated zone small compared to its
diameter. We assume the slab illuminated by a liglaim according to some patteéf{(x, y) (W.m?)

representing the source of heat, or absorbed iherihe questions are :

1) Find the temperature field caused by the incomegf flux in the slab
2) Find the distortion induced by the excess of terafre
3) Find the effect on the wavefront of a transmittest beam

| - Temperature field

The slab is assumed suspended in a vacuum in swely ghat the only gain of heat is caused by the
incoming absorbed light power, and the only hesas lie due to the thermal radiation. We assume a

temperature field sum of the external temperafiyrassumed constant, plus an excess of temperature
represented by the fiel@ (X, y,z). The flux of heat equivalent to the thermal rédrais given by
the Stefan law: s[(TO +T)* —TO“] where s (W.m°K™) is the Stefan-Boltzmann constant (maybe

corrected for the emissivity of the medium). Weuass the excess temperature small compared to the
external : T < T, so that we adopt a linearized radiation fludsT T (W.nm?).

According to the Fourier eq., the temperature fisldarmonic. A harmonic function relevant for our
problem is :

1) T(xy.2)= (6.(p.a)e™ +6,(p,q)e”) €™ ¥dpdg  (k=+/p*+0°)

1
]
Where g, 8, are arbitrary functions to be determined by theriafary conditions. The balance of heat

fluxes on the facez =0 is :

K O_T} = —4STST(%,y, 0+ H (X.y)
02 z=0



Where K (W.m*.K™) is the thermal conductivity. We introduce thelueed radiation constant
Kk =4sT2 /K (mY). H(X,y)is the distribution of absorbed light power.
After a Fourier transform of the preceding equatise get
(k+K)6,~(k=K)6, =2
The same way, for the face=h (no incoming heat flux), we get
e "(k-k)g,-e"(k+k)8,=0
The solution of the system is thus :
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So that the Fourier transform of the temperatigle fs :

_ k+k)e™ ™ + (k- k)™  H(p,

@ Tpaap=toe toue D)
(k+xk)€e"-(k-k)e K
The FT of the temperature is therefore relateth¢oRT of the heat flux by the transfer function
+ —k(z-h) + _ k(z-h)

@ o(pgo)=tore_rlcne

Kl[(k+k)“€" —(k—k)“e™]

Il — Thermal distortion

We consider the following real function :

fe* +6?2e

U(xYy,z)= €™ %dpdg

Ik
Where 8,8, are the functions (p,q) found abovelts Fourier transform is :
Oe™ +0,€°
k2
It is clear that the limik — Oleads to a singularity. In view of the discretipatof p,q, we

therefore assume in the following # O (the case k=0 will be addressed below).
It can be checked that the displacement vectat fiefined as :

U(p.a,2)=

u.(x,y,z)= -ﬁaxU (x,y,2)
u,(xy,2) = —ﬁayu (X,¥,2)
-V
u,(xy,2)= 20 W)GZU (x,y,2)

(Where A, 1 are the Lamé coefficients and the stress temperature modulus) , satisfies théeNav

Cauchy equations (equilibrium) and the boundarydd@ms (no applied forces on the two faces) . The
strain tensor being defined by



1 -
E; :E(aiuj +0,u) 0i,j=1,2,3
And the stress tensor by :
©; =(AE, —VT)4; +2UE;
We have (NC) :
00,=0 (j=12,3
Moreover,

0,5, 0 ,,,0 g.are null, so that the resultant force normal tdbtwo faces are zero.

Finally, we have 0,(z) = ®(p,q,z)x H (p,q) with the transfer function :

vV k+k)e™ ™M — (k- k)™
@) ®(pa2)=- R
20+ Kk (k+k)€e"—-(k-k)e
Note that ﬁ =a(l+0) wherea is the linear dilatation coefficient an@ the Poisson ratio.
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Eq. (3) Shows the transfer function relying the asgd heat flux to the displacement. As already
mentioned, the expression (3) is singulaka0, more specifically,

H (0, 0)
Kk?(2+kh)
This has no effect in the following step, when cathm the lensing effect because
a,(p,q,h) -0, (p,q,0)remains finite fork — 0. But if we are interested in the distortion patter
we need a regular version of (3). In fact, thekdisement vector field is defined up to an arbjtrar
constant offset vector. The quantily(0,0,h / 2) which is divergent fok — O, represents such an

a,(k,2)0d & —al+o)

offset. We can choose to have a zero displacement=ah/ 2 by ignoring the valuk =0 in a
discrete approach (FFT), which removes any divazgemd acts like a renormalization.

Il = Thermal lensing

If we interpret the slab as a compensation plats,interesting to compute the excess optical fmth
a transmitted wave caused by the heating of théumedWe have two contributions :
- One due to the change of index caused by the tertyper

dn -
0z(p.a) =] T(p,q,2)dz
0

- One due to the geometric increase of path dudatation

. e _ v "=
82,(p, @)= (1= &, (p.q,2)iz = 7 (-1 T (.0 2z

With the equivalencez(AVT) =a(1+ o) we get for the total excess optical path :
7]

£2(p,0) = [% +aro)n- 1)} [IF (p.a.2xz



Or, explicitly :

AZ(p,q) =P(p,q)xH (p,q)
With the transfer function
1

dn
(6) ®(p,a)= [—TW(-“U)(“ 1)}Kk k+xcothkh /2)

This should allow to compute numerically the thdrkaas by taking the FFT of the heat flux,
multiplying by the transfer function, and takingtimverse FFT. Note that the transfer function is
regular atk=p=g=0, namely :

(7) ®(0,0)= {E+a(1+a)(1 1)}

Note finally that the transfer function dependyai k , being thus |sotropic.

IV — Numerical treatment

It could be useful to investigate numerically tifieet of an arbitraryH (X, y) distribution of heat.

The algorithm for exploiting the precedent caldolas could be as follows :
- Define a square window of siZé containing the illuminated zone plus a safetygimgrand
a N x N sampling grid
-F/2<x,y<F /2

_ F i-1 _F -1
XETtNo Y TN
- Compute once for ever the discretized transferttan¢DTF) corresponding to the effect you

want to study (temperature, distortion Iensin'gble Fourier coordinates are

F, (,j=1..N)

p= ml ,q mz—(mlm 0,...N-1

The DTF is an array®, (i,j=1,...,N) obtained by correctly sorting the indices (retat

in a FFT of sizeN, the first N/2+1 components of the array represent the positivaeny
frequencies, whereas thiE2+2 toN following are the negative frequencies) :

if 1<i<N/2+1thenm =i- lelsen, =i—- AN
if 1<j<N/2+1thenm,=j- lelsen,=j- 4N

Thenk, :%Twlmf +m; and we can use the preceding formulas, giving (i,J =1,...,N)

use (3) for the temperatyrés) for lensing, (and (7) in the special cagg =m, =0). For
distortion, use (4) witt,, =0

- Sample the intensity patterfl (X, y) onthe NxN grid , giving the array
Hy=H(X.y,) @j=1..N)

- Take the 2D FFT - H,

- Multiply by the discretized transfer function (fimstance (6,7) for thermal lensing) :
Az; = ®; xH,

- Take the inverse 2D FFT - Az; which is the sampled thermal lens



Two basic examples of such a calculation with tilWing parameters :
$=5.6710° W.m' K, K=1.38W.m"' .K*, h=0.1m, T,=320K, so thatk =5.39m"
N=128

Example #1: a pure Gaussian heating beam of widtlr .03m units = m:

Corresponding distortion of the input face (arbitranits) u, (0) :
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Distortion in the bulk, using the transfer funcso®(p,q,z) for z=nx0.01m, @ =0,1,...,1C:
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Thermal lens :




Example #2: Arbitrary heating beam with 4 peaks :

Corresponding distortion of the input faug(0) :
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Thermal lens :
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