From public alerts to gravitational-wave candidates during the LIGO-Virgo third observation run O3

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>)

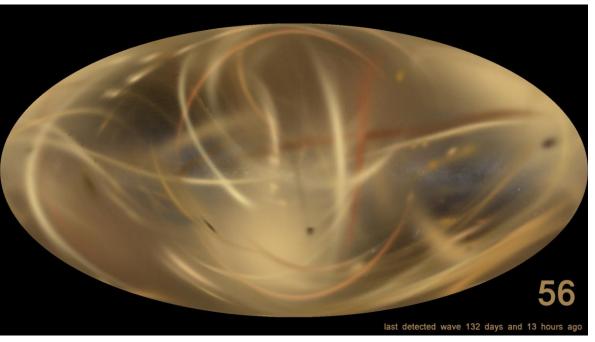
Laboratoire de Physique des Deux Infinis Irène Joliot-Curie (Université Paris-Saclay & CNRS/IN2P3) European Gravitational Observatory (Consortium, CNRS & INFN)

On behalf of the Virgo Collaboration and the LIGO Scientific Collaboration VIR-0158A-20 DCC G2000184

LIGO Scientific Collaboration

ICHEP – July 29, 2020

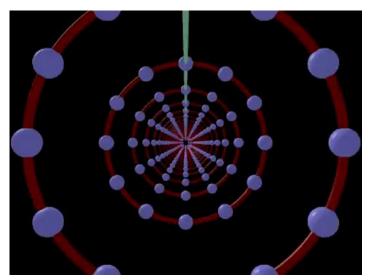
IIII EGO GRAVITATIONAL OBSERVATORY



Outline

- Detecting gravitational waves with the global LIGO-Virgo network
- The LIGO-Virgo third Observing Run: O3
- Detector Characterization and Data Quality
- Public alerts
 - Dataflow and associated latency
 - Vetting alerts in real time with data quality reports
 - Statistics for O3
- Outlook
 - The path to the fourth Observing Run: O4

https://gwevents.ego-gw.it/counter

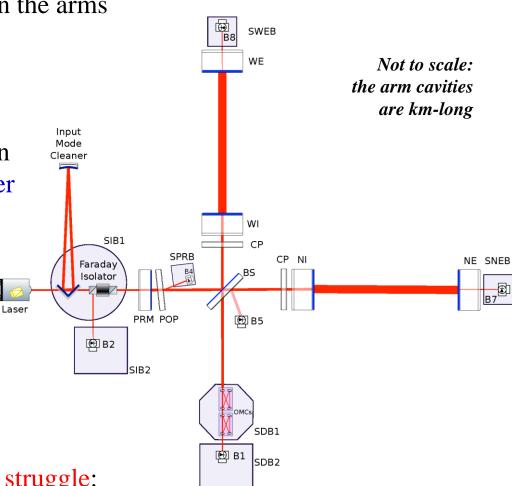

nos, etc.) expected

3

Gravitational waves (GW) in a nutshell

- One of the first predictions of general relativity (GR, 1916)
 - Accelerated masses induce perturbations of the fabric of the spacetime, propagating at the speed of light – 'speed of gravity'
- Traceless and transverse (tensor) waves
 - 2 polarizations in GR: «+» and «×»
 - Quadrupolar radiation
 - \rightarrow Deviation from axisymmetry to emit GW
- GW strain h
 - Dimensionless, scales like 1/distance
- Detectors directly sensitive to h
 - \rightarrow Small sensitivity gains can lead to large improvements in event rate
- Rough classification
 - Signal duration
 - Frequency range
 - Known/unknown waveform
 - Any/no counterpart (electromagnetic spectrum, neutrinos, etc.) expected

Detectable by the instruments

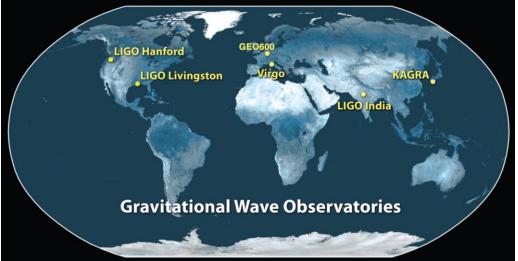


Example (*): the Advanced Virgo detector

- Suspended, power-recycled Michelson interferometer with 3-km long Fabry-Perot cavities in the arms
- Working point
 - Michelson on the dark fringe
 - All Fabry-Perot cavities resonant
 - → Feedback control systems acting on the mirror positions and on the laser
- GW passing through
 - Differential effect on the arm optical paths
 - → Change of interference condition at the detector output
 - \rightarrow Variation of the detected power
- Sensitivity limited by noises
 - Fundamental
 - Technical
 - Environmental

Continuous struggle: design, improvement,

noise hunting, mitigation

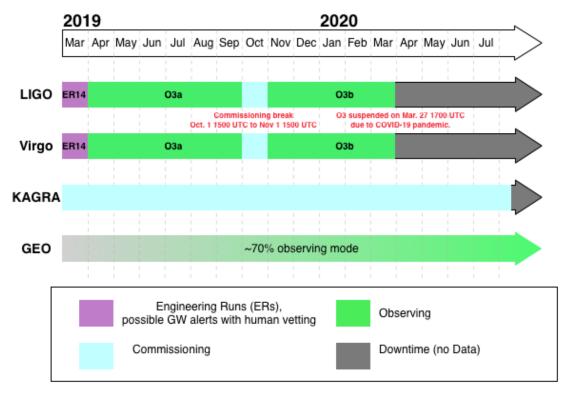


^(*) LIGO detectors are conceptually the same

4

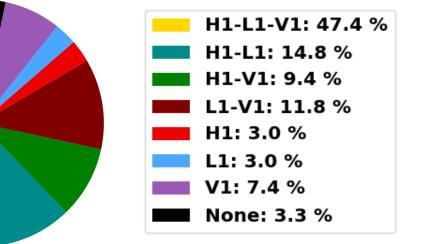
The LIGO-Virgo global network

- A single interferometer is not enough to detect GW with certainty
 - Difficult to separate confidently a potential signal from noise
- \rightarrow Need to use a network of interferometers
 - 2nd generation: « Advanced »
 - LIGO Hanford: 2015
 - LIGO Livingston: 2015
 - Virgo: 2017
 - GEO-600: « Astrowatch » + R&D
 - KAGRA: 2020+
 - LIGO-India: coming decade

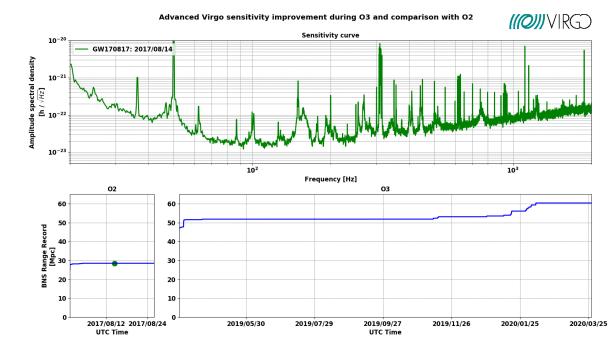

- Agreements (MOUs) between the different projects Virgo/LIGO: since 2007
 - Share data, common analysis, publish together

Virgo-LIGO/KAGRA: 2019

- Interferometers are non-directional detectors
 - Sensitive to a significant fraction of the sky but non-uniform response
 - Time delays for the signal arrival in the different instruments: O(few ms)
 - \rightarrow Threefold detection: reconstruct source location in the sky

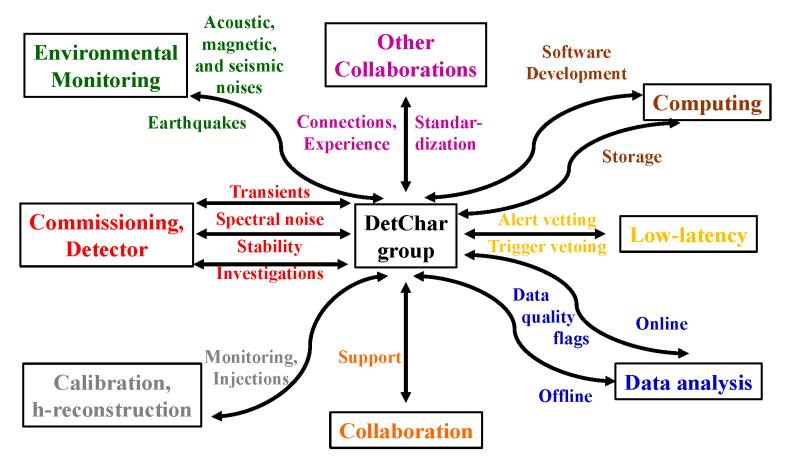

The O3 schedule

- Early plan
 - 12 months of data taking: $2019/04 \rightarrow 2020/04$
 - 2 chunks of 6 months (O3a and O3b) + 1-month commissioning break (2019/10)
- Then came the pandemic...
 - O3 run globally suspended on March 27
 - Later decision not to start an « O3c » and to focus on the O3-O4 upgrades



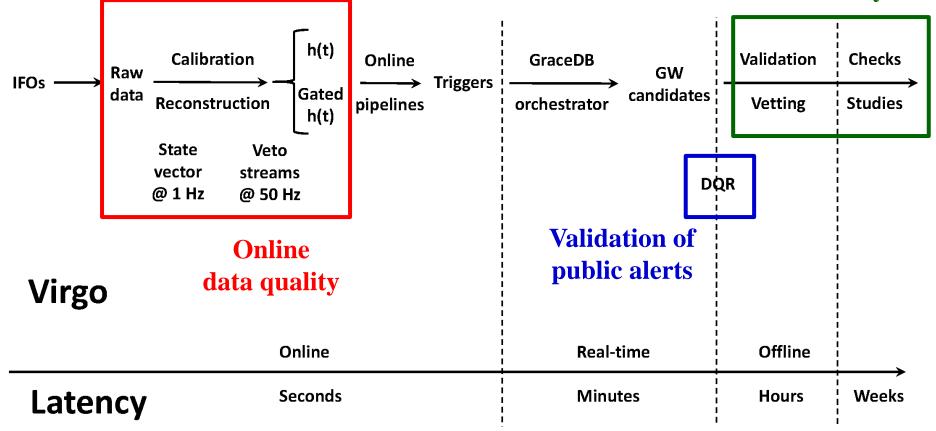
O3 performance

• 3-Detector network duty cycle



- O2-O3 sensitivity improvement for Virgo
 - Significant progress for the LIGO detectors as well

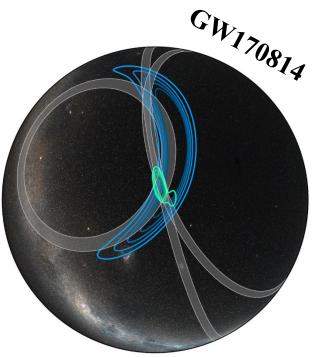
Detector characterization and data quality


- « DetChar » groups
 - Experiment-specific but collaborating closely
 - Same goals, similar issues, tools sharing
- \rightarrow Interacting with many groups, on different critical paths at various stages / latencies

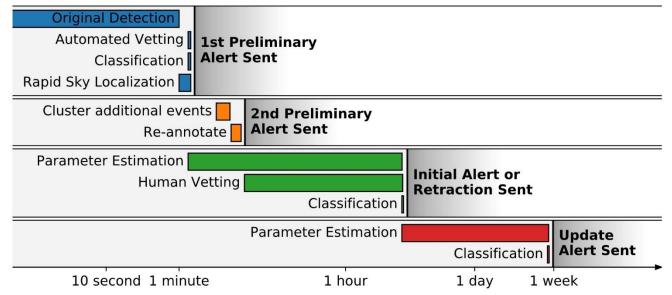
Dataflow: from raw data to detections

• Three main pillars

Global data quality for offline analysis



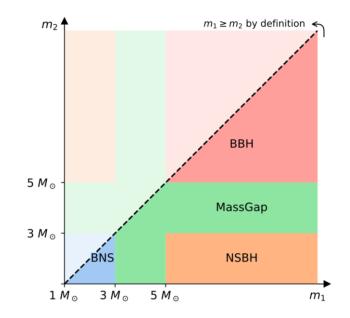
Plus monitoring: online & offline products

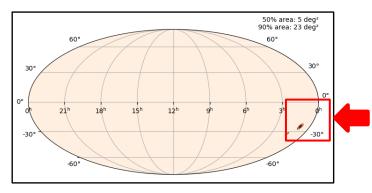

- More information: <u>https://emfollow.docs.ligo.org/userguide</u>
- LIGO-Virgo data are jointly analyzed in real-time
 - Modelled searches: compact binary coalescences
 - Unmodelled searches: « bursts » (Type-II supernovae, etc.)
 - Coincidence with external triggers (γ ray bursts)
 - \rightarrow Twofold goal

 - DetectLocalize
- potential transient GW signals
- Arrival time delays in the different detectors
- Waveform distorsions

- When a significant-enough candidate is found
 - False-alarm rate lower than 1 / O(few months)
- \rightarrow Alert sent to astronomers in order to search for counterparts
 - Through NASA's Gamma-ray Coordinates Network (GCN)

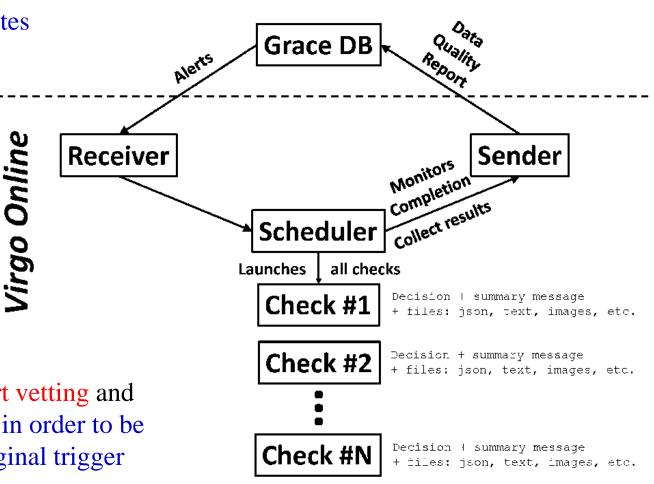
• Alert flow


- Human vetting for all alerts during O3
 - On-call experts (run coordinators, pipelines, DetChar, offline, etc.) notified


O3 median values

- \rightarrow Rapid response team meeting convoked right away
- Public alerts can be retracted
- Actual latencies:
 - ~few minutes for preliminary
 - ~few tens of minutes for alerts
 - Quicker decision in average to retract an alert

- Gravitational-Wave Candidate Event Database: « GraceDB »
 - https://gracedb.ligo.org/superevents/public/O3
 - \rightarrow Online classification + skymap


HOME	PUBLIC ALERTS	SEARCH LATE			ional-Way	ve Candidate Event Database
	irgo O3 Pı ndidates: 56	ublic Alerts				
Event ID	Possible Source (Probability)	UTC	GCN	Location	FAR	Comments
<u>S200316bj</u>	MassGap (>99%)	March 16, 2020 21:57:56 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 446.44 years	
<u>5200311bg</u>	BBH (>99%)	March 11, 2020 11:58:53 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 3.5448e+17 years	
<u>5200308e</u>	NSBH (83%), Terrestrial (17%)	March 8, 2020 01:19:27 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	All	1 per 8.757 years	RETRACTED
<u>5200303ba</u>	BBH (86%), Terrestrial (14%)	March 3, 2020 12:15:48 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 2.4086 years	RETRACTED
<u>5200302c</u>	BBH (89%), Terrestrial (11%)	March 2, 2020 01:58:11 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 3.3894 years	

Data quality reports: vetting the alerts

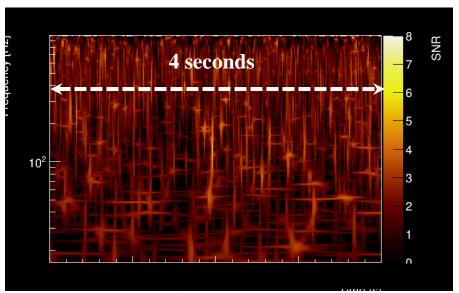
- Triggers produced by online pipelines create new entries in GraceDB
- These triggers generate alerts that are received at the sites
- Alerts significant enough trigger a Data Quality Report (DQR)
 - Generation
 - Configuration
 - Running on EGO HTCondor farm
- Results of the checks are
 - stored locally for expert vetting and
 - sent back to GraceDB, in order to be associated with the original trigger

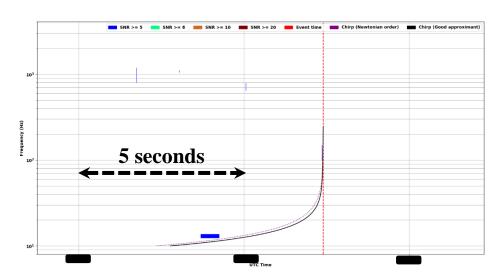
- At the end of O3: 34 checks, 99 jobs in total
 - Configuration) / Running / Postprocessing / Upload back to GraceDB
- Key checks
 - Virgo detector configuration
 - Time-frequency spectrograms of the GW strain channel
 - Superimpose trigger template track when possible
 - Scan of the main online data quality flags
- Virgo noise characterization
 - Noise transients
 - Look for noise correlations (time)
 - Browse noise coherences (frequency)
 - Noise Gaussianity and stationary
- Virgo status
 - Complete data quality flags scan
 - Browse online process logfiles to search for errors
 - Snapshot of the global monitoring system displaying alarms and warnings
 - Data/reference comparison plots

- Environment status
 - Local earthquakes
 - Weather, sea activity

- Misc.
 - Check of the event GPS time

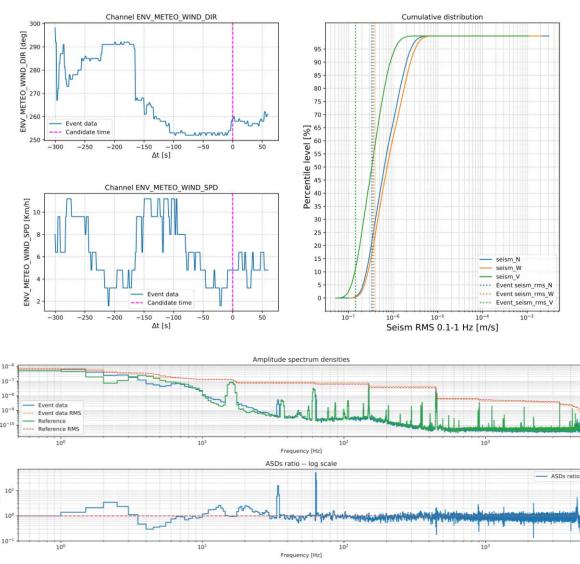
- O(15,000) DQRs generated during O3 to respond to all GraceDB alerts
 - ~10% had false alarm rate low enough (still much higher than public alert threshold) to have their DQR fully processed automatically
 - → Overall: extremely reliable framework
 - Continuous development during O3
 - Bug fixes, code improvement, feedback from user, additional features
 - New checks added
- Each DQR has its own summary webpage allowing to browse results
 - Color code
 - Hierarchical structure
 - Buttons leading to more information and some documentation
- → Original framework
 developed in LIGO
 Reused on Virgo


Data Quality Report for S190814bv Event: GPS = 1249852257.012957 (2019-08-14 21:10:39.012957+00:00 UTC) DQR generation starting at 2019-08-14 21:17:39+00:00 UTC					
Clickable buttons:	GraceDB event	GraceDB joint LIGO-Virgo DQR	Condor monitoring		
Color caption:	ail human_inp not OK] [No automat	ICode crash or	missing [Check still running]		
Virgo DQR documentation:	Checks FAQ	Instructions for shifters and RRT	LIGO DQR documentation: Introduction		
		to suspicious? Status of the Vir	go systems UPV on last 24 hours e the candidate signal was observed?		
What was the status of the environment around Virgo a Virgo status (process: virgo_status) (V1)	t the time of the candidate	9?			


• Virgo detector status

UTC date

• Time-frequency spectrograms

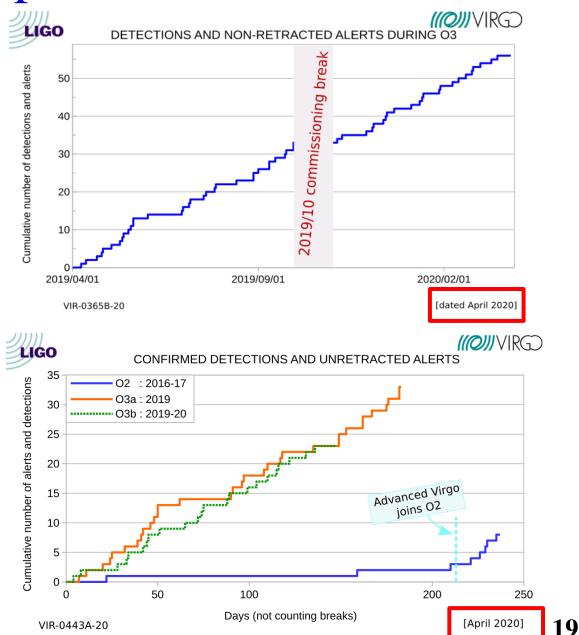


- Detector monitoring system
 - Snapshot recorded every 10 seconds
 - \rightarrow Full tree / hierarchical structure

M DMS							ITF N	1ode: Scienc	e (Od 1h 13m	145) ITF S	itate: LOV	V_NOISE	_3_SQZ (04)	5h 40m 49s)			
	SIB1_IP		SIB1_B			SIB1_B	र										
Injection	MC_IP		MC_PAY		MC_BR			MC_Vert			MC_TE		MC_Guard				
Injection	Laser		LaserAmpli		LaserChiller		ler	SL_TempController			RFC		LNFS				
	MC_Power		PSTAB		IMC_AA		۱.	IMC_AA		MC_F0_		z F		BPC			
	PD		QPD_B1p		QPD_B2		2	QPD_B5			ОМС		PicoDisable			Shutter	
Detection	SDB1_IP		SDB1_LC		SDB1_BR		R	SDB1_Vert			SDB1_TE		SDB1_Guard		SDB1_Electr		
	B2_8MHz_DPHI	34_56MHz_	5MHz_DPHI DARM_U		IGF UNLOCK		S	SFS_UGF	FmodErr		Etalon		GIPC DAR		RM_Corr	EQ_Mode	
ISC	B1p_DC	B4_112M	1Hz_MAG	B7_	DC	E	38_DC	LSC	_rms	ASC	rms	DIFF	p_AA	50Hz	_FF	ViolinModes	
	BS_IP		BS_F7		BS_PAY	r	BS	5_BR	BS	_Vert		BS_TE		BS_Guard	i	BS_Electr	
	NI_IP		NI_F7		NI_PAY		NI_BR		NI_Vert			NI_TE		NI_Guard		NI_Electr	
	NE_IP		NE_F7		NE_PAY		NE_BR		NE_Vert			NE_TE		NE_Guard		NE_Electr	
Suspensions	PR_IP		PR_F7		PR_PAY		PR_BR		PR_Vert			PR_TE		PR_Guard		PR_Electr	
	SR_IP		SR_F7		SR_PAY		SF	R_BR	SR_Vert			SR_TE		SR_Guard		SR_Electr	
	WI_IP		WI_F7		WI_PAY		w	WI_BR		WI_Vert		WI_TE		WI_Guard		WI_Electr	
	WE_IP		WE_F7		WE_PAY		W	WE_BR		WE_Vert		WE_TE		WE_Guard		WE_Electr	
	CB_Hall		MC_Hall		TCS_zon	es	NE	_Hall	W	E_Hall	w	ndActivity		Seismon		BRMSMon	
Environment	INJ_Area	DET_	ET_Area EE_		E_Room DA		Q_Room	oom Exte		rnal DeadCh		annel Lights		SeaActivity		WAB	
	ACS_CB_Hall A	CS_TCS_CI	HILROC	ACS_TB	ACS_	_DAQ_Ro	oom ACS	_EE_Room	ACS_	мс	ACS_IN	J	ACS_DET	A	CS_NE	ACS_WAB	
Infrastructures	UPS_TB		в			UPS_NE			FlatCh	annel		nel		ACS		ACS_COB	
SBE	EIB_SBE	SBE SDB2_SBE SDB2_LC SNEB_SBE SNEB_LC		SWEB	SWEB_SBE SWE			SPRB_	_SBE	SPRB_LC							
TCS	NE_RH			WE_RH			NI_CO2_Laser		WI_CO2_Lase		er	Chi		hillers		TCS_Electr	
sqz	PLL		Squeezer		SQZ_AA		sqz_s		hutter		Cohe_CTRL		SQZ_Inj		Rack_TE		
	LargeValves	(Clean_Air	т	ubeStatio	ons	Tube	Pumps	Mini	Towers	π	ırboLinks	F	RemDryPM	P	VAC_SERVOS	
Vacuum	Pressure		CompressedAir		TowerServers		TowerPumps		CryoTrap		O2_Sensors			Tank		HLS	
	DetectorSEnvironme Co		ontrolRoom Minitov		wers		ISC	Inje	ction TC		5 Suspensio		ension	on Vacuum		Metatron	
VPM	DetectorMonitoring		DataCollection		n s		Storag	e	DataAccess		;	Auton		mation		DetChar	
VPM_LL_Transfer		LowLatencyDataTransfer-RealLiveData BroadcastOnlineDat		ForCWB													
	Latency		Disk		Timing		Timing_rtpc		Timing_dsp		Fast_DAC		ADCs_TE			Daq_Boxes_TE	
DAQ-Computing	Domains DM		MS_machines DetOp_		nachines ol		servers	ervers rt;		ocs CoilSwit		INF_d	_devices ENV_		evices	VAC_devices	
Calib_Hrec	CalNE	CalWE		CalINJ		CalBS		CalPR	PCa	NE	PCalWi		HOFT		NCAL	NoiseInjection	
ITFOnCall	Software/	I	TemperaturesAl			InjectionAl		UpsAl			Genera		ratorAl		TcsAl		
DetChar-Ex.Trigger	Hrec_RANGE_	BNS	GraceDB Alert		t	: GRB_Alert		ert	t <u>kamla</u>		AND Alert		SNEWS_Alert		ST	STATE_VECTOR	

- Environment
 - Wind and seismic motion

	Event	Reference
Band RMS: 0.0 Hz -> 5000.0 Hz	7.516e-07 au	6.465e-07 au

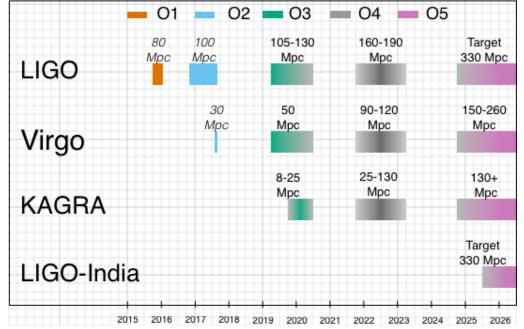

- Control signal spectra
 - Comparison to reference

[au/vHz]

SD

- 80 public alerts in O3
 - 24 retracted
 - Most of them are due to noise transient / unusual data quality condition that a single pipeline was not read to deal with
 - → Fixed quickly and not recurring again
 - 56 not retracted

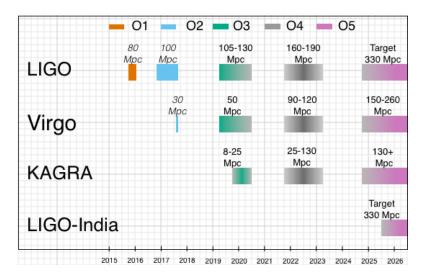
- Comparison O2-O3
 - Good agreement between O3a and O3b


First published detections from O3

- GW190425
 - Likely the second binary neutron star merger detected but no counterpart
 - Total mass larger than any known neutron star
- GW190412
 - Asymmetric binary black hole merger: 30 vs. 8 solar masses
 - First observation of GW higher multipoles beyond the leading quadrupolar order
- GW190814
 - System more asymetric than GW190412 9:1 mass ratio
 - Uncertain nature of the secondary component
 - \rightarrow Heaviest neutron star in a binary system or lighter black hole
- More to come
 - Individual events if separate analysis warranted
 - New issue of the GW transient catalog
 - Many searches ongoing on the full O3 dataset
- → Open data: Gravitational Wave Open Science Center(GWOSC)
 - <u>https://www.gw-openscience.org</u>

The path to O4: the « Advanced Plus » detectors

- Shutdown period post-O3 to prepare the 4th Observation Run O4
 - New series of upgrades: « Advanced detectors » → « Advanced Plus detectors »
- Early, pre-pandemic, planning


"2021/2022 – 2022/2023: 4-detector network with the two LIGO instruments at 160–190 Mpc; Phase 1 of AdV+ at 90–120 Mpc and KAGRA at 25–130 Mpc. The projected sensitivities and precise dates of this run are now being actively planned and remain fluid."

- Impact of the COVID-19 pandemic on the schedule is being actively studied
 - \rightarrow Stay tuned by subscribing to the OpenLVEM forum
 - <u>https://wiki.gw-astronomy.org/OpenLVEM</u>

Outlook

- Successful O3 run for the LIGO-Virgo network
 - In spite of the premature end due to the covid-19 pandemic
- Collaborations now focused towards O4
 - Upgrade plans
 - Updated schedules being worked on
 - → OpenLVEM forum: <u>https://wiki.gw-astronomy.org/OpenLVEM</u>
- O4 run
 - At least as long as O3
 - Goal: improved sensitivity (and duty cycle)
 - KAGRA joining the network
- \rightarrow More events / alerts expected
 - Decisions more automated
 - Lower latencies expected
 - Additional tools / developments needed to help separating signals from noise

