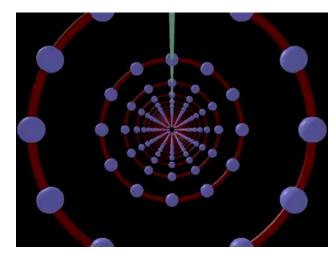
The LIGO-Virgo Observation Run 3 (O3): April 2019 – March 2020

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>)

Laboratoire de Physique des Deux Infinis Irène Joliot-Curie (Université Paris-Saclay & CNRS/IN2P3) European Gravitational Observatory (Consortium, CNRS & INFN)

On behalf of the Virgo Collaboration and the LIGO Scientific Collaboration VIR-0157A-20 DCC G2000183

(OMETERGGGRAVITATIONAL GRAVITATIONAL OBSERVATORY)

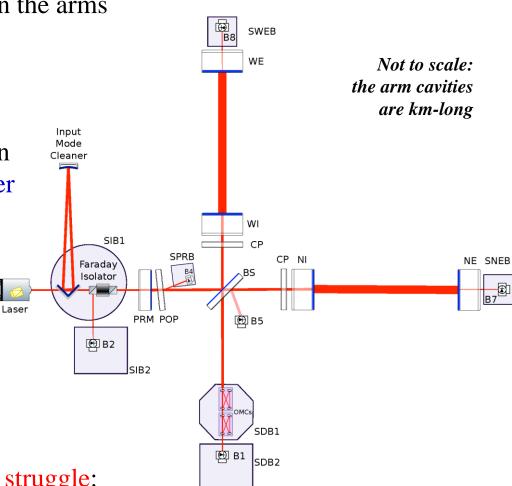

Outline

- Detecting gravitational waves with the global LIGO-Virgo network
- LIGO-Virgo Observing Runs
- The third Observing Run: O3
 - Schedule
 - Performance
- Public alerts
 - Motivation and dataflow
 - O3 Summary
- First O3 published detections
 - **•** GW190425, GW1901412 & GW190814
- Outlook
 - More O3 publications to come
 - The path to O4: the « Advanced Plus » detectors

Detectable by the instruments

Gravitational waves (GW) in a nutshell

- One of the first predictions of general relativity (GR, 1916)
 - Accelerated masses induce perturbations of the fabric of the spacetime, propagating at the speed of light – 'speed of gravity'
- Traceless and transverse (tensor) waves
 - 2 polarizations in GR: «+» and «×»
 - Quadrupolar radiation
 - \rightarrow Deviation from axisymmetry to emit GW
- GW strain h
 - Dimensionless, scales like 1/distance
- Detectors directly sensitive to h
 - \rightarrow Small sensitivity gains can lead to large improvements in event rate
- Rough classification
 - Signal duration
 - Frequency range
 - Known/unknown waveform
 - Any/no counterpart (electromagnetic spectrum, neutrinos, etc.) expected

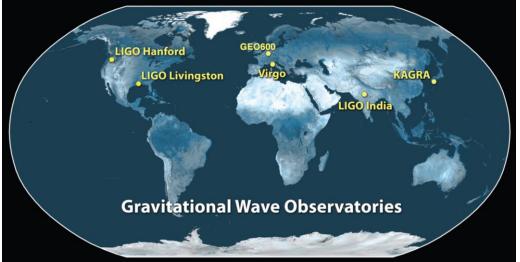


Example (*): the Advanced Virgo detector

- Suspended, power-recycled Michelson interferometer with 3-km long Fabry-Perot cavities in the arms
- Working point
 - Michelson on the dark fringe
 - All Fabry-Perot cavities resonant
 - → Feedback control systems acting on the mirror positions and on the laser
- GW passing through
 - Differential effect on the arm optical paths
 - → Change of interference condition at the detector output
 - \rightarrow Variation of the detected power
- Sensitivity limited by noises
 - Fundamental
 - Technical
 - Environmental

Continuous struggle: design, improvement,

noise hunting, mitigation

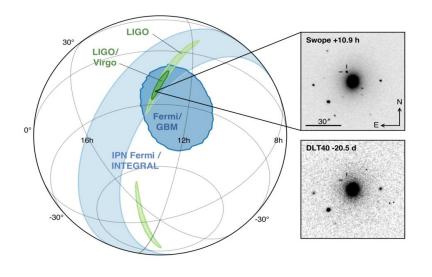


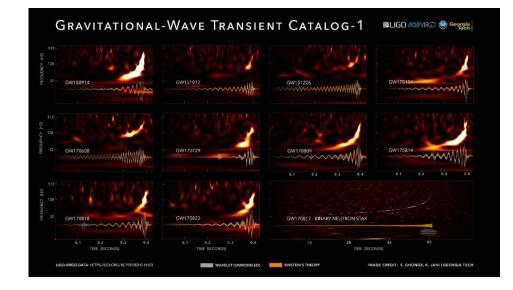
^(*) LIGO detectors are conceptually the same

4

The LIGO-Virgo global network

- A single interferometer is not enough to detect GW with certainty
 - Difficult to separate confidently a potential signal from noise
- \rightarrow Need to use a network of interferometers
 - 2nd generation: « Advanced »
 - LIGO Hanford: 2015
 - LIGO Livingston: 2015
 - Virgo: 2017
 - GEO-600: « Astrowatch » + R&D
 - KAGRA: 2020+
 - LIGO-India: coming decade



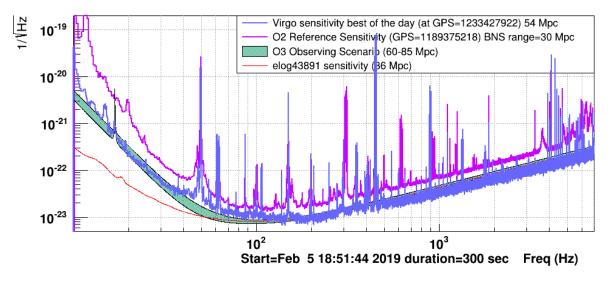

- Agreements (MOUs) between the different projects Virgo/LIGO: since 2007
 - Share data, common analysis, publish together
- Virgo-LIGO/KAGRA: 2019

- Interferometers are non-directional detectors
 - Sensitive to a significant fraction of the sky but non-uniform response
 - Time delays for the signal arrival in the different instruments: O(few ms)
 - \rightarrow Threefold detection: reconstruct source location in the sky

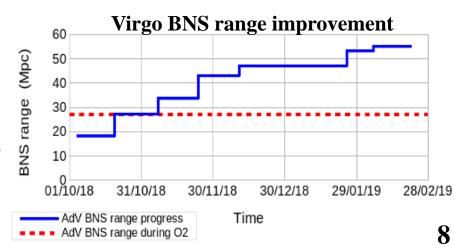
Observation runs O1 and O2

- **O1**: September 2015 January 2016
 - LIGO only
 - GW150914: first direct detection of GWs binary black hole merger

- O2: December 2016 August 2017
 - First LIGO only, Virgo from August 1st onwards
 - GW170814: first triple-detector GW detection
 - GW170817: first binary neutron star merger detection birth of multi-messenger astronomy with GW
 - GWTC-1: first LIGO-Virgo catalog of transient GW sources

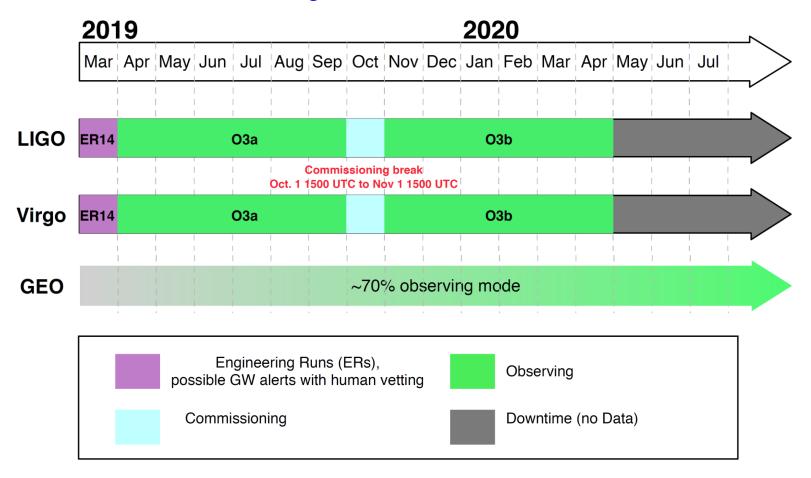

Towards the Observation Run 3: O3

- End of O2: August 25, 2017
- Beginning of O3: April 1, 2019
- \rightarrow In between: 19 months, with alternating phases of
 - Commissioning
 - Upgrade
 - Noise hunting
 - Engineering run
- Example of Virgo
 - Mirror suspension wires upgraded + vacuum improvement
 - Increase of the laser power injected in the interferometer
 - Squeezer » to lower shot noise limiting above a few hundreds Hz
 - + software improvements & better understanding of the upgraded instrument
 - \rightarrow Sensitivity improved by roughly a factor 2
- Large improvements on the LIGO side as well
 - See O3 performance in later slides

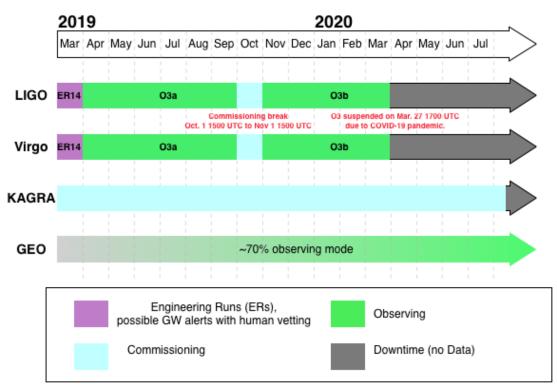

 Joint LIGO-Virgo planning
 → Common goals: improve sensitivity & duty cycle

Detector sensitivity and BNS range

- Sensitivity: noise amplitude spectrum density [Unit: $1/\sqrt{Hz}$] vs. frequency
 - Complex curve full of features, summing up contributions from many noise sources

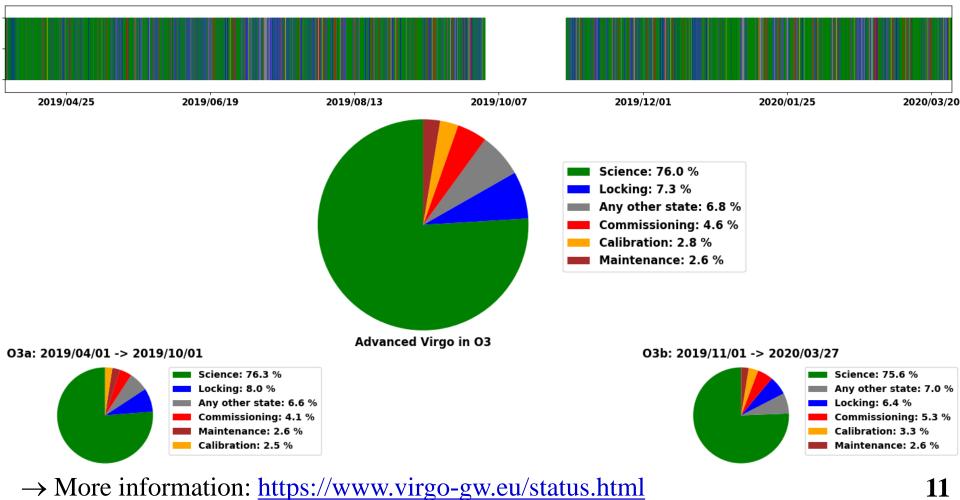


- → Useful (simplifying) figure of merit: the BNS range
 - Averaged (sky and binary inclination) distance [in Mpc] at which a « standard » merging binary neutron star system can be detected (signal-to-noise ratio of 8)

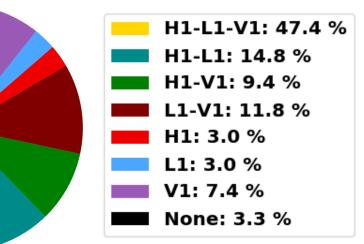

The O3 schedule

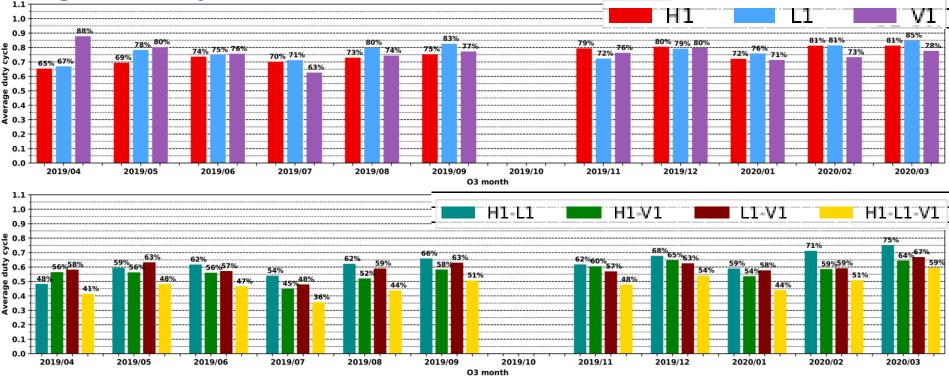
- Early plan
 - 12 months of data taking: $2019/04 \rightarrow 2020/04$
 - 2 chunks of 6 months (O3a and O3b), with a 1-month commissioning break (2019/10) in between

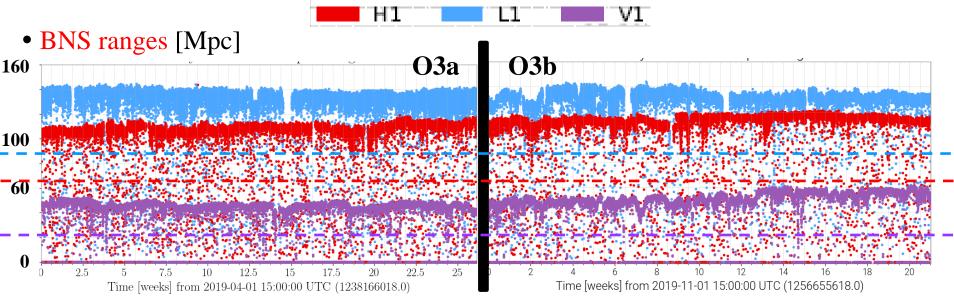
The O3 schedule


- Then came the pandemic...
 - O3 run globally suspended on March 27
 - Later decision not to start an « O3c » and to focus on the O3-O4 upgrades

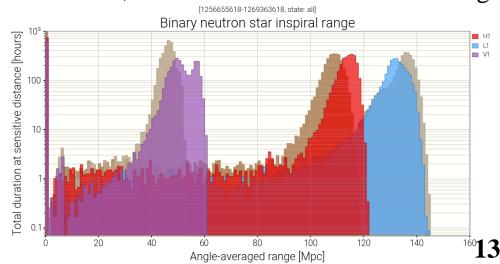
- 2 weeks (7-21 April) of joint GEO-KAGRA data taking: run « O3GK »
 - KAGRA switched from commissioning to data taking end of February
 Sensitivity still low but improving


O3 performance: duty cycle


- Single detector: example of Virgo
 - Science ↔ good data used for physics analysis
 - Online data quality; fraction of a percent removed offline

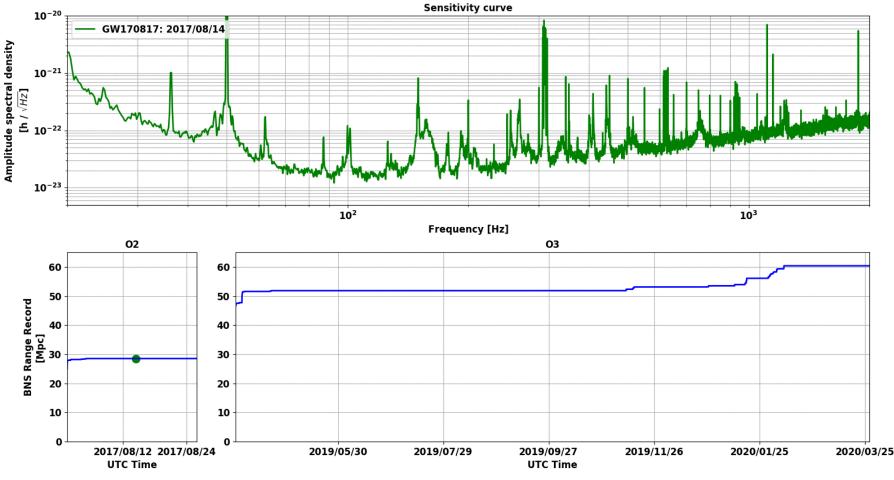

O3 performance: duty cycle

- 3-Detector network
- → Maximize triple coincindent observation
 - Maintenance / time difference
- → Ensure at least one detector up and running at all time



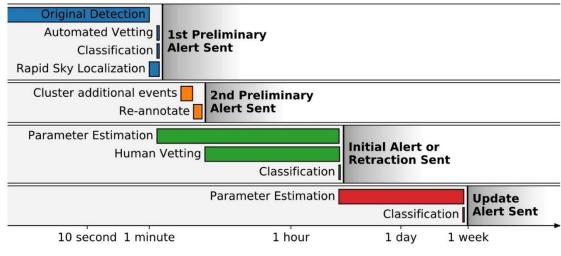
O3 performance: sensitivity

- \rightarrow Dashed lines show the corresponding O2-averaged BNS ranges
 - LIGO Livingston is the most sensitive detector, ahead of LIGO Hanford and Virgo
- Significant progress during the commissioning break for LIGO Hanford and Virgo
 - Point absorbers on optics for LIGO Livingston
 - → Part of the lost BNS range recovered by tuning instrument



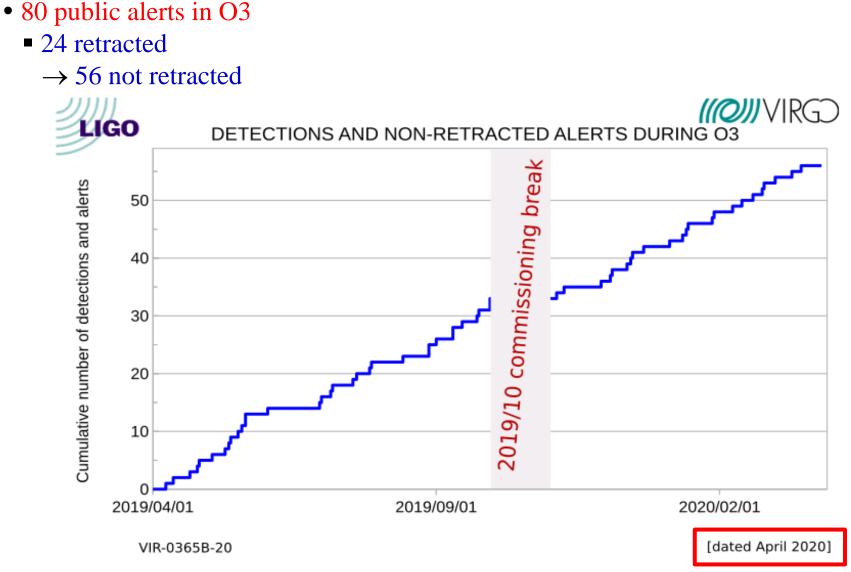
O3 performance: sensitivity

• O2-O3 sensitivity improvement for Virgo


Advanced Virgo sensitivity improvement during O3 and comparison with O2

O3 public alerts

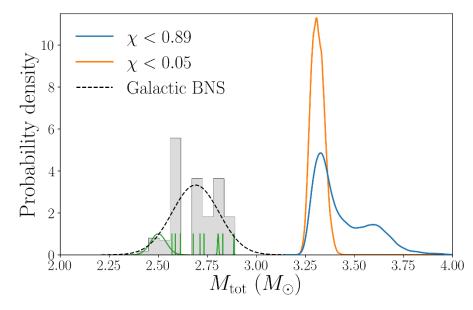
- LIGO-Virgo data are jointly analyzed in real-time
 - Modelled (compact binary coalescences) and unmodelled searches (« bursts »)
 - \rightarrow Detect and localize potential transient GW signals
- When a significant-enough candidate is found
 - False-alarm rate lower than 1 / O(few months)
- \rightarrow Alert sent to astronomers in order to search for counterparts
 - Through NASA's Gamma-ray Coordinates Network (GCN)



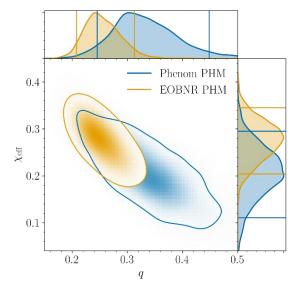
 \rightarrow Public alerts can be retracted

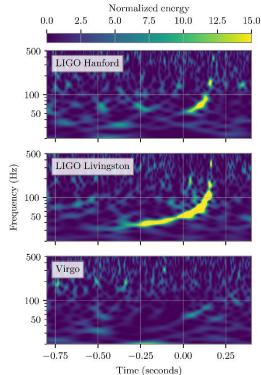
• Expert vetting

• More information: <u>https://emfollow.docs.ligo.org/userguide</u>


O3 public alerts

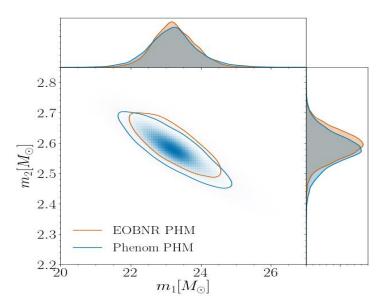
Offline analysis should confirm most of these candidates, and may uncover additional events

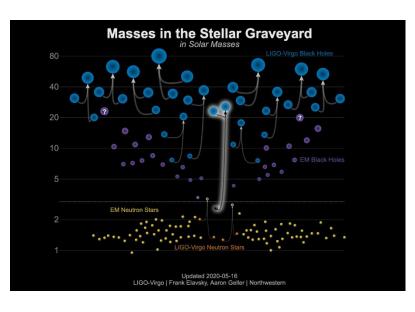

First O3 results


- GW190425: Observation of a Compact Binary Coalescence with Total Mass ~3.4 $\rm M_{\odot}$
 - Astrophys. J. Lett. 892, L3 (2020)
 - https://iopscience.iop.org/article/10.3847/2041-8213/ab75f5
- Likely the second binary neutron star merger detected
 - But no counterpart contrary to GW170817
 - \rightarrow More distant source and less well-localized in the sky (L-V detection)
- Total mass larger than any known neutron star
 - \rightarrow Hint for a new population?

First O3 results

- GW190412: Observation of a binary-black-hole coalescence with asymmetric masses
 - https://arxiv.org/abs/2004.08342 (accepted in PRD)





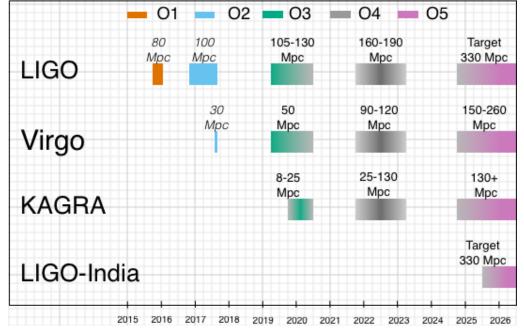
- First observation of a binary black merger with significantly different component masses: 30 vs. 8 solar masses
- \rightarrow First observation of GW higher multipoles beyond the leading quadrupolar order
 - Stronger contribution expected from asymmetric systems
- Set of tests consistent with General Relativity
- Inputs for binary black hole population and astrophysical formation channels

First O3 results

- GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object
 - Astrophys. J. Lett. 896, L44 (2020)
 - https://iopscience.iop.org/article/10.3847/2041-8213/ab960f
- Uncertain nature of the secondary component
 - \rightarrow Heaviest neutron star in a binary system or lighter black hole
 - Challenge for formation models
- System more asymmetric than GW190412 9:1 mass ratio

O3 results: more to come!

- New issue of the GW transient catalog
 - Focus on individual events if they warrant
 - A few companion papers
- Many searches ongoing on the full O3 dataset
- LIGO-Virgo data become public after an initial proprietary period
 - Around an exceptional event, when the associated article is published
 - By chunks of 6 months, 18 months after the end of the data taking
 - \rightarrow To know more, visit the Gravitational Wave Open Science Center (GWOSC)


LIG	Ì	Gra	tational Wave Open Science Center
A Data	 Software+ 	Online Tools+	aut GWOSC+
			The Gravitational Wave Open Science Center provides data from gravitational-wave observatories, along with access to tutorials and software tools.
			Jack Berger Grand BarrayJack BarrayJack Berger Grand BarrayJack BarrayJack BarrayJack Barray
			GW190814 data available!
			Get started
			Download data
			Join the email list
			Open Data Workshop • May 26 - 27, 2020

https://www.gw-openscience.org

The path to O4: the « Advanced Plus » detectors

- Shutdown period post-O3 to prepare the 4th Observation Run O4
 - New series of upgrades: « Advanced detectors » → « Advanced Plus detectors »
- Early, pre-pandemic, planning

"2021/2022 – 2022/2023: 4-detector network with the two LIGO instruments at 160–190 Mpc; Phase 1 of AdV+ at 90–120 Mpc and KAGRA at 25–130 Mpc. The projected sensitivities and precise dates of this run are now being actively planned and remain fluid."

- Impact of the COVID-19 pandemic on the schedule is being actively studied
 - \rightarrow Stay tuned by subscribing to the OpenLVEM forum
 - https://wiki.gw-astronomy.org/OpenLVEM