

Page: 1/9

Matlab Integration in Virgo Online applications

D. Sentenac

VIR-0140A-10
Feb15,2010

Abstract

ITF online servers, involved in operational control loops and data analysis, are
generally tested before using Matlab simulations. The task consisting in transposing
Matlab to C online codes can be tedious and time consuming. In this Note, we
propose a method to help commissioning and data analysis people to port their
Matlab algorithms directly to Virgo online frame distribution applications. From our
performance tests, we conclude that it can be very advantageous to use this
technique.

Page: 2/9

I. Table of Content
I. Table of Content .. 2

II. Reference documents .. 2

III. Acronyms and package meaning ... 2

1. Introduction .. 3

2. Matlab Frame Distribution Template .. 3

2.1 Problem Statement ... 3

2.2 Method & Implementation .. 3

2.1.1 Matlab m-file .. 4

2.1.2 Matlab library wrapper ... 4

2.1.3 Application Initialization & Termination .. 4

2.1.4 Input/Output Connections ... 6

3. Code performances & coding tips .. 6

3.1 Performance Tests ... 7

3.2 Frame frequency limitation ... 8

4 Conclusion .. 8

II. Reference documents
[1] FrameLib documentation: http://wwwlapp.in2p3.fr/virgo/FrameL/FrDoc.html
[2] The Virgo phase camera: VIR-0442A-09, VIR-0300A-09
[3] Fd documentation: VIR-0092A-08
[4] Mapp documentation: http://wwwcascina.virgo.infn.it/sDoc/software/Mapp
[5] app documentation: http://wwwcascina.virgo.infn.it/sDoc/software/app
[6] Matlab Help: http://www.mathworks.com/access/helpdesk/help/techdoc/
[7] FFWT documentation: http://www.fftw.org/

III. Acronyms and package meaning

ITF : Interferometer
Matlab: Technical computing software for engineers and scientists
Fd : Virgo Frame Distribution package
app : Matlab frame distribution template package
Mapp : Matlab wrapper library package
CMT : Virgo Component management tool

http://wwwlapp.in2p3.fr/virgo/FrameL/FrDoc.html
http://wwwcascina.virgo.infn.it/sDoc/software/Mapp
http://wwwcascina.virgo.infn.it/sDoc/software/app
http://www.mathworks.com/access/helpdesk/help/techdoc/
http://www.fftw.org/

Page: 3/9

1. Introduction

Virgo commissioning and data analysis groups make extensively use of Matlab
simulations in their research. The frame format containing the ITF data in Virgo-Ligo
Collaboration is accessible from Matlab [1]. When the need to adapt such codes in
online applications comes, one may want to directly encapsulate the Matlab
algorithms in Virgo online applications to gain time and reliability. In this Note we
show how to proceed in this direction. We provide a Virgo frame distribution template
able to run any Matlab algorithms. This method has been first applied with success
in the phase camera project [2]. The Matlab algorithms from the phase camera have
been used ‘as it is’ to produce the online amplitudes and phase images. In the next
section we describe in details how to use the Matlab frame distribution template.
Then we make a few observations about the some performance tests and give a few
coding tips.

2. Matlab Frame Distribution Template

2.1 Problem Statement

Virgo online data processing orientted applications are usually based on the
Frame Distribution library Fd [3]. This library is intimately related to Virgo DAQ
architecture, which is based on a peer-to-peer relation of data exchange servers
(producer/consumer). In general, an online application has the following 1Hz cycle
constraint:

1. Take a data frame in input (in shared memory or via Cm)
2. Process the data
3. Release a new data frame in output (in shared memory or via Cm)

Our concern is how to encapsulate a Matlab algorithm in step 2. The exercise turns
into adjusting the Matlab code input/output to the Virgo application. The Matlab
algorithm input has to be fed with a set of data from the input Virgo frames. In return
a new Virgo frame must be output with a set of data coming from the Matlab code
output.

2.2 Method & Implementation

The Virgo template [3] presented here is a C code extending the Fd package.
One may eventually choose to write a C++ code template. Matlab provides the
possibility to build a C library from a proprietary m-file. After describing what is a m-
file, we will show how to build a Matlab wrapper library, and finally how to connect
the Matlab input/output in the Virgo application.

Page: 4/9

2.1.1 Matlab m-file

A m-file contains the Matlab algorithm functions that accept input arguments and

produce output data. Matlab has a single input/ouput type of argument which
accounts for any type of data (scalar, vector, and array). It is the mxArray type. We
give an example of m-file to show how are handled the input/output arguments in
ANNEX. In example0, the function does simply a matching between the output and
input mxArray arguments.

2.1.2 Matlab library wrapper

In order to access the Matlab code in the Virgo template, one has to link the

application to the Matlab code C library. Matlab offers command line tools to build C
library wrappers, called mcc. Therefore it is straightforward to integrate the building
process in the commonly used Virgo Component Management Tool (CMT). The only
requirement is to use the Matlab CMT wrapper package. A typical CMT requirements
file for building a Matlab C wrapper library can be found in the Mapp template
package [4] and looks like:

A simple ‘make’ at the command line will produce automatically the expected
libapp.so library in the usual bin directory (${UNAME}), and the header libapp.h in
the src directory.

2.1.3 Application Initialization & Termination

Integrating Matlab code in the application requires some initialization. Let’s have
a look inside the app template [5]. The first thing to do is to include in the Virgo
application requirements file the freshly built Matlab wrapper library Mapp, in addition
to the Fd package:

use Mapp v0r0

Page: 5/9

then, including the header file generated in the Mapp package:

Include <libapp.h>

In order to set up the MATLAB Component Runtime (MCR), the initialization function
must be invoked:

mclInitializeApplication(NULL,0);

The MCR can be seen as a virtual machine in which the Matlab library wrapper can
be run.

Then one or more wrapper libraries can be initialized dynamically by invoking the
library specific functions holding the library name for each of them, like:

libappInitialize();

Note that in order to use the library dynamically during execution, it is necessary to
add the library path in the LD_LIBRARY_PATH environment variable. This can be
done automatically by setting up the app package CMT environment, before
execution:

cmt config
source setup.cs

The application code can forward info messages coded in the Matlab functions, in
particular useful for debugging purposes. The method to do it is to use the disp
Matlab function in the m-files (see ANNEX) and declare them in the Matlab
initialization to redirect the output to a custom print_handler function.
libappInitializeWithHandlers((mclOutputHandlerFcn)print_handler,

 (mclOutputHandlerFcn)print_handler);

Before terminating the application, one may invoke the library termination routine:

libappTerminate();

Then any Matlab memory used should be freed:

mxDestroyArray(inputs);

And finally the application closed:

mclTerminateApplication();

Page: 6/9

2.1.4 Input/Output Connections

We will see now how to translate the Matlab outputs and inputs arguments in the
Virgo application. The Matlab algorithm inputs and outputs have to be defined as
pointers:

mxArray *inputs;
mxArray *outputs;

To account for a scalar, the input (output) must be instantiated as follow:

inputs = mxCreateDoubleMatrix (1,1,mxREAL);

To account for a vector, the input must be instantiated as follow:

inputs = mxCreateDoubleMatrix (n,1,mxREAL);

Where n is the vector size.

To transform a mxArray into a double type, one has to apply the following:

double *d;
d = mxGetPr(outputs);

Inversely to copy a C data pointer to a mxArray data object, one has to do the
following:

double *d;
memcpy (mxGetPr(inputs),d, sizeof(double) * n);

Where n is the size of the double pointer array d.

Finally, the general call to the Matlab algorithm function would read, in case of calling
the function defined in example0.m:

(*mlfExample0)(n,&output1,..,&outputn,input1,…,inputp);

where n stands for the number of outputs. Note that one can use as many as output
& input arguments. The function name is defined automatically by the wrapper. It is
always preceded with the mlf prefix.

3. Code performances & coding tips

We do not intend to provide here pure Matlab coding tips to improve performances
and the read will refer to the Matlab Help section [6]. On the other hand we draw the
attention of the reader on the consequences of integrating Matlab m-files in a frame

Page: 7/9

distribution application. We recall that the reader will find a full example of the
implementation of a frame distribution application in the Mapp [3] and app [4]
packages.

3.1 Performance Tests

In the app package is shown a simple performance test using different Matlab
functions doing the same computation in different ways, and a comparison is made
with the same computation done in the application itself. It consists simply of
assigning the input vector to the output vector values. The performance results are
shown in the following table:

Algorithm Example0 Example1 Example2 C-code

Average
computation time

(seconds)

3E-03 1.7E-01 3.3E-04 2.4E-04

We make the following observations:

 The best way to assign the inputs to the outputs is using the concept of
vectorization (see ANNEX) as in Example2.

 If it is not possible, it is important to allocate the output vector before
entering the loop using the zeros function, as in Example0. The worst is
clearly Example1.

 The C-code shows better performances respect to best Matlab
Example2 by a factor ~ 1.4.

We can explain the differences between Example2 and C-code in terms of memory
allocation time efficiency. We indeed checked independently that memory allocation
is more efficient in the C-code than in Matlab. In addition, consider that the Matlab
inputs memory allocation can be done prior calling the m-file, at the Virgo application
initialization. But we cannot avoid that the outputs generated in the m-file function
are allocated at each cycle. This is demonstrated by comparing Example0 to
Example1. This memory drawback can be compensated by using as much as
possible the vectorization techniques, which appears by far the most efficient way of
calculation Matlab offers. Where vectorization is not possible, memory allocation will
have to be minimized, i.e reusing the same outputs as much as possible. To further
test the efficiency of Matlab algorithms, we push the comparison computing a fast
Fourier transform (FFT). In the following table are shown the FFT performances
obtained for a FFT done on a photodiode channel at 10 kHz:

Algorithm Example3 C-code

Average computation time
(seconds)

1.0E-03 6.9E-04

Example3 uses fully the vectorization technique to compute the FFT (see ANNEX).
The C-code uses the FFTW library which is known as one of the fastest FFT

Page: 8/9

software [7]. As before, the C-code appears more efficient than the Matlab code by a
factor ~1.4. This shows that the difference is merely due to the outputs memory
allocation issue pointed in the first test. Considered alone, Matlab computational FFT
gives similar performances results to FFTW. If we suppose that the Matlab functions
are of the same quality as the FFT, it can be very advantageous to use directly
Matlab code in Virgo application, especially if the algorithm use complex functions
that would be tedious to transpose in C.

3.2 Frame frequency limitation

In an online application, a frame is produced at 1Hz. This fixes the upper limit for
frame production of one second for output frame computation. However computing
tasks may require more than one frame in input (like in time Fourier transform), and
computing may grow with time, exceeding the maximum time allowed to output
frames. To overcome this issue, multithreading the application becomes necessary.
The algorithm computation thread can be separated from the main thread dealing
only with frame I/O. In offline simulations, the user will get an estimation of the
Matlab algorithm computing time, and decide if multithreading is necessary or not.

4 Conclusion

In this Note we have given the user a fast method to implement his Matlab
algorithms in online applications. It is based on two template packages, Mapp
gathering the m-files and wrapper libraries, and app being the Virgo front end
application. We focused on frame distribution aspects which is most adapted to
online control loops and data analysis needs. We have shown that when code
optimization techniques are correctly applied in Matlab, we obtain very good
performances respect to pure C-code. The overall code efficiency may depend
essentially on how and how much memory is allocated for the Matlab outputs.

Page: 9/9

ANNEX

The Matlab package Mapp contains the following example m-files used in the

performance test done in 3.1:

