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A man may be attracted to science for all sorts of

reasons. Among them are the desire to be useful, the

excitement of exploring new territory, the hope of

�nding order, and the drive to test established

knowledge. These motives and others besides also

help to determine the particular problems that will

later engage him. Furthermore, though the result is

occasional frustration, there is good reason why

motives like these should �rst attract him and then

lead him on. The scienti�c enterprise as a whole

does from time to time prove useful, open up new

territory, display order, and test long-accepted belief.

Nevertheless, the individual engaged on a normal

research problem is almost never doing any one of

these things. Once engaged, his motivation is of a

rather di�erent sort. What then challenges him is

the conviction that, if only he is skillful enough, he

will succeed in solving a puzzle that no one before

has solved or solved so well. Many of the greatest

scienti�c minds have devoted all of their professional

attention to demanding puzzles of this sort. On most

occasions any particular �eld of specialization o�ers

nothing else to do, a fact that makes it no less

fascinating to the proper sort of addict.

-T.S. Kuhn, The Structure of Scienti�c Revolutions
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Motivations and Outline

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

After one century from its �rst formulation, General Relativity (GR) is still the most
credited theory of the gravitational interaction having found many direct and indirect
experimental con�rmations [1]. Among the theoretical predictions of General Relativity
that until this year lacked direct experimental evidence there were Gravitational Waves
(GWs), local perturbations of the spacetime metric travelling through spacetime itself
[2]. First the discovery of the binary pulsar PS 1913+16 [3] provided a strong indirect
evidence of their existence. Then direct evidence of GWs came early this year when the
waves produced by a binary coalescence of black holes have been detected for the �rst
time [4]. Moreover other cosmic processes produce gravitational waves, but with di�erent
wavelengths of the same radiative spectrum. This is an example of how gravitational
radiation can inform us about many di�erent astrophysical phenomena.

GWs can help us constrain competitive theories of gravity or extensions of GR, which
predict di�erent gravitational signals for a variety of sources [5, 6]. Moreover they repre-
sent a completely unexplored realm for astrophysical research [7], which can complement
current observations based on the electromagnetic spectrum. The direct detection of GWs
opens a new era of astrophysical research and provides new tests of GR [8] and possibly
quantum gravity tests [9]. Therefore the experimental detection of Gravitational Waves
was long expected [10, 11, 12], and it is naturally coupled to theoretical source modelling
and waveform prediction. The research work and the topics discussed in this thesis con-
tribute to the latter and to a better understanding of the general relativistic dynamics of
compact objects.

Astrophysical research makes extensive use of GR calculations, whenever the Newto-
nian mechanics is not su�cient for the desired level of accuracy and when non-Newtonian
phenomena appear. In particular the search for strong gravity has acquired a lot of re-
levance. Strong Gravity can be seen in opposition to weak gravity, but a quantitative
threshold between the two scales is given by the ratio [1]

ε ∼ GM

Rc2
,

where R is a typical dimension of the phenomenon under consideration, andM its charac-
teristic mass scale. For a non-rotating black-hole horizon this is ε ∼ 1, for neutron stars
ε ∼ 0.2. These are considered in the regime of strong gravity. Solar system is at ε < 10−5,
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this is no strong gravity1. Since GR is so e�ective in weak-�eld regime, investigating
strong gravity, i.e. when gravitational �elds are strong and spacetime curvature is large,
can also give insight into modi�cations of GR [13]. However, the recent discovery by the
joint aLIGO and aVirgo collaborations of the black-hole binary emitting GWs [4] is the
�rst test we have for GR in the strong regime, and no deviation from GR predictions has
been measured yet [8]. The computational and theoretical techniques employed in the
regime of strong gravity di�er from those of weak �eld dynamics and the Extreme Mass
Ratio systems discussed in this thesis are considered within this regime.

Extreme-Mass-Ratio compact binaries

Prominent sources of Gravitational Waves are compact binary coalescences [14], two-star
systems such as Neutron Star-Black Hole (NS-BH) or Black Hole-Black Hole (BH-BH).
While comparable-mass binaries are already accessible for the ground-based interferome-
ters aLIGO and aVIRGO, space-based detectors such as eLISA will probe the frequency
range of signals from Extreme-Mass-Ratio binaries (EMR) [15]. The latter consist of
a central Supermassive Black Hole (105 − 107M�, M� being the mass of Sun) with a
smaller companion inspiralling around it until the eventual plunge and merge. The best
theoretical description of EMR inspirals is given in terms of Black Hole perturbation the-
ory, i.e. the smaller companion is taken to be a probe in the central body's background
metric. We have investigated the simplest case for non-spinning Black Holes, along the
path started by Regge and Wheeler [16], devising a solution of the geodesic equations,
fully known analytically, that models the plunge phase.

One way of improving the description of the inspiralling orbit of the minor companion
in an EMR binary is by considering deviations from a known geodesic orbit. As the
motion is mainly driven by the bigger central body, it is expected to be quasi-geodesic and
small deviations from this can account for non-conservative e�ects, such as gravitational
radiation. This idea has been successfully implemented for eccentric orbits already in [17,
18], giving insight in the adiabatic inspiral phase of the coalescence. The method consists
mainly in solving the Regge-Wheeler equations for a body in an orbit deviated from an
analytically known geodesic, in this case circular orbits in Schwarzschild background.

In order to extend this method to the �nal phases of EMR coalescences, in [19] we
developed �rst the analytical orbit for the plunge phase, so-called �ballistic orbits�. This
provided insight into a new sector of geodesic motion in Schwarzschild metric beyond
the Last Stable Orbit r = 6M . Subsequently a numerical solution of the Regge-Wheeler
equations based on these orbits has been evaluated using Lousto-Price algorithm [20].
The radiative results obtained in this way agree with the expectations from quasi-geodesic
motion [21, 22].

Moreover we have extended our analysis to include the �rst-order deviations from
these orbits, in order to successfully overcome the limits of the aforementioned ballistic
orbits. This became a valid tool to model plunging orbits for EMR binaries, tuning

1Another de�nition refers to the region where spacetime curvature, represented by the Riemann tensor,

is comparable to the inverse length squared of a typical dimension GM
R3c2

∼ 1
`2
.
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their parameters, such as orbital energy and angular momentum, according to the desired
criteria.

Compact spinning objects in curved spacetime

Another interesting case to consider is when the companion body is spinning, which would
account for EMR binaries with rotating Neutron Stars, for instance. The equations
of motion for a classical spinning object in Special (and General) Relativity are well-
known [23, 24]. They employ di�erent spin supplementary conditions to make the system
mathematically determined and solvable [25]. Within the particle approximation and
to �rst order in spin they simplify such that the issue of choosing the supplementary
condition can be easily overcome.

We introduced a di�erent road to derive dynamics within this framework based on an
e�ective symplectic structure with no need of supplementary conditions, valid for general
Hamiltonians, that allows to obtain constants of motion, and consequently develop the
kinematical description of a spinning particle -representative of a compact object- in a
curved background [26, 27]. This construction returns the usual equations of motion with
a minimal Hamiltonian, and gives way to several generalizations [28] as well. Establishing
the formalism for this and other applications is the content of the last part of this thesis.

Outline of this thesis: in chapter 1 a self-contained introduction to General Relati-
vity and Gravitational Waves is presented, together with a brief overview of the current
experimental e�orts to detect GWs. Black-Hole binaries are also discussed at the end of
the chapter.

In the second chapter an introduction to Black Holes and to Black-Hole perturbation
theory is given, necessary for the study of Extreme Mass Ratio systems, followed by basic
concepts of geodesic deviations, which are used here as an orbit perturbation method.

In chapter 3 the study of a particular solution of the geodesic equations in Schwarz-
schild metric is presented. This is used as a model for the plunge phase of an Extreme
Mass Ratio binary and gravitational radiation is extracted for this system. Strong points
and limitations of the model are discussed. In the fourth chapter improvements of the
methods presented in chapter 3 are discussed, together with their limits. These new orbits
take advantage of the geodesic deviation method to obtain new results.

In chapter 5 we establish the formalism to extend the results obtained in the previous
chapters to the case of spinning particles. These constitute a model for rotating compact
objects such as neutron stars in a binary system. We compare the method with existing
literature and track the future directions for its application.

The last part is the Conclusion of this thesis. After that a summary accessible to a
broader audience is provided.
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Notation

Before diving into the core of this dissertation, we wish to give some useful remarks about
the notation and units used throughout this work.

If not explicitly stated, the used units are the geometrized ones, in this case c = G = 1.
In order to restore the usual units one has to multiply the quantity of interest by the
appropriate powers and factors of the speed of light c and the universal gravitational
constant G. For instance, with these units, length and time have the same dimensions
as mass, therefore velocity is dimensionless and it must be multiplied by c ∼ 3 · 108m

s to
have it in meters per second.

For all the vectors and tensors appearing in the following, every Greek index refers to a
quadri-dimensional Lorentz index, ρ = 0 . . . 3, where the 0-component refers to time, and
the other three are the spatial ones, corresponding to the Cartesian coordinates (x, y, z)

or more often to the spherical ones (r, θ, ϕ) as will be mentioned explicitly. For only
the spatial components a latin index will be used, i.e. j = 1, 2, 3. Repeated indices are
summed over, as for Einstein convention.

Common partial di�erentiation can be indicated in subscripts with a comma symbol,
as it is conventional in General Relativity, while covariant di�erentiation will be indicated
by a semicolon, namely

∂νA
µ =

∂Aµ

∂xν
= Aµ,ν while ∇νAµ = Aµ;ν = Aµ,ν + ΓµνλA

λ.

The convention (same as Weinberg [29]) about signature of the Minkowski metric is

(ds)2 = ηµνdx
µdxν = −(dx0)2 + (dx)2

and the sign of the Riemann tensor

Rµνλκ = ∂κΓµνλ − ∂λΓµνκ + ΓµρκΓρνλ − ΓµρλΓρνκ.

Finally symmetrization and antisymmetrization on a couple of indices will be indicated
in the following way:

A(µν) =
1

2
(Aµν +Aνµ) A[µν] =

1

2
(Aµν −Aνµ) .

x



* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

1 Introduction

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Newtonian mechanics represented a revolution in modern science, also for the contribu-
tions to gravity and astronomy. Every other astronomical observation back since has
been interpreted in the light of Newton's ideas, until a new paradigm stepped forward
a hundred years ago. This is currently the most credited theory of the gravitational in-
teraction and the leading interpretation of astrophysical phenomena and our universe:
General Relativity, formulated by Einstein in a series of works between 1907-1916 [30].

During this century several discoveries have con�rmed General Relativity (GR) as an
e�ective theory for the gravitational interaction, making it a full-�edged �eld in physics
research. The classical proofs date back to the beginning of the century and were sug-
gested by Einstein himself: the perihelium shift in the orbit of Mercury, a well-known
phenomenon discovered by Le Verrier1 which could �nd a precise explication through GR
[32], and the de�ection of light around a massive object, such as the Sun, which Einstein
regarded as necessary to prove, as he would �feel very sorry for the dear Lord, for the
theory is correct!�, if such experiment would have failed to prove GR right [33]. These
are the so-called �classical proofs� of GR.

Other proofs came later, like observations of gravitational lensing by NASA [34] and
the famous gravitational time-delay experiment by Pound and Rebka [35]. Finally, the
Global Positioning System (GPS) would not be so e�ective and precise (positional accu-
racies of around 15 meters and 50 nanoseconds in time transfer accuracy everywhere on
Earth2) without GR corrections. The same applies to navigation using Earth-orbiting
atomic clocks and to overall satellites' motion; most of the wonderful possibilities and
apps of our personal smartphones owe their existences to General Relativity.

After the initial phase (late 19th century- 1919) when the foundations of Special
and General Relativity were laid down and the classical proofs of GR mentioned above
were performed, there was a period during which technology and experiments could not
catch up with the theoretical advancements in the �elds. This ended in 1960 with many
measurements and veri�cations of GR predictions, such as the gravitational redshift and
the soundest indirect proof we have of the existence of Gravitational Waves, the orbital
period of the Hulse-Taylor binary pulsar [36]. Many alternative theories of gravity were

1He also recognized that the phenomenon could not be explained solely on the basis of Newtonian

mechanics and with the perturbations of the known planets [31], suggesting the existence of a hypothetical

planet even closer to the Sun than Mercury, i.e. �Vulcan�. No such planet has ever been found.
2And military applications can reach even higher accuracies.



1.1 Gravity and General Relativity 2

unable to �t the experimental results and therefore discarded, turning GR into the leading
theory of gravity.

This chapter is an introduction to general relativity and gravitational waves in parti-
cular. The chapter opens up with a summary of the main ideas behind General Relativity
and the concept of spacetime, giving way afterwards to the equations of motion in a gra-
vitational �eld and their symmetries. In the second section the concept of gravitational
waves and how we detect them are made clear. Finally a brief description of the sources
of gravitational radiation is presented, with an emphasis on Extreme Mass Ratio binaries,
which are the main object of investigation of this work.

1.1 Gravity and General Relativity

General Relativity is the leading theory for the gravitational interaction and a growing
�eld in Physics. This is possible mainly because of the abundance of astrophysical ob-
servations that we have been able to make from the '60s onwards (so-called �golden era�
of GR [1]). The discovery of gravitational waves also adds another valid tool to inspect
astrophysical sources and to study limits and validity of GR itself.

The conceptual basis and the key starting concept of GR is in the Equivalence Principle
and its di�erent formulations. The �rst historical formulation is related to Newton's
investigations about the di�erence between the inertial massmi and the gravitational mass
mg. The �rst one is the one appearing in the kinematics as representative of the inertia
of a body, the second one is the source of gravity and the �charge� experiencing gravity, in
the same way as the electric charge is for the electromagnetic interactions. Newton could
establish that every form of matter gravitates in the same manner, because pendula of
di�erent materials, but with the same length, oscillate with the same periods. To this
one has to add the Universality of Free Fall, tested by Galilei as well [37] from the leaning
tower of Pisa (Italy)3, and get to the conclusion that inertial mass and gravitational mass
are, if not equal, proportional to each other. The famous Eötvös experiment and following
ones have shown that the ratio mi

mg
between the two kinds of mass is 1 up to a sensitivity

of 10−13 [38, 1], with current experiments being developed to push this limit even further
down, as MICROSCOPE, to be launched within this year [39].

The fact that the bodies with di�erent composition and internal structure fall inde-
pendently of these properties when not acted upon by any other force than gravity, is the
main content of the Weak Equivalence Principle (WEP), certainly true in the Newtonian

3Actually the reported experiments of falling bodies contrasting Aristotle's principle that heavier

bodies fall faster and showing the universality of free fall were performed at Delft (the Netherlands)

in 1586, by S. Stevin and J. C. de Groot. Not far from where Galilei's manuscript was �rst published

(Leiden) with similar results by using inclined planes and more mathematical rigour. It is generally

accepted by historians that Galilei's experiment from Pisa tower is only a thought experiment.



1.1 Gravity and General Relativity 3

limit. Adding local Lorentz invariance and local position invariance to the WEP sets up
the Einstein Equivalence Principle (EEP):

• the Weak Equivalence Principle is always valid;

• the results of any local non-gravitational experiment performed in a freely falling
frame are independent of the motion of the reference frame;

• the results of any local non-gravitational experiment are independent of the position
in spacetime in which the experiment is performed.

The EEP is often exempli�ed saying that an observer cannot distinguish locally between a
constant gravitational �eld or an accelerated frame. Clearly if mi 6= mg, if the WEP were
not valid in the �rst place, this equivalence of accelerated frames could not be possible at
all.

Asking that these principles are valid for all fundamental physics, including gravity,
is often called the Strong Equivalence Principle (SEP), i.e. even when the experiments
are performed with some background gravitational �eld, it is always possible to �nd an
observer in absence of gravity obtaining locally the same results. The EEP is the driving
principle of the theory of General Relativity, because it entails a metric theory of gravity,
where spacetime is endowed with a symmetric metric, the trajectories of freely falling
bodies are geodesics of that metric, and that the non-gravitational laws of physics are
those of Special Relativity in a local freely falling frame. Such is GR.

Therefore it is a consequence of the Equivalence Principle to interpret space and time
as a manifold and gravitational �elds as a manifestation of its geometry. A di�erent
interpretation of the EEP or a di�erent application, even to a minor level, might lead to
competing theories of gravitation, be they metric theories like GR, or not [40].

The strong connection between the physics of gravitation and geometry, and in parti-
cular the Riemannian geometry, was repeatedly remarked by Poincaré and Einstein and it
is the core concept of GR. In the following section we describe the fundamental equations
of GR, relying on the language of di�erential geometry.

1.1.1 The geodesic equations

Already with the advent of Special Relativity more than a hunded years ago [41] the
concepts of absolute space and time were replaced by the more complicated structure of
spacetime. The idea is that there is no preferred inertial reference system, all inertial
frames are equivalent and there are no absolute concepts of space and time. Rather,
time and space have the same dignity as coordinates. Special Relativity establishes the
relative character of velocity and the relations among di�erent reference frames comply
with Lorentz transformations, rather than Galilei's. The geometry of such spacetime can
be conveniently described in Cartesian coordinates by Minkowski metric

(1.1.1) ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (ds)2 = −(dτ)2 = ηµνdx
µdxν ,
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where (dτ) is the proper time element, invariant to any coordinate transformation. A
particle's trajectory in space is replaced by the particle's worldline in spacetime, described
by an a�ne parameter, here the proper time τ , i.e. the time as measured by the particle
itself. The line element ds represents the spacetime separation between two events with a
temporal distance dt = dx0 and a spatial distance dxi. All the results of Special Relativity
can be derived from Minkowski metric.

The word �general� in General theory of Relativity shows that the theory has been in-
troduced as a generalisation of the Special theory of Relativity. Although there has been
some confusion in the past about what exactly is being generalised [42, 43], originally,
i.e. in Einstein's views, it was the extension of the principle of relativity from inertial
frames to accelerated frames, and virtually to all frames in arbitrary motion. That is the
consequence of the Strong Equivalence Principle making an accelerated frame locally in-
distinguishable from one within a constant gravitational �eld. Independently of whether
this holds or not and to which extent �locally� [40], General Relativity surely generalises
the geometrical concepts behind spacetime, extending them to the gravitational interac-
tion. It is a metric theory of gravity, where rather than using a �eld behaving in the same
way regardless of the di�erent bodies, a geometric description is preferred and thought
more convenient.

In GR spacetime is a manifold whose geometry is modi�ed by the masses and the gra-
vitational �elds, therefore the line element (1.1.1) is still a covariant quantity, irrespective
of the reference frame used, but the underlying metric is not necessarily Minkowskian,
it can be any symmetric 2-tensor gµν satisfying metric requirements [44]. So the metric,
from an elegant geometrical tool to derive the relativity laws and transformations, turns
to be one of the key concepts in the theory of gravitation.

Another important concept is coordinate invariance. Since there is no privileged refer-
ence frame, the laws of physics must be formulated in a way, using covariant indices and
tensors, that is invariant under regular coordinate transformations. More precisely every
di�eomorphism xµ → x′µ(x), with x′µ(x) an arbitrary smooth function of the position,
has to leave the line element (1.1.1) invariant, and this is achieved if the metric tensor
transforms accordingly

(1.1.2) gµν(x)→ g′µν(x′) =
∂xρ

∂xµ
∂xσ

∂xν
gρσ(x), (ds)2 = gµνdx

µdxν = g′µνdx
′µdx′ν .

Clearly everytime that Lorentz indices in a quantity are fully contracted and summed
over, the quantity under consideration is invariant to such coordinate transformations.
Otherwise tensors and vectors transform accordingly, as the metric tensor gµν(x) did in
(1.1.2).

The metric tensor gµν describes the geometry of the spacetime as it is modi�ed by
mass distributions4. A constant gravitational �eld gives back a �at spacetime, perfectly
matching the original Minkowski metric, consistently with the Equivalence Principle. In
a common laboratory on Earth the gravitational �eld can be neglected with very good
approximation, therefore for many physical applications in di�erent �elds the metric is
the �at one (1.1.1) and one needs not to employ the laws of GR. This is clearly not the
case for astrophysical scales and for every time gravity is studied on its own.

4The metric inverse is given by gµν , such that the product gµρgρν = δµν .
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The introduction of a curved -rather than �at- spacetime modi�es the equations of
motion accordingly. If in �at spacetime Newton's law of inertia states that a free body
in an inertial frame, with no external �eld involved, will keep its motion along a straight
line with the same constant velocity, in curved space this image changes. The free body
will keep its motion, but along a path determined by the underlying geometry, which
is determined by the global gravitational �eld. This is summarised in the equations of
motion for a free particle in GR, or geodesic equations

(1.1.3)
dxµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0,

where τ is the proper time along the particle's worldline, so uµ = dxµ

dτ is its 4-velocity
vector and Γµνλ are the connection coe�cients, or Christo�el symbols, related to the metric
of the spacetime manifold where the particle is living.

A metric spacetime is de�ned through a metric tensor gµν and a connection. Whenever
the latter is compatible with the metric, it can be induced from the metric itself,

(1.1.4) Γµνλ =
1

2
gµρ (gρν,λ + gρλ,ν − gνλ,ρ) ,

making it symmetric Γµνλ = Γµλν . The same equations of motion (1.1.3) can be derived
via variational principles from a free particle's gravitational action [29]

(1.1.5) S = −m
∫
dτ = −m

∫ √
−dxµdxνgµν .

The geodesic equations (1.1.3) lie at the heart of General Relativity's interpretation
of geometry and gravity. In fact the motion of a free particle ξµ(τ) in an inertial frame
(Newtonian mechanics) is

(1.1.6)
d2ξµ

dτ2
= 0,

and the trajectory a straight line with constant velocity. If we look at the same motion
from a constantly accelerated frame, one can derive the law of motion by a transformation
to curvilinear coordinates ξµ → ∂ξµ

∂xν x
ν , obtaining back Eq. (1.1.3). Since the accelera-

tion is constant in the second frame, an observer there cannot tell the di�erence between
accelerated motion and homogeneous gravitational �eld with strength5 Γµνλ: another for-
mulation of the Equivalence Principle.

In the case of a massless particle, like a photon, the geodesic equations are still valid, if
one indicates with xµ the position of such particle, but the worldline's description changes:
derivatives are taken with respect to an a�ne parameter di�erent from τ , say λ, because
the line element (1.1.1) is identically null (ds)2 = −(dτ)2 = 0 as required for light-like
trajectories. One needs just to replace λ to τ in (1.1.3), using it as an a�ne parameter,
but not as a proper time.

5Notice that this transformation implies that Γµνλ = ∂xµ

∂ξα
∂2ξα

∂xν∂xλ
, which shows manifestly through

Lorentz transformation how the connection, despite its indices, is not a tensor.
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Another observation [45] can be made from Eq. (1.1.3) multiplying both terms with
the mass density of dust ρ,

(1.1.7) ρ
d2xµ

dτ2
+ ρΓµνλ

dxν

dτ

dxλ

dτ
= 0 ⇒ ρ

d2xµ

dτ2
= −Γµνλt

νλ,

with tνλ = ρuνuλ the Energy-Momentum tensor density of dust. The non-tensorial force
fµ = tνλΓµνλ is analogous to the Lorentz force fµLorentz = ρelu

νFµν acting on a charged
particle, the Christo�el symbols playing the role of the electromagnetic �eld-strength,
and the force being quadratic in the velocities, rather than linear. This shows how the
Energy-Momentum tensor density of matter plays the role of the source of gravitational
interaction, thus leading to the next section, where the equations for the gravitational
�eld are displayed.

1.1.2 Einstein �eld equations

The geodesic equations (1.1.3) account for motion in a spacetime curved by gravitational
�elds and masses, but the interaction between these is given by the Einstein �eld equations
[46]. These are at the basis of practically any calculation in General Relativity, as ideally
solving them provides the geometric description of the spacetime and the distribution of
gravitational �elds in it.

They show exactly the interplay between mass and geometry: on the left-hand side one
has the Einstein tensor Gµν given by the curvature of the spacetime. This depends strictly
on the underlying geometry, for it is built on the �Riemann curvature tensor�, which
expresses how the spacetime curves locally6. Besides, the presence of a non-constant
gravitational �eld implies non-zero curvature; spacetimes such as Minkowski's are �at
spacetimes because the corresponding Riemann and Ricci tensors vanish identically at
every point, signalling the absence of gradients in the gravitational �eld. This can be
recognized by the de�nition itself of the Riemann tensor and the Christo�el symbols
(1.1.4), where second and �rst derivatives of the metric appear:

(1.1.8) Rµνλκ = ∂κΓµνλ − ∂λΓµνκ + ΓµρκΓρνλ − ΓµρλΓρνκ.

As �rst derivatives of the metric gµν,λ appear also in a �at spacetime in an accelerated
frame, and they can be put to zero with a suitable choice of coordinates, only non-
vanishing second or higher derivatives give information about real gravitational �elds,
hence the importance of the Riemann curvature tensor as in Eq. (1.1.8).

Considering that the equations describing the gravitational interaction must reduce
to the well-known 1

r2 universal gravitation formula in the Newtonian limit of slow mo-
tion or weak-�eld approximation, the following Einstein �eld equations were established,
combining the curvature of spacetime with the mass (and after Special Relativity also
energy) distribution,

(1.1.9) Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν ,

6The Riemann curvature tensor Rµνκλ gives the displacement caused by a curved spacetime when

one tries to parallel-transport a vector along a closed path [43]. In a �at spacetime any vector parallel-

transported along any closed path does not experience any change in direction, and its curvature is null

throughout the spacetime.
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where Rµν = Rκµκν is the contraction of the Riemann tensor, or �Ricci tensor�, R = Rµµ
is its contraction, the �Ricci scalar�, and Tµν is the Energy-Momentum tensor de�ned on
the spacetime manifold with metric gµν . The Eqs. (1.1.9) in vacuum would read the same
but with an identically null EM-tensor Tµν = 0. Taking the trace of both terms one can
draw the following relation

(1.1.10) R− 4

2
R = −R =

8πG

c4
T,

with T = Tµν , and rewrite (1.1.9) in a di�erent form,

(1.1.11) Rµν =
8πG

c4

(
Tµν −

1

2
Tgµν

)
,

which is for instance more convenient for weak-�eld calculations, where the metric on
the right-hand side of (1.1.11) can be replaced by the �at Minkowski metric ηµν . Both
the Einstein and the Energy-Momentum tensors are symmetric 2-tensors, Tµν = Tνµ and
therefore the 16 possible combinations of indices in (1.1.9) actually reduce to 10 di�erent
equations. The symmetries of the Riemann tensor and the Bianchi identities provide a
null covariant derivative of the Einstein tensor at the left-hand side, in agreement with
the conservation of the EM-tensor for isolated systems,

(1.1.12) Gµν ;ν = Tµν ;ν = 0.

The 4 equations (1.1.12) reduce the degrees of freedom of the original �eld equations to
only 6 independent equations. These, together with appropriate initial conditions, are a
system of di�erential equations of the second order to be solved in the metric coe�cients
gµν(xλ).

Just as the geodesic equation (1.1.3), also the �eld equations for gravity can be derived
via variational methods from an action,

(1.1.13) SG = − 1

16πG

∫
d4x
√
−gR,

with g = −det(gµν) and R the Ricci scalar. This provides the left-hand side of the
�eld equations (1.1.9), while the right-hand side is given by the corresponding action for
matter, which depends on the particular system under study, for instance (1.1.5) is the
one for a single particle. This is often the starting point for competing theories of gravity,
such as scalar-tensor theories or f(R) theory, to mention a few.

One needs to provide the matter and energy distribution of space for a speci�c sys-
tem, be it a star, a planetary system, or a portion of the universe, and then solve the
coupled di�erential equations and �nd the metric gµν , from which the connection and the
equations of motion are derived. On the other hand one can ask for solutions satisfying
particular symmetry requirements and then solve, hence �nding out all the possible phy-
sically sensible spacetimes and theorems about them [47]. The task of solving (1.1.9) is
not an easy one and only particular cases are completely integrable in closed form. The
rest is left to approximations and numerical methods.
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1.1.3 Killing vectors

A considerable help in obtaining the solutions of the equations of motion in a given
spacetime comes from the Killing vectors, namely from the knowledge of the symmetries
of the underlying spacetime. A Killing vector is a vector ξµ satisfying the following
relation

(1.1.14) ξµ;ν + ξν;µ = 0,

i.e. it is antisymmetric with respect to covariant di�erentiation. These vectors de�ne
a coordinate transformation leaving the metric invariant. If xµ → x′µ = xµ + ξµ(x),
then the metric changes accordingly in g′µν(x′) as in Eq. (1.1.2). To �rst order in the
displacement vector ξµ(x) the metric is invariant g′µν(x′) = gµν(x) if

g′µν(x′) =
∂xρ

∂xµ
∂xσ

∂xν
gρσ(x′) = (δρµ + ∂µξ

ρ) (δσν + ∂νξ
σ)
(
gρσ(x) + gρσ,λξ

λ
)

+ o(|ξ|2)

= gµν(x) + gµν,λξ
λ + ∂µξ

ρgρν + ∂νξ
σgµσ + o(|ξ|2)(

using gµν,λ = gµρΓ
ρ
νλ + gνσΓσµλ

)
= gµν(x) +

(
∂µξ

ρ + Γρµλξ
λ
)
gρν +

(
∂νξ

σ + Γσνλξ
λ
)
gσµ + o(|ξ|2)

= gµν(x) +∇µξν +∇νξµ + o(|ξ|2),

(1.1.15)

so the metric is unchanged if (1.1.14) holds. So Killing vectors are connected to �isome-
tries� in the metric. Moreover a given metric allows manifestly for a Killing vector every
time gµν is independent of a given coordinate, say x0, for that coordinate system. In fact
let Tα...β... be any tensor which has a cyclic coordinate x0, so that Tα...β...,0 = 0, then
the vector ξµ = δµ0 indicates a direction along which the Lie derivative of Tα...β... is null,
namely [48]

(1.1.16) £ξT
α...

β... = 0 ⇐⇒ ∃ ξα = δα0 : Tα...β...,0 = 0, ∀Tα...β... tensor

where £ξ(. . .) indicates the Lie derivative along the vector ξµ. Applying this theorem to
the metric tensor gives back exactly the Killing equation (1.1.14).

Identi�cation of Killing vectors for a given metric allows for conserved quantities along
a geodesic. Suppose that uα is tangent to the geodesic a�nely parametrized by λ, then

d

dλ
(uαξα) = (uαξα);βu

β

= uα;βu
βξα + uαuβξα;β = 0,

(1.1.17)

upon using the geodesic equation (1.1.3) and antisymmetry of the gradient of Killing
vectors (1.1.14). uαξα is a conserved quantity for motion along the geodesic with tangent
uα in the spacetime with Killing vector ξα, in that coordinate system. In the next chapter
we will apply these theorems to motion in Schwarzschild spacetime to �nd conserved
quantities for geodesic motion.
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1.2 Gravitational Waves

In addition to laying down the foundations of GR, Einstein derived many experimental
predictions of his intuitions. Most of them have been nowadays veri�ed, as we have
amply mentioned at the beginning of this chapter, but one important prediction eluded
full experimental evidence until this year: Gravitational Waves (GWs). Remarkably
gravitational radiation is a fully relativistic phenomenon that can be derived in di�erent
ways within GR, and in this section we will show in some detail the simplest derivation, i.e.
linearising Einstein �eld equations, and the most important properties of Gravitational
Waves.

Before that, it is appropriate to stress that, although we directly detected GWs, we
gathered several indirect proofs of their existence, as relativistic corrections to astrophysi-
cal phenomena, justifying the GW hunt during previous years [10, 11, 12, 49]. Calculations
show that the existence of gravitational radiation and the consequent loss of energy and
angular momentum by their sources �ts very well with many astrophysical observations.
Without them we would not be able to explain these. The most famous one is the period
shift in pulsar binaries due to the emission of gravitational radiation. The �rst one to be
detected was PSR B1913+16, which was worth a joint Nobel prize to Hulse and Taylor
in 1993 [36]. Fig. 1.1 reports 30 years of observations at the Arecibo (Puerto Rico) ob-
servatory, showing the perfect �t of the time shift in the periastron position to the GR
prediction. After 100 years from their �rst prediction [30], gravitational waves have �-

Figure 1.1: Orbital decay of pulsar binary PSR B1913+16. The points are the change in the

periastron period, the continuous curve is the corresponding GR prediction. In the late '90s the

Arecibo observatory was closed for upgrading, hence the lack of points in that period. Diagram

credit to [2].
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nally been detected by the aLIGO laser interferometers [4]. The data analysed by the joint
collaborations of aLIGO and aVirgo show the gravitational radiation produced by two
comparable-mass black holes merging together; the detection has been called GW150914.
The detected waveforms agree with the GR prediction for the inspiral and merger of a
pair of black holes and for the ringdown of the resulting single black hole, see Fig. 1.2.
Many other detections of similar events are expected to come in the next years.

Figure 1.2: The observed gravitational-wave event GW150914 observed by the two aLIGO

interferometers in Hanford and Livingston. The top panels show the measured signal. The

bottom panels show the expected signal produced by the merger of two black holes, based on

numerical relativity simulations. Plot credit to [4].

Gravitational waves are the radiation associated with the gravitational �eld. They
are �ripples� of spacetime, propagating through spacetime itself, interacting with it. This
is a direct consequence of the non-linearity of the gravitational interaction, as we will
shortly show. The simplest way to show the existence of waves of the gravitational �eld
is considering a small perturbation hµν on a �at background, represented by Minkowski
metric ηµν

(1.2.1) gµν = ηµν + hµν , |hµν | � 1,

with gµν the overall metric7. One can always choose a reference frame where (1.2.1) holds,
thanks to the invariance of GR to coordinate transformations. After a straightforward
calculation, one can substitute (1.2.1) into the Einstein �eld equations (1.1.9) and retain
only terms to �rst order in the perturbation hµν . One is left with the linearised �eld

equations,

(1.2.2) �h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πTµν ,

7In linearised theory indices are raised and lowered with the background metric, which is ηµν
Minkowski metric.
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with h̄µν = hµν − 1
2ηµνh and h = ηµνhµν , the alternative version and the trace of the

perturbation hµν , respectively. Further insight can be gained considering that for an in-
�nitesimal coordinate transformation xµ → x′µ = xµ+ζµ(x), the perturbation transforms
as

(1.2.3) hµν(x)→ h′µν(x′) = hµν(x)− (∂µζν + ∂νζµ),

The function ζµ(x) can be chosen arbitrarily (provided that |hµν | � 1, i.e. it is still a
small perturbation), allowing for some gauge freedom in the perturbation. Therefore it
is very convenient to move to the harmonic gauge ∂ν h̄µν = 0. This simpli�es Eq. (1.2.2)
considerably, resulting into

(1.2.4) �h̄µν = −16πTµν ,

which is manifestly a wave equation for the perturbation hµν . Gravitational radiation
is possible. Notice that the harmonic gauge condition takes o� 4 degrees of freedom,
reducing again the 10 independent components of h̄µν to 6, as for the original Einstein
�eld equations (1.1.9).

Another derivation of GW can be obtained in a more general way de�ning the inverse
�gothic metric�

(1.2.5) gαβ =
√
−ggαβ , and the �eld hαβ = ηαβ − gαβ ,

This is an exact de�nition, no approximation or assumption about the smallness of hαβ

has been made8. With these de�nitions and this time harmonic gauge on hαβ , the Einstein
�eld equations take the so-called Landau-Lifshitz form [50]

(1.2.6) �hαβ = −16πταβ ,

with ταβ = ταβ [h] the e�ective Energy-Momentum pseudotensor, that can be further
decomposed into

(1.2.7) ταβ = (−g)
(
Tαβ + tαβLL + ∂νhαµ∂µhβν − hµν∂µ∂νhαβ

)
,

with tαβLL the Landau-Lifshitz Energy-Momentum pseudotensor [2], also depending on
hαβ . Eq. (1.2.6) shows once again the wave propagation of the gravitational �eld, this
time making clear the non-linearity of the �eld equations. The right-hand side depends
quadratically on the �eld hαβ itself, thus telling that the gravitational �eld generates
gravity. This formulation of the Einstein �eld equations is the starting point for Post-
Newtonian theory and other iterative methods, see [51] and references therein. In fact
Eqs. (1.2.6) can be solved formally without specifying the motion of the source, giving

(1.2.8) hαβ(t,x) = −4

∫
d3x′

|x− x′|
ταβ (t− |x− x′|,x′) ,

8Actually hαβ reduces to the perturbation h̄αβ used in linearised theory, by replacing gαβ = ηαβ+hαβ

into the de�nition of the gothic metric and hαβ , for small hαβ .
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where the integration is performed over the past null cone of the point (t,x). Since ταβ

still depends on hαβ , this is nothing but rephrasing the original di�erential equation into
an integral one. Motion of the source is retrieved imposing the harmonic gauge condition
on (1.2.8) and a solution is found via iterative methods in a weak-�eld and slow-motion
regime.

1.2.1 Transverse-Traceless gauge

In order to see how gravitational waves propagate in spacetime, it is convenient to start
again with the linearised Einstein �eld equations (1.2.4) outside the source, for the sake of
simplicity in vacuum. This allows one to examine how the gravitational wave itself curves
spacetime and to analyse its e�ect on other distributions of mass far from the source or
to eventual detectors.

Outside the source Tµν = 0, therefore

(1.2.9) �h̄µν = 0, with ∂ν h̄µν = 0,

the imposed gauge condition. This choice still leaves some freedom and if one performs
a change of coordinates xµ → xµ + ζµ, with ζµ(x) an arbitrary smooth C2(R4) function,
the gravitational perturbation h̄µν changes as

h̄µν → h̄′µν = h̄µν − (∂µζν + ∂νζµ − ηµν∂ρζρ)
∂ν h̄µν → (∂ν h̄µν)′ = ∂ν h̄µν −�ζµ,

(1.2.10)

and the harmonic gauge condition is preserved, provided that ζµ satis�es �ζµ = 0. Also
Eq. (1.2.9) is preserved, because � (∂µζν + ∂νζµ − ηµν∂ρζρ) = 0 as well. One can then
choose ζ0 so that h̄ = ηµν h̄µν = 0, i.e. the gravitational perturbation is traceless. Then
h̄µν = hµν , we go back to the original formulation. With the left components of ζi one
can impose that h0i(x) = 0 everywhere. From the harmonic condition then one gets
∂0h00 + ∂ih0i = 0 = ∂0h00. This implies that we can put h00 = 0 without loss of
generality. Summarising, one can always change to a reference frame equivalent to an
in�nitesimal coordinate transformation with vector ζµ satisfying �ζµ = 0, obtaining

(1.2.11) h0µ = 0, h = hii = 0, ∂jhij = 0.

The �rst property tells that the perturbation is given only by the spatial parts, the second
that it is traceless, and the third one that it is divergence free. The original �eld equation
is conserved and we can solve it formally, obtaining

(1.2.12) �hµν = 0 ⇒ hµν = <
[
Aµνe

ikαk
α
]
,

with kα = (ω,k) the wave-vector and Aµν the polarization vector. The Einstein �eld
equations and the harmonic gauge further constrain to

(1.2.13) kαk
α = 0, and Aµνk

ν = 0,

namely that gravitational waves travel at the speed of light (so ω = |k|) and the wave is
contained in a plane orthogonal to the direction of propagation, i.e. they are transverse
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waves. For these reasons the whole gauge procedure is called Transverse-Traceless gauge

(TT-gauge hereafter).
For a convenient representation one can choose the direction k along the z-axis of a

Cartesian coordinate system and the complete wave solution reads

(1.2.14) hTTµν (t, z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 cos [ω (t− z)] ,

with the two independent polarization modes h+, h× called �plus� and �cross� polarizations
respectively. Two are the degrees of freedom of a GW in linearised theory, and the line
element of spacetime where such gravitational wave is passing through is

(ds)2 = −(dt)2 + (1 + h+ cos [ω (t− z)]) (dx)2 + (1− h+ cos [ω (t− z)]) (dy)2

+ 2h× cos [ω (t− z)] dxdy + (dz)2.
(1.2.15)

If one considers a homogeneously massive ring in the (x, y)-plane getting hit by the
gravitational wave (1.2.14) orthogonal to them, it lies in the spacetime (1.2.15) and gets
stretched over time like in Fig. 1.3, justifying the names of the polarizations.

Figure 1.3: Deformations of a massive ring traversed by an orthogonal gravitational wave as in

(1.2.14). The e�ects of the two polarizations take place along the coordinate axes (+) and their

diagonals (×). Diagram credit to [52].

From Fig. 1.3 and the aforementioned e�ects, it is clear that GWs carry energy and
angular momentum along, so in the next section we are going to discuss what produces
gravitational radiation and how energy is associated to them.
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1.2.2 Energy of Gravitational Waves

We have seen how to obtain a solution to the linearised Einstein �eld equations in vacuum.
One can build a formal solution also for more general cases, where Tµν 6= 0,

(1.2.16) h̄µν(t, |x|) =
4G

c4

∫
d3x′

1

|x− x′|
Tµν

(
t− |x− x′|

c
,x′
)
,

which is found employing the retarded Green's function, just like for the electromagnetic
case of the Maxwell equations. The expression (1.2.16) can be reduced to the TT-gauge
using a projector operator hTTµν = Λµν,ρσh̄ρσ, see [2] for details. We have also restored the
G, c factors in this section, in order to give a better sense of the orders of magnitude at
play with gravitational radiation.

However, the solution (1.2.16) is not really useful unless one is able to solve the integral
in closed form, knowing the EM-tensor Tµν , or one has to make some approximations or
assumptions. Since the gravitational wave is observed far away from the sources emitting
it, one can approximate the distance in (1.2.16) as

(1.2.17) |x− x′| = r − x · x′

r
+ o

(
d2

r

)
,

with r = |x| the distance from the source to the detection point -where we want to know
the wave h̄µν(t,x)- and d a typical dimension of the source, such that r � d.

Further insight can be gained considering non-relativistic sources, whereby the typical
velocities inside the sources are much smaller than the speed of light, so v � c, and
therefore the reduced wavelength of the radiation is considerably bigger than the size of
the system λ̄ ∼ c

vd� d. With these assumptions the gravitational �eld outside the source
(1.2.16) can be rewritten in the TT-gauge as

(1.2.18) hTTij (t,x) =
4G

c4
1

r
Λij,kl

∫
d3x′T kl

(
t− r

c
+

x · x′

r
,x′
)
.

One can see from the expression above how the amplitude of the �eld decreases like ∼ 1
r

and how small a GW is on the whole, thanks to the G
c4 multiplying factor.

The far-distance assumption and the non-relativistic velocities assumption pave the
way to a multipole expansion, similar to the one performed in electrodynamics. After a
straightforward calculation one can show that the leading term in such expansion is the
quadrupole moment, namely the gravitational wave results in

(1.2.19) hTTij (t,x) =
2G

c4
1

r
Q̈TTij (t− r

c
) + higher moments,

the second derivative with respect to time of the quadrupole moment

(1.2.20) Qij =

∫
d3xρ(t,x)

(
xixj − r2δij

)
,

where ρ(t,x) is the mass-energy density of the source. From these results we learn that
there is no monopole or dipole radiation, that radiation depends on the time derivative
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of the quadrupole moment, at the lowest order, and therefore that static and completely
symmetric sources do not emit GWs. The same results can be obtained in a rigorous way
also within the Landau-Lifshitz formalism, con�rming that the quadrupole is the leading
term in the multipole expansion of the gravitational �eld.

In order to calculate the energy and the angular momentum carried by a gravitational
wave, we have to take into account the Energy-Momentum tensor associated to gravita-
tional radiation. This can be found extending to second order the linearisation of Einstein
�eld equations. In this case one starts from a non-trivial background metric ḡµν and adds

two orders of perturbations, h(1)
µν and h(2)

µν , so

(1.2.21) gµν = ḡµν + h(1)
µν + h(2)

µν ,

the background ḡµν is now allowed to be curved. The EM-tensor of GWs, far away from
the original source, is then de�ned as

(1.2.22) TGWµν =
c4

8Gπ
〈R(2)

µν −
1

2
ḡµνR

(2)〉,

where R(2)
µν is the Ricci tensor obtained from the second order contributions of the per-

turbations, and R(2) is its associated scalar. The brackets indicate an average over a
region big compared to the dynamical scales of the gravitational wave, like its reduced
wavelength λ̄, which has to be smaller than the region of variation of the background, say
RB , in order to keep being considered as a perturbation. So the average is taken on a
region of scale l such that λ̄� l� RB . The fact that an EM-tensor can be associated to
GWs, and that it is sourcing Einstein �eld equations to second order of the perturbation,
shows manifestly that these waves interact with the background spacetime, modifying it.
Momentum and angular momentum can be derived from their EM-tensor, showing that
they can modify the distance in space of other masses, as it happens for the massive ring
in Fig. 1.3.

From the Eq. (1.2.22), one can obtain the energy density which, in TT-gauge, reads
as

(1.2.23) T 00 =
c2

16πG
〈ḣ2

+ + ḣ2
×〉, ⇒ dE

dt
=

c3r2

32πG

∫
dΩ〈ḣTTij ḣTTij 〉,

where also the power emitted is indicated. By using the quadrupole moment (1.2.20)
as leading term in the multipole expansion into the power expression above, one obtains
the power emitted through gravitational waves to the quadrupole level, the so-called
�quadrupole formula�

(1.2.24) Pquad =

(
dE

dt

)
quad

=
G

5c5
〈
...
Qij

...
Q
ij〉.

The factor 1
c5 damps considerably the power emitted, hence the di�culty of detecting

GWs as we will see in the next section, and the reason's why Post-Newtonian expansions
are needed at least up to 2.5 order, for then corrections up to

(
v
c

)5
are �rst available

[51, 53].
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1.2.3 Looking for Gravitational Waves

Spacetime is very sti�, as the powers of c in the Einstein equations and in the power
expression indicate. Therefore detection of GWs is as non-trivial as a necessary task.
Historically two broad kinds of detectors have been developed to succeed in this: resonant
bars and interferometers [14].

Resonant bars represent the �rst attempt at a detection of GWs. They are based
on the principle that a gravitational wave stretches apart and then compresses again a
mechanical system. One can think of two masses separated by a string, if the characteristic
frequency of the wave is near the resonance frequency of the spring, the response is
magni�ed. Such systems were realized as metal cylinders and one looks for changes in
the amplitude of the thermal motion of these bars.

These systems were pioneered by Weber in the '60s [54], and although he claimed
detection of waves, following experiments denied the discovery. Di�erent similar experi-
ments have been set up in the years and the resonant-bars epoch gave way to another
kind of experiments allowing to reach higher sensitivities: laser interferometers.

Gravitational-wave interferometers are based on a di�erent idea: measuring the
travel time of light along di�erent paths (the arms of the interferometer). A gravitational
wave modi�es locally the proper distance and therefore an interferometer with orthogonal
arms will experience a stretch in one direction and a shrink in the other. The light signal
is re�ected by the mirrors at the end of each arm and there will be a phase di�erence
between the light returning from one arm and the other. This can be measured and
provides the proof of the passage of the wave.

The original idea is the same of a Michelson-Morley interferometer, which was sup-
posed to prove the existence of aether. A monochromatic light signal is �rst separated
by a beam-splitter into two di�erent arms at 90◦, of lengths Lx, Ly respectively, re�ected
by mirrors at the end of each arm, and then recombined again at beam-splitter location.
Here part of the recombined signal goes to a photodetector measuring the intensity. If
we call E0 the initial amplitude of the electromagnetic signal (laser light), with frequency
ωL, the power detected at the photodetector will be proportional to the amplitude of the
output

(1.2.25) |Eout|2 = E2
0 sin2 [ωL (Ly − Lx)] ,

and to the di�erence in the lengths. The passage of a GW causes a variation of these
and therefore in the measured signal. Clearly the actual interferometers employ more
advanced systems than a simple Michelson-Morley interferometer. However, the length
of the arms determines the scale of frequencies that one will be able to see with the
experimental setup. The use of Fabry-Perot cavities in the arms allows to reach higher
sensitivities and lower frequencies (∼ 102Hz) in the modern ground-based interferometers,
as GEO (Germany - 600m arm length), aLIGO (US - 4km arm length), and aVIRGO
(Italy - 3km arm length) [10, 49].

Currently GEO is collecting data, together with aLIGO, which has still to reach its
nominal sensitivity, while aVirgo is under upgrade. Once the upgrade is �nished we will
have more than one second-generation detectors available and even weaker and farther
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sources will become detectable, increasing the number of detectable events to a signi�cant
level. After the analysis of the �rst series of data from aLIGO has proven direct evidence
of GWs, further detections are expected in the next years by aLIGO and aVirgo, but
also by other ground-based detectors which are under construction in Japan (KAGRA),
or proposed to be constructed (Ligo-India) [11], extending the worldwide network of
ground-based interferometers. However, to reach much lower frequencies one needs to
put interferometers into space, such as the eLISA project aims to do (launch expected by
2034). In this case the interferometer employs a triangular con�guration of three satellites
moving in space with a considerably bigger arm distance (∼ 106km).

Instead very low frequency waves (∼ 10−9Hz) can be detected with a di�erent tech-
nique, employing pulsar timing. Pulsars are fast-rotating stars with strong magnetic
�elds which emit radiation in a preferred direction; their axis of rotation precesses fast
and the Earth is illuminated periodically only when the cone of emission is in the right
direction. This turns pulsars into very regular clocks, so monitoring pulsars over years
allows one to measure variations due to the change in the distance from the pulsar to the
Earth. This is due to a stochastic GW background at very low frequency. Currently an
International Pulsar Timing Array of di�erent experimental collaborations is set up to
make their �rst detection [55].

1.3 Sources of Gravitational Waves

As we have shown previously, gravitational waves are generated by accelerating asymme-
tric distributions of mass, and our universe is drenched in GWs. Unfortunately gravita-
tional radiation is a very weak signal on the whole, so in order to obtain some detection
in this ocean of waves, one has to look at the biggest ones, authentic tsunamis and storms
brought about by the most violent phenomena. The sources of gravitational radiation
have to produce a strong enough gravitational �eld, before we can detect them. This
reduces to a variety of astrophysical events, with di�erent frequencies corresponding to
di�erent kind of sources. An overview of the frequencies and sources is given in Fig. 1.4,
showing the gravitational spectrum, analogous to the electromagnetic one.
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Figure 1.4: Gravitational spectrum. The frequency of the wave is indicated in the bottom row.

Above one �nds the sources and the detectors and experiments looking in that range of frequency.



1.3 Sources of Gravitational Waves 18

Sources of GWs can be divided according to the kind of signal they are believed
to emit. In fact one can have a wide variety of sources with two extreme behaviours:
continuous and long-lived waves emitted with roughly constant frequency and amplitude,
or very short-lived and rapidly changing signal (here both �constant� and �changing�
are considered with respect to the observation time). The experimental technique for
detection changes accordingly.

Among the most prominent candidates for GW detection, Compact Binary Coa-

lescences are sources of GWs formed by two compact objects orbiting around each other
[56]. This particular system forms under certain conditions, like both stars have to be
massive enough to undergo collapse into a compact object (Neutron Star or Black Hole),
but without destroying its companion or tearing so much mass apart that the orbit is
no longer bound. Of all the binary star systems, common in our galaxy, only a fraction
satis�es these requirements. Binary coalescences are further distinguishable in binaries
with only Neutron Stars (NS-NS) or a Neutron Star and a Black Hole (NS-BH), and
only Black Holes (BH-BH). The �rst direct detection of GWs GW150914 belongs to this
category.

Continuous wave sources are produced by rotating non-axisymmetric Neutron
Stars (NS) [57]. They emit in the highest frequency range of the spectrum, as one can
see from Fig. 1.4, and their GWs can provide valuable information to determine their
properties and structure, especially when combined with electromagnetic measurements.
Neutron stars are dense objects endowed with strong magnetic �elds and they can be
found isolated or in binaries, orbiting together with other objects, such as another star
or a black hole. A neutron star whose emission points periodically to Earth's direction is
what is commonly called a �pulsar�.

Another kind of source of radiation is represented by astronomical violent and tran-
sient phenomena, such as supernovae, instabilities in Neutrons Stars, or gamma-ray
bursts. Supernovae are violent events on the evolutionary path of massive stars. These
collapse under the in�uence of gravity, exhibiting some asymmetry that gives rise to GWs.
After this collapse very dense objects such as neutron stars or black holes are formed.
Instead the processes behind the emission of gamma-ray bursts are still uncertain, and
they could be events like the explosion of supernovae. Another transient source can be
the sudden release of energy from highly magnetized Neutron Stars (Magnetar) or bursts
from cosmic string cusps [58, 59]. The dynamics of these various mechanisms is not ea-
sily modeled and therefore it is complicated to calculate waveforms or templates for the
expected GW signal. Eventually supernovae should already be in the range of detection
of interferometers such as aVIRGO or aLIGO.

On a di�erent note GWs can come from the superposition of incoherent sources, for-
ming a so-called stochastic background. This can be a cosmological background of
primordial GWs, produced during Big Bang and early stages of the universe, which oc-
cupy the lowest part of the gravitational spectrum and were claimed to be indirectly dis-
covered by the BICEP2 experiment [60, 61] a year ago. Also cosmological models other
than the standard one predict the existence of primordial GWs, although with di�erent
strengths of the predicted background. Another possibility is from astrophysical events
such as cosmic strings or superposition of many distant events, like binary coalescences
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from compact stars too far away to be seen individually. The detection of such stochastic
background is not easy to distinguish from instrumental noise, so its measurement relies
considerably on cross-correlation techniques between many detectors.

As we will see in the next chapters, a binary coalescence undergoes di�erent stages,
emitting correspondingly di�erent kind of gravitational radiation. During the �rst stage,
the �inspiral�, the two bodies spiral towards each other loosing energy and angular momen-
tum into radiation, emitting a weak signal, slowly increasing in amplitude and frequency
for hundreds of millions of years. In this phase the motion is slow and the gravitational
�eld weak, the perfect playground for Post-Newtonian methods. Analytic expressions for
gravitational waveforms can be calculated accurately.

The phase when the signal is strong enough for detection for ground-based interfero-
meters is when they get very close to each other, they �merge� into a �nal compact object,
and they emit with great luminosity for a short period of time. This stage is better un-
derstood in terms of perturbations of the Einstein �eld equations or numerical relativity.
We are in the strong gravity regime. Eventually a remaining object radiates away the
deformations of the previous stage in a superposition of particular frequencies, so-called
quasi-normal modes. This is the �ringdown� phase, studied through perturbation theory.

The mass ratio between the two objects in a binary coalescence determines its life
and the shape of the gravitational waveform, but also other factors like the spin of the
single components contribute. When the di�erence of mass is several orders of magnitude
(∼ 105), the major body is a Supermassive Black Hole, and we are dealing with an
�Extreme Mass Ratio binary�. In this case the minor companion can be treated as a
probe in the spacetime generated by the more massive body, and the frequencies at which
they emit are considerably lower, in the range for space-based detectors, such as eLISA. It
is commonly believed that a supermassive black hole lies right at the center of the Milky
Way.
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2 Black Hole perturbation

theory
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Coalescences of compact binary systems are among the most prominent sources of Gravita-
tional Waves. These are usually a couple of Black Hole-Black Hole or Black Hole-Neutron
Star. In the case of an Extreme Mass Ratio binary, which is the kind of binary we are
most interested in this thesis, the central black hole is a supermassive one (M ≥ 106M�).

The two bodies orbit around each other, or better around their mutual center of mass,
and gravitational radiation is released during this process, in�uencing the motion of the
binary system. This goes through di�erent stages, from an initial weak-�eld motion,
where the two objects are still far from each other, all the way to the �nal strong-�eld
stage, where the two merge together. The shape of the gravitational signal changes and
the techniques employed for their prediction vary accordingly.

Di�erent theoretical frameworks have been devised in the last years in order to describe
the motion of a binary coalescence and consequently predict the emitted gravitational
signal. They mainly vary in their range of applicability, but thanks to the collective
e�orts of the gravitational community, we are able nowadays to extend our understanding
to various kinds of compact binaries.

The best way to have a synoptical view of all these techniques is comparing binary
coalescences by the mutual distance of the two orbiting bodies and their mass ratio. A
pictorial representation of this idea is given in Fig. 2.1. One has to keep in mind that
a single binary system goes through di�erent areas in this plot as time goes by, because
the mutual distance shrinks -an e�ect of the emission of energy and momentum through
gravitational waves.

Post-Newtonian (PN) theory is based on an approximation in General Relativity that
applies when the gravitational �eld is weak and the motion of the matter is slow. It
describes successfully the gravitational �eld of the solar system, but it can also be applied
to situations involving compact bodies with strong internal gravity, provided that the
mutual gravity between bodies is weak. This is the case for binaries with comparable
masses still orbiting far away from each other. The PN-theory relies on the relaxed
form of the Einstein �eld equations in the Landau-Lifshitz formulation [50]. In this
formulation the equations for the perturbation of the metric are solved iteratively and
the truncation is the main source of approximation. Once the potentials hαβ are obtained
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in terms of undetermined matter variables, those are �nally determined by enforcing the
conservation equation of the energy-momentum tensor. Then an expansion in retarded
time is performed, and this generates a Post-Newtonian expansion in powers of c−1.
Commonly a correction of order (vc )n to a Newtonian expression is said to be of n2 PN-
order. For instance, two iterations of the relaxed �eld equations are needed to produce
the leading-order 0PN expression for the gravitational-wave �eld. The interested reader
can �nd more details in [51, 53].

Figure 2.1: Mutual distance r12 in a coalescing binary of

masses m1,m2 vs mass ratio.

Diagram credit to [62].

These years have seen a con-
siderable enhancement in the
availability of computational po-
wer and this led to the de-
velopment of Numerical Rela-
tivity, allowing to explore re-
gions of the parameter space
that are not available to PN-
methods [63, 64]. The idea
is basically to solve the Ein-
stein �eld equations for speci�c
situations with numerical tech-
niques, for instance transforming
the involved di�erential equa-
tions in �nite-di�erence equa-
tions and solving these through-
out spacetime. A similar way to
discretize spacetime is also used
in this thesis to solve the radia-
tive equations of the gravitatio-
nal �eld, as we will amply de-

scribe in the following sections (Lousto-Price algorithm). Sometimes entire regions of
spacetime are excluded from these computation, like the interior of a BH horizon in
excision methods [65, 66]. However Numerical Relativity allows to treat several other
astrophysical problems, not just the computation of gravitational radiation [67, 68].

Another method that encompasses all these regimes of di�erent mass ratios and mutual
distances is the so-called E�ective One Body approach [69]. In this approach the dynamics
of two masses m1,m2 is mapped into the dynamics of one particle with reduced mass
µ = m1m2

m1+m2
moving in an e�ective metric. The hamiltonian de�ned by the geodesic action

of this metric can be mapped to the relative-motion PN hamiltonian, thus recovering the
PN equations of motion. However in the test-particle limit geodesic motion is retrieved
exactly, and not just the PN truncation. This method can treat comparable mass ratio
binaries all the way to the merger and has given already many results for the description
of coalescences and the relative gravitational radiation [70, 71, 72].

Last but not least come the perturbative methods. In this case the motion is calculated
from a perturbation of the background non-trivial metric [16, 73]. This is how binary
systems with high mass ratio are most naturally explored. The Einstein �eld equations are
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�rst written including this perturbation on the metric and the energy-momentum tensor,
then solved with the means available. At zeroth order in the mass ratio one retrieves
the usual geodesic motion, then corrections are added. The perturbation allows to use
fully GR and to study the background spacetime and its properties. The back-reaction
from this perturbation gives rise to gravitational self-force, which changes gradually the
particle's motion and is also studied in these perturbative schemes [74, 75].

In this chapter we will focus on BH perturbation theory, for this allows to describe
best the Extreme Mass Ratio binaries (down-right corner of Fig. 2.1) and to use GR
fully, giving an unique opportunity to test the background spacetime itself and to ex-
plore its properties. First a self-contained description of the Schwarzschild spacetime is
given. Then, in the second section, the mathematical formalism and the main results
of Schwarzschild Black Hole perturbation theory are recalled, with a short derivation of
the Regge-Wheeler radiative equations. The third section is dedicated to these equa-
tions and to the methods of solution employed in this thesis. In the last section another
perturbation method, the geodesic deviations method, is described.

2.1 Black Holes in General Relativity

The �rst appearance of a black hole dates back to 1783, when reverend Mitchell calculated,
within purely Newtonian mechanics, the escape velocity of a particle at the surface of a
body with mass M and radius R, equating kinetic energy and Newtonian gravitational
potential,

v2
escape =

2GM

R
.

If vescape > c then light cannot escape from this object. Therefore a star with mass M
and radius R such that

2GM

c2R
≥ 1,

emits light that cannot go farther than 2GM
c2 , hence it is a dark star. Since its birth as

�dark star�, the concept of black bole has developed into one of the most fascinating topics
in General Relativity. It did not take long for its discovery in GR, considering that the
�rst BH solution - the Schwarzschild solution- has been found just one year after the �rst
Einstein's publication regarding the general theory of relativity in 1915 [76]. Research
on BHs developed quite a lot since and nowadays they appear as common objects not
just in GR, but in other theory and models in high-energy physics as well, such as string
theory and AdS/CFT correspondence. In fact, starting from the Bekenstein-Hawking
formulation it is possible to give a thermodynamical interpretation of BH solutions [77, 78].
Thanks to this, higher-dimensional black holes become interesting objects to study in
order to derive properties of their dual counterparts in Field Theories with one dimension
less. Without the link provided by the AdS/CFT correspondence it would not be possible
to address such problems, due to the strong coupling of the dual �eld theory and lack of
alternative e�cient theoretical tools [79, 80].
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Black holes occupy also quite a role in the astrophysical research, as we are gaining
more and more proofs of their existence, and eventually the detection of Gravitational
Waves will be a further con�rmation of this. In fact, among the predictions we expect to
be able to do with GWs, there is the possibility of distinguishing from the gravitational
signal itself whether it has been emitted by a BH or another astrophysical object.

Nevertheless we need to make clear which kind of BH are the ones we are interested in
when looking at an EMR binary system, and which GR solutions are avalaible and being
studied to address them. To this end, we will leave the various BH solutions appearing in
many theoretical models aside and stick to the GR ones. We will make a clear distinction
between the astrophysical BHs and the corresponding solutions in the classical theory of
General Relativity, and focus on the latter.

It is commonly believed that black holes are the result of gravitational collapse of
stars; in most star formation models with more than 10M� one obtains a �Black Hole�
[43, 81]. Needless to say, if black holes stem out of collapsing stars and big aggregates
of matter, they are more likely to be in the centers of galaxies. Although there are no
direct proofs of the existence of black holes, we suspect the universe to be quite populated
with them; our own galaxy, the Milky Way, has a supermassive BH (M > 106M�) at
its center SgrA∗ [82]. A series of experimental evidences shows that such regions in the
galaxy with a SuperMassive BH at their center, among which �Active Galactic Nuclei�,
are best and simplest explained through BH existence and BH accretion models. These
are the observation of orbits of other stars around them1, gravitational lensing, indirect
observation of BH horizons [83], relativistic jets from microquasars, or the formation of
the accretion disks [82], to name a few.

Historically, black holes have been found as particular solutions of the Einstein �eld
equations in vacuum, asymptotically �at, and provided with an event horizon screening
the singularity inside from the rest of the universe. This means that the metric gµν
describing what is commonly called a �Black Hole� is a solution of the Einstein �eld
equations Rµν − 1

2Rgµν = 0 that tends to the Minkowski metric ηµν as the observer
moves in�nitely far away from the center of reference frame. There is where the black
hole is situated, in this description, with its mass M , surrounded by one (or more) event
horizon(s). The horizon is a particular boundary in the BH spacetime beyond which
events cannot a�ect an outside observer. This means, for instance, that a particle moving
on a geodesic in the BH spacetime that crosses this horizon will not be able to come
back on its path, no matter what the particle is. Not even if it is a photon. This is
what makes Black Holes black, they do not let light itself escape to the outer region
beyond the horizon, hence the name. This concept will be more clear when we address
the Schwarzschild solution in the following section.

Black holes as solutions of the Einstein �eld equations have other common features,
independently of their derivation and peculiarities. They all �hide� a curvature singu-
larity behind the horizon, meaning that every BH solution has at least one singularity
in the region of spacetime precluded by the BH horizon(s). This quite general fact is

1The study of the Keplerian orbits around a suspected BH is used to estimate its mass.
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believed to be a conjectured principle, not yet proven, that physicists call the cosmic

censorship hypothesis. All singularities in the universe, with the exception of a possible
initial singularity are covered by horizons [84]. BHs do not make an exception.

Another remarkable property is that all BH solutions in GR are members of the same
class in the Petrov classi�cation of spacetimes [47] in the Newman-Penrose formalism
relying on the use of tetrads. In this formalism the ten independent components of the
Weyl tensor can be represented by �ve complex scalars Ψi, i = 0 . . . 4. The transformation
of these scalars under rotations of the tetrad vectors de�nes classes of spacetime, gene-
rally called Petrov-Pirani classi�cation [85, 86]. One of the reasons of the success of the
Newman-Penrose formalism is that all BH solutions in GR are Petrov type D, meaning
that all the Weyl scalars vanish but Ψ2, making the analysis of BH spacetimes a lot easier
in this way.

While BHs have no naked singularity, i.e. what the cosmic censorship says, they also
have no hair. A general stationary black hole can be ultimately characterized by three
quantities only, its mass M , the angular momentum J , and the charge Q. These features
are inherited by the black hole from the original collapsing star, all the other features are
not present in the �nal black hole [81].

As we deem BHs are created out of gravitational collapse of a star, it is reasonable
to think that after some time it settles down to a stationary state and that the resulting
Black Hole is stationary (it is temporal invariant). Therefore it can be proved that a
stationary black hole is also axially symmetric [47]. Any stationary and axially symme-
tric black hole without electrical charge Q can be described by the Kerr solution. This
represents the most used BH model for astrophysical black holes, as it has all the sym-
metries required and �ts to a rotating object too, having non-null angular momentum J .
The Kerr-Newman solution is the generalization with nonvanishing electric charge and
electromagnetic �elds.

Moreover if one asks for spherical symmetry and a static solution (not time-dependent),
one ends up with a Schwarzschild Black Hole2. Its generalization with nonvanishing charge
is also known, it is the Reissner-Nordstrøm solution. Although many BH solutions are
known, few are astrophysically relevant, and this means that the same solution can be ap-
plied to many di�erent situations, which is rather convenient. In fact, if an astrophysical
Black Hole had electric charge, it would likely loose it in little time by interactions with
surrounding bodies, becoming electrically neutral, as all major macroscopic objects are.
This leaves us with the Kerr solution as the most general and astrophysically relevant
model, together with the Schwarzschild solution. The latter is still important because
of the Birkho�'s theorem, stating that any spherically symmetric geometry of spacetime
which is solution of the Einstein �eld equations in vacuum is necessarily Schwarzschild
geometry [87]. This entails that in order to describe geometries outside stars, planets
and other spherical distributions of matter, Schwarzschild BH �ts very well3. Moreover
it is just a simpler solution to study than the Kerr BH, making it the �rst playground
where to test models, even for GW emission. This is among the reasons we will address

2Equally it can be proven that any static Black Hole solution has necessarily spherical symmetry [47].
3Schwarzschild solution is also the unique solution of Einstein's equations describing nonrotating black

holes in empty space, this statement is known as Israel's theorem.
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EMR binaries with a Schwarzschild geometry in this thesis, and a description of the main
features of this geometry is presented next.

2.1.1 Schwarzschild spacetime

Taking the origin of the reference frame at the center of the Black Hole, in spherical
coordinates, the Schwarzschild solution can be written, in its most common form, as

(2.1.1) ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2(dθ2 + sin2 θdϕ2).

One can see that for r → +∞ the Minkowski limit is obtained. The positive parameter
M represents the mass of the Black Hole, in fact in the weak �eld approximation, for r
large, the motion of the body is described by Newton's laws with gravitational potential
U(r) = −Mr , i.e. the central gravitational potential outside a body with mass M .

The Schwarzschild metric is spherically symmetric and static, it is therefore invariant
for temporal translations and for time reversal t ↔ −t. The metric does not depend on
t or ϕ. As such, the metric admits a timelike Killing vector ξµ0 for the time translation,
and three spacelike Killing vectors corresponding to the symmetries of the rotation group
SO(3). More speci�cally,

• ξµ0 = (1, 0, 0, 0) ξµ0 ∂µ = ∂t,

• ξµ1 = (0, 0, sinϕ, cot θ cosϕ) ξµ1 ∂µ = sinϕ∂θ + cot θ cosϕ∂ϕ,

• ξµ2 = (0, 0,− cosϕ, cot θ sinϕ) ξµ2 ∂µ = − cosϕ∂θ + cot θ sinϕ∂ϕ,

• ξµ3 = (0, 0, 0, 1) ξµ4 ∂µ = ∂ϕ.

In GR every Killing vector corresponds to a constant of motion for free geodesic
motion. If ξµ is a Killing vector, then the quantity

ξα
dxα

dτ
= ξαu

α = constant,

when xα is the particle worldline coordinate. The corresponding conserved quantities for
the four Killing vectors above are the energy per unit mass ε, the angular momentum per
unit mass components Ji, with i = 1, 2, 3, i.e.

(2.1.2) ε = −uαξα0 , Ji = uαξ
α
i ,

Since every orbit in Schwarzschild spacetime can be chosen to be equatorial, by putting
θ = π

2 , the angular momentum does not precess and one can choose constants J1 = J2 = 0

and J3 = `, such that the angular momentum is along the z-axis, or always perpendicular
to the ∂ϕ vector and the plane of the orbit. Not surprising, for the Schwarzschild metric
has perfect spherical symmetry, so there is no preferred direction in space.

Moreover Schwarzschild solution is completely conservative, the energy is conserved
and it cannot account by itself alone for dissipating phenomena like the emission of gravi-
tational waves. At the same time, by Birkho�'s theorem [87], as we mentioned previously,
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the Schwarzschild solution is the ideal description for the exterior of any spherically sym-
metric star or distribution of matter. The two conclusions we can draw immediately
from these facts are that spherically symmetric objects cannot be sources of Gravitatio-
nal Waves, and that in order to obtain radiation from a Schwarzschild BH one needs
to introduce perturbations to the metric (2.1.1), which we are going to do in the next
section.

Before that, we �rst focus on some other important properties of the Schwarzschild
BH. The metric is singular in r = 0 and r = 2M . While the �rst one is a real singularity,
the second one is an artifact of the coordinate choice and can be removed by changing
coordinates, as it was �rst recognized by LeMaître [88, 89]. The fact that only r = 0 is a
curvature singularity can be shown by computing the Kretschmann curvature scalar

(2.1.3) RαβγδR
αβγδ = 48

M2

r6
,

where Rαβγδ is the Riemann tensor associated to Schwarzschild metric (2.1.1). The scalar
(2.1.3) diverges at r = 0 anyway, while for di�erent systems of coordinates the metric
(2.1.1) can be regular at r = 2M , and the curvature scalar (2.1.3) would still diverge at
r = 0. An easy way to observe this is to switch to the Eddington-Finkelstein and Kruskal
coordinates [90, 91]. Just de�ne the variables

(2.1.4) u ≡ t− r∗, v ≡ t+ r∗,

with the �tortoise� coordinate

(2.1.5) r∗ ≡ r + 2M ln
( r

2M
− 1
)
.

The tortoise coordinate tends to −∞ as r → 2M , and for every r > 2M then (u, v) ∈ R2.
With these de�nitions, the metric (2.1.1) becomes

ds2 = −
(

1− 2M

r

)
(dt2 − dr2

∗) + r2(dθ2 + sin2 θdϕ2)(2.1.6)

= −
(

1− 2M

r

)
dudv + r2(dθ2 + sin2 θdϕ2).

Moreover, de�ning

(2.1.7) U ≡ −e− u
4M , V ≡ e v

4M ,

one has the Kruskal metric

(2.1.8) ds2 = −32M3

r
e−

r
2M dUdV + r2(dθ2 + sin2 θdϕ2),

with U < 0, V > 0, which clearly shows how the r = 2M singularity can be visually
removed from the metric. In the Kruskal coordinates (2.1.7) the maximal extension of
the Schwarzschild BH (when (U, V ) ∈ R2 and UV < 1) is performed and the coordinate
singularity r = 2M is eliminated. A graphical representation of the di�erent regions in
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Figure 2.2: Kruskal diagram of Schwarzschild spacetime. The red region is the exterior of

the BH, r > 2M . The green region the interior. The yellow line represents the BH horizon

r = 2M . Dashed lines are r = const lines, straight lines are t = const lines, the black curve

is the curvature singularity r = 0 or UV = 1. The maximal extension of the Schwarzschild

BH occupies symmetrically the other two quadrants of the plot, here left intentionally blank.

The maximal extension of Schwarzschild spacetime has no meaning if one considers a BH as an

astrophysical object. Diagram credit to http://sagemanifolds.obspm.fr/index.html.

which the Schwarzschild spacetime is divided is given by the Kruskal diagram in Fig.
(2.2).

Although it is a coordinate singularity, the hypersurface r = 2M represents what is
commonly called an event horizon. It divides Schwarzschild spacetime into two regions.
An object crossing the horizon can never come back, and therefore the regions r < 2M

and r > 2M are not causally connected. This is valid for light- and time-like geodesics, so
for the geodesics of a possible physical observer or signal, like a photon. Once the horizon
is crossed, the object can only decrease its radial distance towards the center of the BH.
This can be seen evaluating how the light-cones of an infalling body tilt towards the BH,
showing that the only possible future directions for the observer are all directed towards
the origin (see Fig. 2.3).

Any observer takes a �nite amount of proper time τ to reach the BH horizon, but in
terms of the time t of an observer situated in�nitely far away, this approaching process
takes in�nite time. If we were to send a probe into a Schwarzschild BH emitting a periodic
laser signal back to us, then this signal would be redshifted more and more as the probe
approaches the horizon and its luminosity diminishes, as the signal �ghts against the

http://sagemanifolds.obspm.fr/index.html
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gravitational potential to reach us. The time between one repeated signal and the next
one in�ates so much until it takes in�nite time for the next signal to be received by us.
At this point the probe disappears from our detector screens and we say that it has been
swallowed by the black hole.

The BH horizon screens the curvature singularity at the origin, preventing any causal
contact with it, complying with the cosmic censorship conjecture. No signal from the
observer reaching the singularity can be sent outside the black hole. This is the picture
in General Relativity, therefore any calculation that we are going to show has the BH
horizon as natural physical limit, for t → +∞. Any investigation of what happens in
the interior region is beyond the purposes of our work and anyway involves a region with
high curvature and high energies, where a quantum-gravitational description might suit
better, rather than just classical GR.

2.1.2 The Innermost Stable Circular Orbit

The symmetries of Schwarzschild spacetime and the associated conservation laws help
de�ning the motion of massless and massive particles. For an exhaustive and detailed
discussion of all the possible bound and unbound orbits in Schwarzschild spacetime, we
refer to [47]; here only a short recap of the motions most relevant to us is given, empha-
sizing in particular the role of the Innermost Stable Circular Orbit r = 6M , as this is an
important orbit for coalescing binaries as well. This concept will become clear at the end
of this section and in the next chapter.

Figure 2.3: Finkelstein diagram of Schwarzschild spacetime. The light-cones distort as r → 2M ,

so that no future-directed timelike or null worldline can escape the r ≤ 2M region. Diagram

credit to [81].
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The geodesic equations in Schwarzschild spacetime can be derived from the associated
Lagrangian L = 1

2gµνu
µuν , where uµ = dxµ

dτ is the four-velocity of the particle of unit
mass (m = 1). The equations for time t and azimuthal angle ϕ just rea�rms what we
know from the Killing vectors (2.1.2), namely

(2.1.9)

(
1− 2M

r

)
ut = ε, r2 sin2 θuϕ = `,

with the energy and angular momentum per unit mass ε and `. Instead, the equation for
the latitude angle θ is

(2.1.10)
duθ

dτ
= −2

r
uruθ + sin θ cos θ (uϕ)

2
.

As we anticipated discussing the Killing relations, this can be solved choosing θ = π
2 ,

because the polar axes can be chosen in an arbitrary way, due to the spherical symmetry,
and all the orbits are con�ned to the equatorial plane, uθ = 0.

The radial equation can be derived from the constraint on the four-velocity
uµuµ = −1[0] for massive (respectively massless) particles. This equation relates together
the two constants appearing in (2.1.9), i.e. the energy and the angular momentum per
unit mass. Respectively for a massive (massless) particle one has

(2.1.11) gµνu
µuν = −

(
1− 2M

r

)
(ut)2 +

(ur)2(
1− 2M

r

) + r2(uθ)2 + r2 sinθ(uϕ)2 = −1[0],

which becomes, upon replacing (2.1.9) and θ = π
2 ,

(2.1.12) (ur)2 +

(
1− 2M

r

)(
1 +

`2

r2

)
= ε2,

for a massive particle, and

(2.1.13) (ur)2 +
`2

r2

(
1− 2M

r

)
= ε2

for a massless one4. Summarizing, the equations of motion are

θ =
π

2
, uϕ =

`

r2
,

ut =
ε(

1− 2M
r

) , (ur)2 = ε2 − V (r),
(2.1.14)

with V (r) an �e�ective potential� given by

(2.1.15) Vmassive(r) =

(
1− 2M

r

)(
1 +

`2

r2

)
or Vmassless(r) =

`2

r2

(
1− 2M

r

)
,

4For a massless particle the line element (ds)2 = 0 and the geodesic is described using an a�ne

parameter, say λ, di�erent from proper time, such that uµ = dxµ

dλ
. Also the interpretation of the

constants of motion ε, ` changes to energy and angular momentum of the massless particle, because

m2 = 0.
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respectively for massive and massless particles. While for the latter ` is just a multiplica-
tive constant, for massive particles the dynamics is in�uenced by a nontrivial dependence
on the angular momentum. A qualitative study of the e�ective potential (2.1.15) can
inform us about the possible orbits in Schwarzschild spacetime, in an analogue way as it
is done in Newtonian mechanics.

Geodesics for a massless particle -such as a photon- describe open orbits, the de�ection
of the ingoing particle. The only closed orbit is possible at r = 3M , and it is an unstable
circular orbit [47], commonly referred to as light ring.

Geodesics for a massive particle instead show much more variety, bound and unbound
motion is possible. Eccentric orbits are possible, although they are generically not closed
orbits, due to periastron advance (a purely GR phenomenon), but the position is anyway
oscillating between a minimum (periastron) and a maximum distance (apastron). This
happens because of the potential well exhibited by (2.1.15), so a body with given initial
energy E can be trapped in a bound orbit. Together with elliptical orbits, circular orbits
are possible as well. As a matter of fact, one can study the e�ective potentials in (2.1.15),
writing down
(2.1.16)

V (r) =

(
1− 2M

r

)(
δ1 +

`2

r2

)
, with δ1 =

{
1, if massive particle,

0, if massless.

Then the condition for circular orbits is ∂rV = 0 and yields

(2.1.17) `2(r − 3M) = δ1Mr2,

and one deduces immediately that circular geodesics exist only for r ≥ 3M and the only
null circular orbit (δ1 = 0) is the light ring r = 3M . Taking a closer look at the second
derivative ∂2

rV for circular orbits, so using the expression (2.1.17),

(2.1.18)
∂2V

∂r2
=

2δ1M(r − 6M)

r3(r − 3M)
,

one realizes that r = 6M is a �ex point and stable circular orbit; the circular orbits
between this and the light ring 3M ≤ r < 6M are necessarily unstable, while for r ≥ 6M

Eq.(2.1.18) is positive and the orbits are stable. Summarizing, one can draw the following
conclusions for timelike motion:

• bound orbits are allowed only for r > 3M ;

• circular orbits with 3M ≤ r < 6M are unstable;

• circular orbits with r ≥ 6M are stable.

All these considerations can be easily visualized in the plot of the e�ective potential
as in Fig. 2.4. A great role is played by the last stable orbit, r = 6M , commonly referred
to as the Innermost Stable Circular Orbit or ISCO. This can be recognized by minimizing
the potential (2.1.15) while looking for a circular orbit r = R. The resulting expression
gives

(2.1.19) R =
`2

2M

(
1 +

√
1− 12M2

`2

)
,
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Figure 2.4: E�ective potential V (r) for decreasing values of angular momentum L (red
and green curves). A particle with energy E can move along an eccentric orbit between
periastron and apastron. For di�erent energies circular orbits are possible, respectively at
the maximum and minimum of the potential (orange dashed lines). For the special value
L = 2

√
3M the potential allows only a �ex point at r = 6M (blue curve). There the only

possible closed orbit is the ISCO (blue dashed line).

strongly dependent on the angular momentum per unit mass `. Minimizing this last
expression (2.1.19), one �nds the minimal circular orbit, i.e. the ISCO. This happens for
a special value of the angular momentum ` = 2

√
3M . Reminding that energy and angular

momentum are connected via the normalization condition on the velocity uµuµ = −1 that,
for a circular orbit, reads

(2.1.20) ε2 =

(
1− 2M

R

)(
1 +

`2

R2

)
,

(one just needs to replace ur = 0 in (2.1.14)). Finally, one can obtain the following
solution for the ISCO of a unit-mass particle:
(2.1.21)

t(τ) =
√

2τ, r = 6M, θ =
π

2
, ϕ(τ) =

√
3

18M
τ, ε =

2
√

2

3
, ` = 2

√
3M.

2.2 Perturbations of Schwarzschild spacetime

A small body µ orbiting in the background metric gµν of a major companion with mass
M introduces a perturbation to its spacetime. This perturbation allows to study the
properties of the background spacetime and eventually results in gravitational radiation.
In this section we will discuss the perturbation of a Schwarzschild Black Hole and establish
the master equations that are needed to describe the Gravitational Waves produced. In
general there are two approaches to BH perturbations, one can study the perturbation of
the metric coe�cients, moving from the linearised Einstein �eld equations, or study the
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perturbations in the Weyl scalar using the Newman-Penrose formalism [47]. For the case
of Schwarzschild Black Holes the �rst approach will be followed.

Just as Gravitational Waves have two polarizations, there are two wave equations
derived by BH perturbation theory, for even and odd parity modes, bearing the name
of the people who �rst derived them, namely the �Regge-Wheeler and Zerilli-Moncrief
equations� [16, 92, 93]. Di�erent derivations of these equations can be found commonly
in textbooks like [47] or in works like [94, 95, 96]. Here we will just recall the main
elements of the fully covariant derivation given in [97].

However di�erent the derivation of the Regge-Wheeler/Zerilli-Moncrief equations can
be, the common path is to linearise the Einstein �eld equations, expand its main terms
in spherical harmonics, and then apply gauge transformations. Eventually two wave
equations are obtained, together with the procedure to retrieve physical quantities like
energy and angular momentum �uxes, or the connection with Gravitational Waves in
more common gauges, notably the Transverse-Traceless gauge.

2.2.1 Separation in Tensor Spherical Harmonics

Schwarzschild spacetime enjoys spherical symmetry, therefore one can separate already
the angular part from time and radial distance in the metric,

(2.2.1) (ds)2 = gabdx
adxb + r2ΩABdθ

AdθB ,

where gab is the metric of a two-dimensional Lorentzian space with coordinates
(x0, x1) = (t, r), and ΩAB is the metric of the unit two-sphere S2, namely ΩABdθ

AdθB =

(dθ)2+sin2 θ(dϕ)2. These spheres are orthogonal to the Lorentzian two-dimensional space
and the full Schwarzschild spacetime is given by the product of the two-spere with the two-
dimensional Lorentzian manifold. The connection with the usual form of Schwarzschild
metric given in Eq. (2.1.1) is evident.

The importance of such separation (2.2.1) lies in the spherical symmetry that, as we
will see, prevents di�erent angular components from mixing with each other, therefore the
study of a single angular component can be performed independently of the others. The
background (2.2.1) satis�es the Einstein �eld equations in vacuum, and adding a point
particle of mass µ is adding a perturbation to the Schwarzschild metric,

(2.2.2) gpert.µν = gSchwa.µν + hµν ,

with hµν being the small perturbation. Perturbations of the Einstein �eld equations
are then described by a variation of the equations themselves and the addition of an
energy-momentum tensor Tµν

(2.2.3) δGµν = δ(Rµν −
R

2
gµν) = 8πTµν .

The perturbing energy-momentum tensor for a pointlike particle is

(2.2.4) Tµν = µ

∫
dτ√
−g

uµuνδ
4(xα − xαp (τ)),
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with xαp (τ) the particle's geodesic, uν =
dxνp
dτ the 4-velocity in the proper time τ , and

g = det(gµν) the metric determinant. Perturbations are considered only to �rst order
in hµν , therefore the inverse metric of (2.2.2) is simply gµνpert. = gµν − hµν . With these
results in mind, the left-hand side of (2.2.3) can be cast in the form

(2.2.5) δGµν = δRµν −
gµν
2
gαβδRαβ ,

and the variation of the Ricci tensor can be calculated in normal coordinates thanks to
the Palatini identity [29]

(2.2.6) δRµν = δΓλµν;λ − δΓλµλ;ν , with δΓλµν =
gλρ

2
(hµρ,ν + hνρ,µ − hµν,ρ) .

Being tensorial equations (such di�erence of Christo�el symbols is a tensor), Eqs. (2.2.6)
are valid in any coordinate system and covariant. Therefore the regular derivatives can
be replaced by covariant derivatives and one obtains the global variation

(2.2.7) 2δGµν = hλµ;ν
λ + hλν;µ

λ −�hµν − hλλ;µν − gµν
(
hλρ;λρ −�hλλ

)
.

Now one can take advantage of the spherical symmetry introducing a multipole de-
composition for the perturbation hµν and for the energy-momentum tensor Tµν . Such
decomposition is based on the spherical harmonic functions, a complete orthonormal basis
for the two-space S2 de�ned through the equation

(2.2.8) ΩAB
d2Y lm

dθAdθB
+ l(l + 1)Y lm = 0,

with (l,m) integer numbers, with l ≥ 0 and m = −l,−l + 1 . . . 0 . . . l, l − 1, l. A more
extended description of the spherical harmonics, their properties, identities, and mutual
relations can be found in textbooks such as [98]. Here we just recall the basic terms that
we need for the decomposition of (2.2.7). It is a well-known fact that every scalar S(θ, ϕ)

that is function of only angular variables, i.e. that is de�ned completely on S2, can be
decomposed in spherical harmonics as

(2.2.9) S(θ, ϕ) =

+∞∑
l=0

l∑
m=−l

slmY
lm(θ, ϕ), with slm =

∫
S(θ, ϕ)Y ∗lm(θ, ϕ)dΩ.

Such expansion can be extended to vectors and tensors through the derivatives of the
harmonics Y lm. For instance a vector �eld is normally decomposed as
(2.2.10)

VA(θ, ϕ) =

+∞∑
l=0

l∑
m=−l

(
vlmZ

lm
A (θ, ϕ) + ṽlmX

lm
A (θ, ϕ)

)
,with ZlmA =

dY lm

dθA
, X lm

A = εA
B dY

lm

dθB
,

εAB being the antisymmetric Levi-Civita tensor in two dimensions. For our purposes we
also need symmetric rank-2 tensor harmonics, which are
(2.2.11)

UAB = ΩABY
lm, VAB =

d2Y lm

dθAdθB
+
l(l + 1)

2
ΩABY

lm, WAB =
1

2

(
X lm
A,B +X lm

B,A

)
;
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these de�nitions do not agree with those originally used by Regge and Wheeler [16] in the
normalization conditions and names, rather they follow the detailed work of Martel [95].

The parity of a spherical harmonic, either scalar, or tensor one, is given by l, following
the key properties that

Y lm(π − θ, ϕ+ π) = (−1)lY lm(θ, ϕ),

Y ∗lm(θ, ϕ) = (−1)mY l,−m(θ, ϕ),
(2.2.12)

for a change of the angular variables that is symmetric with respect to the origin of
the coordinate system. A spherically symmetric spacetime preserves the parity of the
spherical (l,m)-modes and the derivation of the equations can be performed for every
mode separately. Thus we have for the even parity modes (l +m = 2n)

(2.2.13) heµν(xc, θA) =
∑
lm

(
plmab Y

lm(θ, ϕ) qlma ZlmA (θ, ϕ)

qlma ZlmA (θ, ϕ) r2
[
KlmU lmAB(θ, ϕ) +GlmV lmAB(θ, ϕ)

]) ,
while for the odd parity modes

(2.2.14) hoµν(xc, θA) =
∑
lm

(
0 hlma X lm

A (θ, ϕ)

hlma X lm
A (θ, ϕ) hlm2 W lm

AB(θ, ϕ)

)
,

where pab, qa,K,G, ha, and h2 are functions of xc = (t, r) only, components of the pertur-
bation hµν along the di�erent harmonics. In the same way one can write the expansion
for the energy-momentum tensor, which comprehensively looks like
(2.2.15)

Tµν =
∑
lm

4π

r2

(
2r2QablmY

lm(θ, ϕ) QalmZ
A
lm(θ, ϕ) + P almX

A
lm

QalmZ
A
lm(θ, ϕ) + P almX

A
lm Q[UABlm (θ, ϕ) + Q]

r2 V
AB
lm (θ, ϕ) + P

r2W
AB
lm (θ, ϕ)

)
,

with, again, Qab, Qa, Q[, Q] non-zero for the even modes, and P a, P non-zero for the odd
modes; all together functions of xc = (t, r) only.

2.2.2 The Regge-Wheeler and Zerilli-Moncrief equations

After the angular decomposition given in Eqs. (2.2.13), (2.2.14), and (2.2.15) has been
established, one can reduce further the problem exploiting gauge transformations. In GR
a general coordinate transformation xµ → xµ + ξµ is also a gauge transformation, and
the perturbation hµν transforms accordingly as

(2.2.16) hµν → hµν − 2ξ(µ;ν).

The gauge vector ξµ can be decomposed along spherical harmonics and its components
divided into even and odd modes as well. This decomposition allows to determine six
gauge invariant quantities. Referring to the expansion coe�cients de�ned in the previous
section (2.2.13), the following ones are six covariant quantities (denoted by a �∼�)

p̃ab = pab − 2v(a;b), K̃ = K +
l(l + 1)

2
G− 2

r,av
a

r
,

h̃a = ha −
1

2
h2,a −

r,a
r
h2, with va = qa −

r2

2
G,a.

(2.2.17)
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The �rst line shows four gauge invariants for the even modes, and the second line presents
two gauge invariants for the odd modes (a = t, r). Calculations are then easily performed
in the Regge-Wheeler gauge [16], whereby ξ is chosen so that p̃ab = pab, K̃ = K, and
h̃a = ha. For any calculation in this gauge one simply needs to replace the Regge-Wheeler
quantities with the corresponding invariants in order to be fully covariant.

The linearised Einstein �eld equations (2.2.3) can be enforced, mode by mode, together
with the contracted Bianchi identities, which reduce the number of independent equations
by 4, leaving only 6 independent equations. Such identities come from the evaluation of
the following terms:

(2.2.18)
∫
T aµ;µY

lm∗dΩ = 0,

∫
TAµ;µZ

lm∗
A dΩ = 0,

∫
TAµ;µX

lm∗
A dΩ = 0.

There are 10 perturbation expansion coe�cients to be solved for (2.2.13), but four of the
metric perturbations (three even and one odd) can be �xed via arbitrary gauge functions in
ξµ. There remain 6 metric perturbations to be found, just as there are 6 gauge invariants
(2.2.17) and 6 independent equations available. Therefore the system is fully determined.

The next step is to solve the equations mode by mode. Since one is interested in the
gravitational radiation, one neglects the non-radiative modes, i.e. the useful modes are
for l ≥ 2. In [92] Zerilli �rst showed that the monopole term l = 0 can be solved for, using
gauge freedom, and it reduces to a mass perturbation. Namely the perturbed metric of a
free-falling body of mass µ onto a black hole with mass M is still a Schwarzschild metric,
but with mass M + µε. In the same paper it is shown that the perturbation due to the
l = 1 mode can be partly gauged away, and partly accounts for a correction of the angular
momentum. Both monopole and dipole terms in the spherical harmonics' expansion in
Schwarzschild spacetime are not radiative modes.

Finally the even and odd modes can be successfully decoupled by introducing [93] the
scalar �eld

(2.2.19) ψZM =
r

λ+ 1

[
K̃ +

1

Λ

(
r,ar,bp̃

ab − rr,aK̃ ,a
)]
,

with λ = (l + 2)(l − 1)/2 and Λ = λ + 3M/r. One can combine the terms together and
write down the inhomogeneous Zerilli-Moncrief equation for the even modes l +m = 2n

(2.2.20) gabψZM;ab (xc)− V lZM (r)ψZM (xc) = SZM (xc),

with the �potential�

(2.2.21) V lZM (r) =
1

r2Λ2

[
2λ2

(
λ+ 1 +

3M

r

)
+

18M2

r2

(
λ+

M

r

)]
,

and the inhomogeneous term, so-called �source term� given by

SZM =
2

Λ
raQa −

Q]

r
+

r

(λ+ 1)Λ2

(
λ(λ− 1) +

3M

r
(2λ− 3) +

21M2

r2

)
Qaa

+
r2

(λ+ 1)Λ

(
6M

r2Λ
Qabr,ar,b +

1− 2M
r

r
Q[ − (Qaa),br

,b

)
,

(2.2.22)
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for every even (l,m)-mode. Similarly for the odd modes l + m = 2n + 1 one can de�ne
[16] the scalar �eld

(2.2.23) ψRW = − h̃ar
,a

r
,

and the resulting wave equation is

(2.2.24) gabψRW;ab (xc)− V lRW (r)ψRW (xc) = SRW (xc),

with the potential and source term given respectively by

(2.2.25) V lRW =
1

r2

(
l(l + 1)− 6M

r

)
, SRW =

2

r2

(
1− 3M

r

)
P +

r,a

r
(Pa − P,a).

In Schwarzschild coordinates gabψlm;ab(x
c) = −

(
∂2

∂t2 −
∂2

∂r2

)
ψlm(t, r) and the covariant

wave equations (2.2.20) (2.2.24) reduce to their most common form(
− ∂2

∂t2
+

∂2

∂r2
− V lZM (r)

)
ψlmZM (t, r) = SlmZM (t, r),(

− ∂2

∂t2
+

∂2

∂r2
− V lRW (r)

)
ψlmRW (t, r) = SlmRW (t, r),

(2.2.26)

where the potentials V lRW/ZM were given by (2.2.21), (2.2.25). The source terms in
Schwarzschild coordinates take the following form

SlmZM =
1

(λ+ 1)Λ

[
r2(1− 2M

r
)
(

(1− 2M

r
)2Qtt,r −Qrr,r

)
+ r

(
Λ

1− 2M
r

− 1

)
Qrr

+ (1− 2M

r
)Q[ −

1− 2M
r

rΛ

(
λ(λ− 1)r2 + (4λ− 9)Mr + 15M2

)
Qtt

]

+
2Qr

Λ(r)
− Q]

r
,

SlmRW =
1

r

(
2

r

(
1− 3M

r

)
P −

(
1− 2M

r

)
P,r + P r

)
.

(2.2.27)

Thus, moving from Droste's to tortoise coordinates (useful for the numerical resolution of
the RW/ZM equations, as it will be explained in the next section), the RW/ZM equation
changes accordingly into

(2.2.28)
(
∂2
r∗ − ∂2

t − V̄ lRW/ZM (r∗)
)
ψlmRW/ZM = S̄lmRW/ZM

with V̄ l =
(
1− 2M

r

)
V l and S̄lmRW/ZM =

(
1− 2M

r

)
SlmRW/ZM . The so-called �tortoise coor-

dinates� (t, r∗) are de�ned through the relation

(2.2.29) r∗ = r + 2M log
( r

2M
− 1
)
,
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with the same observer's time t.
If we now evaluate the angular expansion coe�cients of the energy-momentum tensor

(2.2.15) in Schwarzschild coordinates for a point particle with mass µ, with the subscript
�p� indicating the particle's position, we obtain

Qtt =
8πµ

r2
utδ(r − rp(τ))Y ∗lm(θp, ϕp), P r =

16πµ

l(l + 1)

ur

ut
uAX∗lmA (θp, ϕp)δ(r − rp(τ)),

Qrr =
8πµ

r2

ur2

ut
δ(r − rp(τ))Y ∗lm(θp, ϕp), Qr =

16πµ

l(l + 1)

ur

ut
uAZ∗lmA (θp, ϕp)δ(r − rp(τ)),

Q[ = 8πµ
uAuB

ut
U∗lmAB (θp, ϕp)δ(r − rp(τ)),

Q] = 32πµ
(l − 2)!

(l + 2)!
r2u

AuB

ut
V ∗lmAB (θp, ϕp)δ(r − rp(τ)),

P = 16πµ
(l − 2)!

(l + 2)!
r2u

AuB

ut
W ∗lmAB (θp, ϕp)δ(r − rp(τ)).

(2.2.30)

One then notices immediately that they are all multiples of the Dirac delta distribution of
the particle position. This is a natural consequence of the pointlike nature of the energy-
momentum tensor (2.2.4). The derivatives appearing in the de�nitions of the source terms
introduce the derivatives of the Dirac distribution and the source terms get divided into
two main functions, one multiple of the delta function, and one multiple of its derivative.
Therefore one can rewrite [18] the source terms (2.2.27) as

(2.2.31) S̄lmRW/ZM =

(
1− 2M

r

)(
F lmRW/ZM∂rδ(r − rp) +GlmRW/ZMδ(r − rp)

)
.

Here the following relations hold for F lmRW/ZM , G
lm
RW/ZM in terms of orbital velocities:

F lmZM =
8πµY ∗lm

Λ(λ+ 1)

[(
1− 2M

r

)2

ut − ur2

ut

]
,

GlmZM =
8πµY ∗lm

Λ(λ+ 1)

[(
1− 2M

r

)2

(ut,r −
2ut

r
) +

ur2

rut
−

2urur,r
ut

+
ur2ut,r

ut2
+

(
Λ

1− 2M
r

)
ur2

rut

−
(

1− 2M

r

)
ut

r3Λ
(λ(λ− 1)r2 + (4λ− 9)Mr + 15M2)

]
+

32πµ

l(l + 1)Λ

ur

ut
uAZ∗lmA

+
8πµ

Λ(λ+ 1)

(
1− 2M

r

)
uAuB

rut
U∗lmAB − 32πµ

(l − 2)!

(l + 2)!
r
uAuB

ut
V ∗lmAB ;

F lmRW = −16πµ

(
1− 2M

r

)
(l − 2)!

(l + 2)!
r
uAuB

ut
W ∗lmAB ,

GlmRW =
16πµ

ut2
(l − 2)!

(l + 2)!

[
uA
((
ut + rut,r

)(
1− 2M

r

)
− ut

)
− 2r

(
1− 2M

r

)
utuA,r

]
uBW ∗lmAB

+
16πµuruA

l(l + 1)rut
X∗lmA .

(2.2.32)
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Before deriving how the Regge-Wheeler and Zerilli-Moncrief equations relate to other
gauges or how to extract physical quantities from them, it is worth noticing that we
started from ten independent equations (the linearised Einstein �eld equations (2.2.3))
and ended with just two wave equations. As we already said, this is to be expected as
the independent polarizations of gravitational waves, which are the outcome of the BH
perturbation, are two as well, so there has been no extra degree of freedom introduced.

Another interesting property of the Zerilli-Moncrief and Regge-Wheeler functions
ψlmRW/ZM can be recognized if we look at the Schwarzschild metric as a special case of a
stationary axisymmetric spacetime [47], which in spherical coordinates and in its most
general form is

(2.2.33) (ds)2 = e2ν(dt)2 − e2ψ(dϕ− ωdt)2 − e2µ2(dr)2 − e2µ3(dθ)2,

with ν,ψ, ω, and µi functions of (r, θ) only, as required by stationarity and symmetry
about a spatial direction. Schwarzschild metric is a special case of this with the require-
ments

(2.2.34) e2ν = e−2µ2 = 1− 2M

r
, eµ3 = r, eψ = r sin θ, ω = 0.

Therefore a general perturbation of (2.2.33) will result in ω 6= 0, a small quantity, the
adding of a term−q2dr−q3dθ to ωdt, to account for non-stationarity, and small increments
in the functions ν,ψ,µi. If one then performs a reversal in sign of ϕ, the signs of ω, q2, q3

are to be reversed as well to keep the metric unchanged. For this reason perturbations of
this kind, i.e. changing ω and adding q2, q3 are called axial, while the other perturbations
in ν,ψ,µ2,µ3 are called polar.

These two kinds of perturbations decouple and can be considered independently from
each other. In fact it can be shown that the polar ones lead to the Zerilli-Moncrief
equation, while axial perturbations lead to the Regge-Wheeler equation [47]. Therefore
the di�erence between even and odd modes acquires yet another meaning: they represent
respectively the polar and the axial perturbations of Schwarzschild spacetime.

2.2.3 Physical meaning of the Regge-Wheeler wave functions

The solutions of the Regge-Wheeler equations (2.2.26) give information about the gra-
vitational radiation, but it is necessary to perform a gauge transformation in order to
relate them to the more common form of the transverse-traceless gauge. To this end
a complex null-tetrad is introduced which de�nes the so-called �radiation gauge�. This
gauge allows to calculate the gravitational radiation towards in�nity (very far away from
the source region), in which case it is called outgoing radiation gauge, or towards the BH
horizon, namely ingoing radiation gauge. As far as the observed gravitational waves are
concerned, one is more interested in the outgoing radiation, not in the one absorbed by
the black hole, so we will deal with that one mainly. However in both cases the Regge-
Wheeler functions are the starting point and in this section we recall brie�y what the
link between these, the gravitational waves h×, h+, the emitted energy, and the emitted
angular momentum is.
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A complex null-tetrad [47] is a set of complex vectors lµ, nµ, and mµ satisfying the
following properties: lµ, nµ are null vectors tangent to outgoing and ingoing light rays
respectively, the vector mµ has complex conjugate m̄µ on the two-sphere S2. Moreover,

(2.2.35) lµlµ = 0 = nµnµ, mµmµ = 0 = m̄µm̄µ, lµnµ = −1 = −mµm̄µ,

and the spacetime metric can be rewritten in terms of this tetrad (completeness relation)

(2.2.36) gµν = 2[m(µm̄ν) − l(µnν)].

For instance, in Schwarzschild coordinates one choice for the tetrad vectors is
(2.2.37)

lµ = (−1,
1

1− 2M
r

, 0, 0), nµ = −1

2
(1− 2M

r
, 1, 0, 0), mµ =

r√
2

(0, 0, 1, i sin θ).

As was mentioned, one introduces the Outgoing Radiation Gauge (ORG) conditions:

hORGµν nµnν = 0,

hORGµν nµmν = 0 = hORGµν nµm̄ν ,

hORGµν nµlν = 0 = hORGµν mµm̄ν .

(2.2.38)

With the de�nitions (2.2.35) and the conditions (2.2.38), the metric perturbation (2.2.2)
in the ORG becomes

hORGµν =lλlρhλρnµnν + 2(lλm̄ρhλρn(νmµ) + lλmρhλρn(µm̄ν))

+ m̄λm̄ρhλρmµmν +mλmρhλρm̄µm̄ν .
(2.2.39)

After some calculations involving the metric decomposition given in eqs. (2.2.13),
(2.2.14) in the outgoing radiation gauge, to leading order 1

r , it is possible [97] to write
down the following useful relation

h+(r, t, θ, φ)− ih×(r, t, θ, φ) =

1

2r

√
(l + 2)!

(l − 2)!

∑
l,m

(
ψlmZM (r, t)− 2i

∫ t

−∞
ψlmRW (r, t′)dt′

)
−2Y

lm(θ, φ),

(2.2.40)

where the spin-weighted spherical harmonics are introduced with spin-weight s = −2

(2.2.41) V lmABm̄
Am̄B =

1

2

√
(l + 2)!

(l − 2)!
· −2Y

lm(θ, φ).

Once the RW/ZM wave functions are known, they can be used to calculate the radiative
part of the gravitational �eld far away from the source, as it is given in (2.2.40) in
the transverse-traceless gauge. Eq. (2.2.40) is the main equation relating the RW/ZM-
waveforms to the more common form of gravitational radiation.
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2.2.4 Emitted energy and angular momentum

In order to evaluate the emitted energy and angular momentum we have to turn back to
the energy-momentum tensor of a gravitational wave and write this in terms of the metric
perturbation in the outgoing radiation gauge (2.2.39).

The energy-momentum tensor of a gravitational wave, namely the tensor containing
the information about the gravitational �eld radiated away has been �rst formulated in
a gauge-invariant fashion by Isaacson [99],

(2.2.42) TGWµν =
1

64π
〈hλρ;µhλρ;ν〉,

where 〈· · · 〉 indicates an average over a region of spacetime. This has to be large compared
to radiation wavelength, and typically in the radiation zone the GW wavelength is small
compared to the radius of curvature, so the energy-momentum tensor is well-de�ned
there. Notice also that (2.2.42) is of second order in the perturbation hµν , so it does not
sum up to the source energy-momentum tensor on the right-hand side of the variation of
the linearised Einstein �eld equation (2.2.3); a GW back-reaction calculation is not yet
included at the level of Regge-Wheeler equations.

In Schwarzschild spacetime there are two fundamental Killing vectors, the time di-
rection and the azimuthal angle ϕ direction, which give birth to the conserved energy
and angular momentum, therefore the �ow of energy and angular momentum are re-
lated to the projections of the energy-momentum tensor (2.2.42) upon these vectors. If
ξµt = δµt , ξ

µ
ϕ = δµϕ are the two Killing vectors, then the corresponding projections are

Tµνξ
ν
t = Tµt and Tµνξνϕ = Tµϕ respectively, and they are divergence-free, from Killing's

equation and energy conservation Tµν ;ν = 0. From Gauss theorem applied to a 4-volume
V in Schwarzschild spacetime with border a 3-surface ∂V , one can infer that∫

V

Tµt;µdV =

∮
∂V

TµtdSµ = 0 → ∆E =

∫
S

TµtdSµ,∫
V

Tµϕ;µdV =

∮
∂V

TµϕdSµ = 0 → ∆L =

∫
S

TµϕdSµ,

(2.2.43)

with dSµ the oriented surface element on ∂V . The �ows of energy and angular mo-
mentum through a closed 3-surface ∂V vanish, therefore the di�erence in energy and
angular momentum at a �xed radial distance r is given by the surface integral on open
3-surfaces with r = constant, denoted by S (expressions on the right in (2.2.43) above).
Replacing the surface element in Schwarzschild metric by a sphere r = constant, i.e.

dS = ηµ

√
1− 2M

r r
2 sin θdtdΩ, one eventually obtains

∆E = −εr2

(
1− 2M

r

)∫
TrtdtdΩ → dE

dt
= −εr2

(
1− 2M

r

)∫
TtrdΩ,

∆L = εr2

(
1− 2M

r

)∫
TrϕdtdΩ → dL

dt
= εr2

(
1− 2M

r

)∫
TrϕdΩ,

(2.2.44)

with ηµ the normal vector to the S-surface, and ε = 1 for dSµ pointing toward increasing
r, ε = −1 for dSµ pointing toward decreasing r.
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Now one needs to calculate the needed energy-momentum components from its ex-
pression (2.2.42), using the decomposition along the tetrad (2.2.39) for the gravitational
perturbation. Eventually one gets the following expression for the far-zone �uxes over
time of emitted energy (power) and radiated angular momentum (ang. mom. rate):

dE

dt
=

1

64π

∑
l,m

(l + 2)!

(l − 2)!

(
|ψ̇lmZM (r, t)|2 + 4|ψlmRW (r, t)|2

)
,

dL

dt
= 2<

 i

128π

∑
l,m

m
(l + 2)!

(l − 2)!

(
ψ̇lmZM (r, t)ψ∗lmZM (r, t) + 4ψ∗lmRW (r, t)

∫ t

−∞
ψ∗lmRW (r, t′)dt′

) .

(2.2.45)

These are the equations that relate the RW/ZM functions to the emitted energy and
angular momentum radiated far away from the source of gravitational waves (calculated
through the outgoing radiation gauge). Every scalar function has to be evaluated at the
desired location (the observer's distance robs). Remarkably a similar calculation [97] for
the �uxes towards the BH horizon, performed in the ingoing radiation gauge, shows that
the �nal expressions for the �uxes are the same as in the far-zone, with the di�erence in
the location r.

2.3 The Lousto-Price algorithm

The Regge-Wheeler equations (2.2.26) presented in the previous section are a list of
second order partial di�erential equations for every (l,m)-mode of the tensorial spherical
harmonic expansion of the perturbed metric and source terms in the original Einstein �eld
equations. They give birth to wave-like solutions in�uenced by the potential at the left-
hand side, which depends on the Schwarzschild background, and the source terms on the
right-hand side, which depend on the orbit of the minor body perturbing the background.

Nevertheless the procedure to obtain such solutions is not analytic and relies on nu-
merical methods, unless one studies special regimes, such as in the neighbourhood of the
horizon, when inquiring for quasi-normal modes [100, 101, 102], where an approximated
version of the RW/ZM-equations is solved instead of the full problem. Similarly, a Green's
function of the di�erential operator in (2.2.26) can be used [103] and results obtained in
the far-zone approximation r → +∞.

Here a numerical algorithm is presented that will be used for the results summarized
in this thesis, the Lousto-Price algorithm [20]. It is a general algorithm passing the
original di�erential equation into �nite-di�erence equations, dividing the spacetime into
�nite-size regions, or cells. In this section we describe the main features of this algorithm,
independently of its implementation.

The idea behind the algorithm is quite simple: evolving given initial conditions for the
functions ψlmRW/ZM in time and in many positions in Schwarzschild spacetime. Eventually
only the values at a reference position, the observer's position, are collected. These
represent the evolution of the even and odd modes ψlmRW/ZM (robs, t) in time.
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The starting point is the RW/ZM-equation for a general (l,m)-mode (with l ≥ 2),
which is more conveniently rewritten in tortoise coordinates, i.e.

(2.3.1)
(
∂2
r∗ − ∂2

t − V̄ lRW/ZM (r∗)
)
ψlmRW/ZM = S̄lmRW/ZM ,

where the source term Slm and the potential V l get multiplied by a Schwarzschild factor(
1− 2M

r

)
, as we showed in (2.2.28). Treating the equation in the variables (t, r∗) makes

it easier to solve numerically. In fact the tortoise-coordinate transformation (2.2.29)
stretches the curved light-cone lines (where the line element (dτ)2 = 0) into straight lines
as the Schwarzschild metric now reads

(2.3.2) (dτ)2 =

(
1− 2M

r

)
(dt)2 −

(
1− 2M

r

)
(dr∗)2 − r2

(
(dθ)2 + sin2 θ(dϕ)2

)
and is symmetric in the time and radial component, therefore a Schwarzschild light-cone
in these coordinates is represented by

(2.3.3) t = ±r∗ + constant,

namely straight lines forming π
4 angles with the (t, r∗)-coordinate axes. In this way the

BH horizon present at r = 2M in Schwarzschild spacetime can be mapped to r∗ → −∞
and Schwarzschild spacetime can be divided in squared cells of equal area and with user-
de�ned size (∆) as in Fig. 2.5. Suppose two such lines depart from the origin (t, r∗) = (0, 0)

of a (t, r∗) spacetime diagram and then at every r∗ = ±2∆ two similar light-cone lines
depart from the horizontal axis t = 0, in this way all of Schwarzschild spacetime is paved
with square cells of area 2∆2.

The �nite-di�erence algorithm steps in when instead of considering a continuous solu-
tion for the waveform ψlmRW/ZM (t, r∗) known throughout spacetime, one is limited to the

knowledge of ψlmRW/ZM only at speci�c locations, i.e. the vertices of the cells that pave
the time-radius spacetime diagram. The parameter ∆ represents half width of any cell
and the sampling step for the time evolution of the solution ψlmRW/ZM (t, r∗), namely two

immediately subsequent values of ψlmRW/ZM are separated by a time di�erence t = ∆. It
goes without saying that the continuity is retrieved in the limit ∆ → 0, where the cells
become in�nitesimal and the solution continuous.

With this grid of cells in mind, one takes as initial conditions the values for the
waveform function ψlmRW/ZM (r∗, 0) and its derivative in time ψ̇lmRW/ZM (r∗, 0) at t = 0, to
be known at every position r∗ in space. From the equations (2.3.1) it is clear that the
ψlmRW/ZM functions are continuous5 everywhere but at the particle's location [97, 96], due
to the Dirac delta discontinuity in the source terms (2.2.31). So, writing down the Taylor
expansion of the ψlmRW/ZM function at t = ∆

(2.3.4) ψlmRW/ZM (r∗,∆) = ψlmRW/ZM (r∗, 0) + ψ̇lmRW/ZM (r∗, 0)∆ + o(∆2),

we know already the values for ψlmRW/ZM at every event position (r∗, t) in the �rst two
lines. These are su�cient to determine the complete evolution up to a user-de�ned time

5As mentioned in [104] the Zerilli function ψlm
RW/ZM

is a function of continuity class C−1 (R2 ), i.e. a

function that is continuous (C 0 (R2 )) after integration.
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Figure 2.5: Schwarzschild spacetime divided in cells. The area in the blue triangle represents

the past light-cone where ψlmRW/ZM points are evaluated. The orbit of the body traverses only a

subset of cells within the causality triangle. Starting from the values on two rows, one retrieves

the following ones.

t = tmax. This time determines the size of the area of points needed to build the solution.
In fact only the points contained in the past light-cone of (r∗obs, tmax) determine causally
the values ψlmRW/ZM (r∗obs, t), for every 0 < t < tmax. The total number of time steps is

given by tend
2∆ and only the couples (r∗, t) in the area inside the causality triangle really

need to be taken into account and evaluated.
The body's trajectory is represented by curve in the diagram, and the cells which are

traversed by this curve have to be evaluated di�erently from the non-traversed ones. For
the latter ones the source terms (2.2.31) are identically zero, the opposite happens in the
traversed cells. The traversed cell gets split into four di�erent areas, depending on the
way the cell is traversed (which is strictly depending on the orbit of the smaller body in
(t, r∗)-coordinates). Just as the waveform function ψlmRW/ZM has been discretized over the
cells, also the orbit is evaluated only in di�erent representative points (the intersections
with the cell's borders) and therefore discretized. Since no body is moving faster than
light, not every combination of trajectory crossing the cell is allowed, in fact there are
four categories of traversed cells, as Fig. 2.6 shows.

Knowing the values of ψlmRW/ZM at two subsequent times t and t + ∆ allows one to
evaluate the following value at time t = t + 2∆, and so on until the �nal time. From
the �rst two lines obtained with the initial conditions, the third one can be evaluated
and from there the fourth and so on. In this way, knowing the values of the waveform
functions ψlmRW/ZM at time t means knowing a list of values for ψlmRW/ZM at di�erent r∗

locations on the same row. This being done, one proceeds from row to row using the
values at the cells' corners to evaluate the missing corner of every cell. Eventually one
stores only the values of ψlmRW/ZM at the observer's tortoise coordinate, and these values
constitute the time evolution of the solution of the Regge-Wheeler equations.



2.3 The Lousto-Price algorithm 45

Figure 2.6: The four kinds of traversed cells that can occur, with the separation into four di�erent
areas Ai, for i = 1 . . . 4 for every cell. The waveform function solution to the RW/ZM-equations

is known in the three low corners of the cell, the remaining top corner is to be evaluated.

The actual algorithm acts by integrating the equation (2.3.1) on both sides of the
equation. Through this, one recovers a �nite-di�erence expression for values of ψlmRW/ZM
at a certain time depending on the values of the same ψlmRW/ZM at previous times and
di�erent locations, as we just explained,

ψlmRW/ZM (t+ 2∆, r∗) = −ψlmRW/ZM (t, r∗) +
1− ∆2

4 V̄
l
RW/ZM (r∗ −∆)

1 + ∆2

4 V̄
l
RW/ZM (r∗)

ψlmRW/ZM (t+ ∆, r∗ −∆)

+
1− ∆2

4 V̄
l
RW/ZM (r∗ + ∆)

1 + ∆2

4 V̄
lm
RW/ZM (r∗)

ψlmRW/ZM (t+ ∆, r∗ + ∆),

(2.3.5)
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ψlmRW/ZM (t+ 2∆, r∗) =− ψlmRW/ZM (t, r∗)
1 + A2

4 V̄
lm
RW/ZM (r∗)

1 + A3

4 V̄
lm
RW/ZM (r∗)

−
∫
cell

S̄lmRW/ZM (t, r)dtdr∗

4 + V̄ l(r∗)A4

+
1− A1

4 V̄
l
RW/ZM (r∗ −∆)

1 + A3

4 V̄
l
RW/ZM (r∗)

ψlmRW/ZM (t+ ∆, r∗ −∆)

+
1− A4

4 V̄
l
RW/ZM (r∗ + ∆)

1 + A3

4 V̄
lm
RW/ZM (r∗)

ψlmRW/ZM (t+ ∆, r∗ + ∆).

(2.3.6)

The two expressions above refer to the two possibilities that one evaluates values of
ψlmRW/ZM on corners of a regular empty cell (2.3.5) or those of a cell traversed by the
orbit itself (2.3.6). In the latter case an integral of the source term adds up to the result.
The barred quantities are the usual potentials and source terms multiplied by a

(
1− 2M

r

)
factor, as required by the coordinate transformation from Droste to tortoise coordinates.
The Ai, i = 1 . . . 4 are areas inside the cell (whose total area is 2∆2) de�ned by the path
drawn in the diagram by the orbit. For details about the calculation of such expressions
see [20, 18], the main used assumption being to consider the involved functions V̄ l, S̄lm,
and ψlmRW/ZM constant on a single Ai region.

The calculation of the integral of the source terms S̄lm (2.2.31) present in the traversed-
cell expression (2.3.5) for ψlmRW/ZM (t + 2∆, r∗) exploits the sampling property of Dirac's
delta distributions δ(r − rp(t)) and integration by parts. More detailed calculations can
be found in [97, 105] whose �nal result is∫

cell

S̄lmdr∗dt =

∫ tt

tb

dt

[
Glm(r)

1− 2M
r

− ∂r

(
F lm(r)

1− 2M
r

)] ∣∣∣∣
r=rp(t)

± F lm(rp(tb))(
1− 2M

rp(tb)

)2

1

1∓ ṙp(tb)

± F lm(rp(tt))(
1− 2M

rp(tt)

)2

1

1± ṙp(tt)
,

(2.3.7)

where ṙp(t) is the particle's radial velocity at the times when the particle enters or leaves
the cell (tb or tt respectively). The ± sign is determined out of one of the four possible
crossing categories, as in Fig. 2.6 (as four are the combinations of 2 ± signs).

This concludes the brief description of the Lousto-Price algorithm. Later on it will
be applied to a speci�c kind of orbits in Schwarzschild spacetime. So far, other results
obtained with this method include the straight plunge [20, 106, 95], circular, parabolic
and eccentric orbits [97, 95, 17, 18, 96].

2.4 Perturbation of the orbit: geodesic deviations

Perturbing the BH background metric is not the only technique to access the information
of an EMR binary emitting gravitational radiation. So far we have seen how to obtain
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the Gravitational Waves as a result of the perturbation of a given spacetime (speci�cally
Schwarzschild spacetime), but one can also consider to take into account deviations on a
given geodesic orbit, which is a solution of the geodesic equations (1.1.3) for the unper-
turbed background spacetime, in order to obtain more general orbits. The e�ects of GW
emission can then be included in these new orbits, for instance tuning accordingly the
energy and angular momentum of the body following the deviated orbit.

In this section we present a possible method of generalising an initially simple geodesic
orbit that will be applied later on to speci�c orbits in Schwarzschild spacetime in order
to describe the last phases of an EMR coalescence.

In �at Minkowski spacetime two test bodies (with ideally no mass) moving on straight
lines initially parallel to each other will keep being on such parallel paths if no external
force is applied, thus satisfying Newton's inertial principle. In a curved spacetime this is
not always the case, rather two bodies moving on two generically di�erent geodesics, sepa-
rated by a distance vector nµ, will undergo a change of their original mutual separation.
A geodesic deviation will take place, obeying the geodesic deviation equation [43]

(2.4.1)
D2nµ

Dτ2
= Rµνρλn

ρ dx
ν

dτ

dxλ

dτ
,

where xµ(τ) is the geodesic trajectory, depending on the a�ne parameter or proper time
τ , and Rµνρλ is Riemann curvature tensor associated to the background metric. This
equation joins covariantly the e�ect of a non-trivial curvature to a change in the original
geodesic path, when no external �eld is involved. The operator on the left-hand side is
the usual covariant derivative along the geodesic xµ, i.e.

(2.4.2)
DAµ

Dτ
=
dAµ

dτ
+ Γµνλ

dxν

dτ
Aλ, ∀Aµ tensor.

The geodesic deviation equation (2.4.1) is the key to a perturbation method of an
original geodesic orbit �rst devised in [107, 108], and then further developed and put to
use in practice for eccentric orbits in [17, 18]. Here we will describe the salient features
and master equations of this procedure.

If x̄µ(τ) is an analytically known geodesic in a given spacetime gµν , it is possible
to build a family of such geodesics within the spacetime, a congruence, that can be
distinguished by a dummy parameter allowing one to move from one geodesic to the
other. For instance in Schwarzschild spacetime all the circular solutions r = constant of
the geodesic equations

(2.4.3)
d2x̄µ

dτ2
+ Γµνλ

dx̄ν

dτ

dx̄λ

dτ
= 0

are parametrized by the value of the constant radius. Should we decide to measure the
radius in units of the BH mass M , every such circular orbit would be r = nM times
distant from the central black hole, and changing continuously the value of n ∈ R would
allow one to span the whole congruence of circular geodesics. Similarly xµ(τ ;σ) can
indicate a family of geodesics in a given spacetime.

Let x̄µ(τ) = xµ(τ ; 0) be the reference geodesic, the next geodesic in the family is given
by a vector displacement nµ o� the original x̄µ,

(2.4.4) xµ(τ ;σ) = x̄µ(τ ; 0) + σnµ.
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This newly built orbit has to satisfy the geodesic equation (2.4.3) as well to �rst order in
σ and this requirement gives back the geodesic deviation equation for nµ, namely (2.4.1).
In fact one can always ask that, at a given proper time τ = τ0, the point x̄µ(τ0) be
corresponding to another point on the other geodesic xµ(τ0;σ) at the same proper time.
This implies that nµ varies with proper time too and that it changes along the original
geodesic as this is swept through by the a�ne parameter τ . The evolution equation of
nµ(τ) is simply the geodesic deviation equation (2.4.1).

Figure 2.7: Congruence of geodesics xµ in proper time

τ (green curves), with tangent vector uµ and deviation

vector nµ.

The deviation vector nµ gives the
geodesic separation from a point on
the reference geodesic to a point on
the nearby geodesic characterized by
the same value of the a�ne para-
meter τ . Extending this correspon-
dence to all values of the proper time,
thus sweeping the whole geodesic, it
is possible to construct the world-
lines having the deviation vector as
tangent vector (purple curves in Fig.
2.7). In this way, nµ(σ) plays the
same role that the tangent vector
uµ(τ) = dxµ

dτ (τ) does for the con-
gruence of geodesics xµ(τ ;σ). With
this respect one can regard σ as
an a�ne parameter sweeping the
geodesic whose tangent is nµ(σ; τ),
and uµ(σ; τ) as its deviation vector.

All this accounts for the de�nition of the deviation vector as

(2.4.5) nµ =
Dxµ

Dσ
,

and the interchange between nµ and uµ is con�rmed by the remarkable property

(2.4.6)
Dnµ

Dτ
=

D2xµ

DτDσ
=
d2xµ

dτdσ
+ Γµνλ

dxλ

dτ

dxν

dσ
=
Duµ

Dσ
,

or, stated di�erently

(2.4.7) (u · ∇n)µ = uν∇νnµ = nν∇νuµ = (n · ∇u)µ ⇒ u · ∇n = n · ∇u.

Now the key point to understand is that one can use this connection among di�erent
geodesics to build new orbits out of an analytically known one. Eq. (2.4.4) is just
an approximation to �rst order in the deviation parameter σ of the di�erence between
neighbouring geodesics within the same congruence, the complete expression is as follows

(2.4.8) xµ = x̄µ + σ
dxµ

dσ

∣∣∣∣
σ=0

+
σ2

2!

d2xµ

dσ2

∣∣∣∣
σ=0

+O(σ3),
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which can be rewritten in fully covariant fashion as

(2.4.9) xµ = x̄µ + σnµ +
1

2
σ2
(
kµ − Γµνλn

λnν
)

+O(σ3),

provided the following covariant de�nitions have been given at σ = 0:

(2.4.10) nµ =
∂xµ

∂σ
, kµ =

∂nµ

∂σ
+ Γµνλn

λnν .

The Christo�el symbols in (2.4.9) and (2.4.10) are evaluated along the original geodesic
x̄µ, the deviation parameter σ is de�ned as the physical distance between the �nal orbit
and the original geodesic at τ = 0,

(2.4.11) (dσ)2 = gµνdx
µdxν

∣∣∣∣
τ=0

.

The evolution equations for the deviation vectors (2.4.10) are to be found by demanding
that the perturbed orbit satisfy the geodesic equation (2.4.3), resulting in

D2nµ

Dτ2
= Rµλνκu

λnνuκ,

D2kµ

Dτ2
= Rµλνκu

λkνuκ +Rµκνλ;ρ

(
uκuλnνnρ − uνuρnκnλ

)
+ 4Rµκνλu

λnν
Dnκ

Dτ
.

(2.4.12)

The curvature terms are evaluated along the known geodesic x̄µ, and the equation to �rst
order in σ is nothing but the geodesic deviation equation (2.4.1) we started from. The
equations (2.4.12) are more conveniently used in their non-covariant form,

d2nµ

dτ2
+ 2uλΓµλν

dnµ

dτ
+ uκuλΓµκλ,νn

ν = 0,

d2mµ

dτ2
+ 2uλΓµλν

dmµ

dτ
+ uκuλΓµκλ,νm

ν = Sµ(n),

(2.4.13)

where mµ = kµ−Γµλνn
λnν and Sµ(n) is a source term depending on the deviation vector

nµ,

(2.4.14) Sµ(n) = −2Γµλν
dnλ

dτ

dnν

dτ
− 4Γµλν,κu

λnκ
dnν

dτ
− Γµλν,ρκu

λuνnρnκ.

This procedure allows to write down the geodesic deviation equations at all orders, in
manifestly covariant form (2.4.12) or not (2.4.13). At any order the same left-hand side
structure of (2.4.13) occurs again. Therefore if nµ = 0 → Sµ(n) = 0, also mµ and
subsequent orders' deviation vectors will be null. However, for the purposes of this thesis
we will never go beyond the �rst order in geodesic deviation when tackling practical
applications.

The advantages o�ered by an expansion like Eq. (2.4.9) are that one can always
build a new (perturbed) orbit out of an analytically known one just by truncating the
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series, which is e�ectively a Taylor series. The newly obtained orbit can in principle be
formulated analytically, once the corresponding deviation equations (2.4.13) have been
solved, and it is still a geodesic solution of the given background metric.

One can use this new orbit in order to tune some parameters, such as energy and
angular momentum to the desired values, taking into account e�ects such as gravitational
emission. The next step is to reconstruct the binary coalescence moving from an initial
orbit x̄µ to new perturbed orbits, each time adjusting the relevant parameters. The
whole picture is an approximation of the actual gradual orbit deformation due to the GW
emission and the back-reaction of these with the background.
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3 Plunge along ballistic orbits
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Binary coalescences go through three di�erent stages, which are commonly referred to as
the inspiral, plunge and merger-ringdown [21]. During the inspiral of an EMR binary,
the smaller companion µ follows bound quasi-periodic orbits, such as those studied in
[17, 18, 105]. Loss of energy through GWs generally translates in a loss of eccentricity
(circularisation) in this phase, although the eccentricity may increase again just before
plunging [109], depending on the parameters of the orbit and its evolution1. However,
the region of the ISCO is where the plunge sets in and unstable plunging orbits in some
range of parameters can be used in the description of this phase and the following.

Analytical results for the orbits of test masses in Schwarzschild spacetime are found in
standard textbooks [47, 43, 110]. Complete geodesics �meaning the full spacetime position
as a function of (proper) time� are less easy to compute, and usually given only in the
form of implicit expressions [111, 112]. For practical applications several perturbative
schemes have been developed to construct satisfactory approximations, see refs. [113, 2]
and work cited there. In refs. [107, 17, 18, 105] a di�erent, fully relativistic scheme has
been developed based on covariant deformation of known (circular) orbits. This last
method, developed to second order in the deformation parameter, was also shown to
give very good results for the gravitational signals from quasi-periodic bound orbits with
moderate eccentricities.

In the present chapter we extend the relativistic calculations to include a particular
class of unstable orbits, describing test masses falling towards the horizon in the regime
where the motion is no longer quasi-periodic. A well-known extreme case of infall is the
straight plunge along a radial orbit, which was dealt with extensively in refs. [97, 95].
Here we focus on the opposite extreme, infall from a periodic orbit, in particular circular
orbits close to the innermost stable circular orbit (ISCO), which we name ballistic orbits,
because of their behaviour, as will become clear in the next section.

Such unstable orbits are interesting on their own and shed light on the dynamics of
EMR binaries, so they can also be used for the evaluation of gravitational radiation.
In particular they show that an EMR plunge can follow an almost-circular path at the
beginning, up to a radial value r ∼ 4.3M , when ṙ ∼ rϕ̇ and the radial velocity becomes
comparable to the transverse velocity, after which the radial motion becomes dominant.
Moreover, the ballistic orbits are the starting point for a geodesic deviation expansion

1However, the relative increase of the eccentricity is modest: e � 1, while during previous stages of

the inspiral e can drop by several orders of magnitude.
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[17, 18] which can give an even more realistic description of the �nal plunge of an EMR
system, as will be shown in the next chapter.

The chapter is structured as follows: �rst an explanation is given of how to build such
orbits, of their properties, and of how to use them to derive gravitational radiation. In
the next section we show the problems inherent to the calculation of waveforms and the
following results. At the end of this chapter we discuss the results and how they �t in
the existing literature on this topic.

3.1 Ballistic orbits

3.1.1 Circular orbits in Schwarzschild spacetime

Physical trajectories of bodies orbiting in a non-spinning EMR binary can be described
by time-like geodesics in Schwarzschild spacetime. This represents a well-known solution
[76] of the Einstein �eld equations of General Relativity and it is as old as GR itself2 .

Schwarzschild metric is the physical solution to the Einstein �eld equations in vacuum
around any spherical distribution of mass3 such as stars or Black Holes. Actually a Black
Hole is �rst de�ned as a spherical distribution of mass contained within its Schwarzschild
radius r = 2GM

c2 , which is the BH horizon, a threshold that not even light can escape
from. That makes the star contained within the horizon a �black� star, appearing in
astrophysical observations as a gap, a �hole� in space where other objects orbit around.
Adding a rotation, or spin, to a Black Hole would require a di�erent solution of the same
Einstein �eld equations, namely a Kerr-Newman spacetime solution [47, 117], which is
currently the most complete description of astrophysical Black Holes and reduces back to
the Schwarzschild solution as its non-rotating limit.

Nevertheless we will �rst address the case of non-spinning Black Holes, and for these
the Schwarzschild solution is the best description. Taking the origin of the reference
frame centered in the Black Hole position in spherical coordinates -so that r is the radial
distance away from the BH, θ and ϕ are latitude and longitude angles respectively- the
Schwarzschild solution has the following aspect

(3.1.1) dτ2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M
r

− r2dθ2 − r2 sin2 θdϕ2.

Due to the spherical symmetry of the background geometry, Droste coordinates can
be chosen in such way that any speci�c orbit lie in the equatorial plane (θ = π

2 ). Motion
in the equatorial plane of Schwarzschild spacetime is characterized by two constants [47],
and for a body with mass µ moving in this metric, the energy and the angular momentum

2Schwarzschild's paper was communicated to the Berlin Academy by Einstein about two months after

the publication of his �eld equations in a short communication [47]. For a more complete tale about the

discovery of Schwarzschild's solution, refer to [114, 115, 116]
3Thanks to Birkho�'s theorem [87], which a�rms that any spherically symmetric solution of the

Einstein �eld equations in vacuum must be static and asymptotically �at, Schwarzschild metric is of

fundamental importance.
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are, respectively

(3.1.2) E = µ

(
1− 2M

r

)
ut L = µr2 sin2 θuϕ,

where ut and uϕ are the time and azimuthal component of the 4-vector velocity uµ. From
now on we will refer just to the energy per unit mass ε = E

µ and the angular momentum

per unit mass ` = L
µ (also called �speci�c� energy and angular momentum). In terms of

these the four-velocity constraint uµuµ = −1 is equivalent to

(3.1.3) ε2 =

(
dr

dτ

)2

+ V`(r),

with the e�ective potential

(3.1.4) V` =

(
1− 2M

r

)(
1 +

`2

r2

)
.

The angular momentum is orthogonal to the plane of the orbit, so along the z-direction,
and it is conserved, together with the energy. As long as the motion is geodetic, its
dynamics is completely conservative. From the Einstein �eld equations in vacuum we can
write down the geodesic equations

d2t

dτ2
= − 2M

r2
(
1− 2M

r

) (dr
dτ

)(
dt

dτ

)
d2r

dτ2
= −M

r2

(
1− 2M

r

)(
dt

dτ

)2

+
M

r2
(
1− 2M

r

) (dr
dτ

)2

+ r

(
1− 2M

r

)(
dθ

dτ

)2

+ r

(
1− 2M

r

)
sin2 θ

(
dϕ

dτ

)2

d2θ

dτ2
= −2

r

(
dr

dτ

)(
dθ

dτ

)
+ sin θ cos θ

(
dϕ

dτ

)2

d2ϕ

dτ2
= −2

r

(
dr

dτ

)(
dϕ

dτ

)
− 2

cos θ

sin θ

(
dθ

dτ

)(
dϕ

dτ

)
.

(3.1.5)

As already mentioned, motion in Schwarzschild geometry is planar when L is conserved,
so one can put θ = π

2 and constant in time, without loss of generality. If we now look at
circular orbits r = R > 2M , the equations (3.1.5) read

(3.1.6)
d2t

dτ2
= 0

d2ϕ

dτ2
= 0

M

R3

(
dt

dτ

)2

=

(
dϕ

dτ

)2

.

From the normalization of the four-velocity condition (3.1.3) we get the following relations

(3.1.7) 1− ε2

1− 2M
R

+
`2

R2
= 0 with ε =

1− 2M
R√

1− 3M
R

, ` =

√
RM

1− 3M
R

,
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which in turn imply that for circular orbits r = R

(3.1.8) t(τ) =
ε

1− 2M
R

τ =
τ√

1− 3M
R

, ϕ(τ) =
`

R2
τ =

√
MR

1− 3M
R

τ

R2
.

In the region beyond the BH horizon r > 2M it is possible for a body to orbit around a
Schwarzschild BH on a circular orbit. This orbit will be stable as long as r ≥ 6M , and
r = 6M is commonly referred to as the Innermost Stable Circular Orbit, meaning that for
r < 6M only unstable orbits are possible (like the �light-ring� orbit r = 3M for photons).
To see this, consider again the e�ective potential (3.1.4) and plot it against the radial
variable r for di�erent values of the speci�c angular momentum `, as shown in Fig. 3.1.
It has the typical well potential behaviour where circular orbits represent the extremal
points of the curves, minima and maxima.

Figure 3.1: E�ective potential for di�erent values of angular momentum `. The red thick line

corresponds to `2 = 12M2, the one giving rise to the ISCO orbit.

Minimizing the e�ective potential V`, it follows that for `2 > 12M2 there always exist
circular orbits. In fact, there are two types of circular orbits, a stable one at r = R+ in
the minimum of V`, and an unstable one at r = R− in its maximum, with

(3.1.9) R± =
`2

2M

(
1±

√
1− 12M2

`2

)
.

For R = 6M and `2 = 12M2 the e�ective potential V` has only a point of in�ection,
and these two solutions coincide; this is the well-known innermost stable circular orbit
(ISCO). For `2 < 12M2 the potential V` has no stable points for any `, and no circular
orbits exist.

The ISCO allows us to distinguish two regions in Schwarzschild spacetime, an �outer�
region, for r > 6M and an �inner� region. In terms of binary system coalescences it is
known that the last phases of the evolution, plunge and merger, both take place in the
inner region, while the inspiral ends at the proximity of the ISCO [21].
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Solving the geodesic equations (3.1.5) for r = 6M gives the ISCO orbit in detail

t(τ) = ±
√

2τ, ϕ(τ) = ±
√

3

18
τ,(3.1.10)

R = 6M, θ =
π

2
, ε2 =

8

9
, `2 = 12M2.

The sign of energy determines whether we have a body, or particle, moving back in time
or not. For instance, this makes the di�erence between particle and antiparticle. The sign
in the angular momentum indicates whether it is moving clockwise or counterclockwise
with proper time. This is true for general planar orbits, and in the following we will
choose positive signs for both the energy and the angular momentum.

The expression for V` for di�erent circular orbits is conveniently parametrized by

(3.1.11) ξ =

√
1− 12M2

`2
⇒ ε2

± = V`[R±] =
2

9

(2± ξ)2

1± ξ
.

Note that for orbits near the ISCO (small ξ), both the energy and angular momentum of
circular orbits vary only as ξ2. As a result, for orbits near the ISCO the e�ective potential
is very �at between R− and R+; in fact, in the domain ξ < 0.3 the di�erence between
maximum and minimum of V` is less than 1 percent.

3.1.2 Ballistic orbits in Schwarzschild spacetime

In order to describe motion of a body in the �nal phases of a binary coalescence, we need
orbits in the inner region. To this purpose we consider this kind of orbit

(3.1.12) r =
R

1 + e cot2(Aϕ/2)
.

Here (R, e,A) are constants �xed by the values of ε and `, as will be shortly shown.
As one can see, the orbits (3.1.12) are periodic trajectories going from an apastron R

towards the BH and then coming back, therefore we refer to them as ballistic orbits. This
means that the orbit lies entirely inside a region r < R, and taking R ≤ 6M places the
orbit completely in the inner region beyond the ISCO. Moreover this implies that ϕ is
allowed to change in a limited range in order to describe a one-way motion towards the
BH horizon r = 2M . An example is shown in Fig. 3.2.

Such orbits exist (3.1.12) for speci�c values of the constants e, A and R. First,
moving from the normalization condition of the four-velocity (3.1.3) and using the Killing
relations, one gets [47]

ε2 − 1

2
=

1

2

(
dr

dτ

)2

+
1

2

(
1− 2M

r(τ)

)(
1 +

`2

r2(τ)

)
− 1

2
,

and this relation can be stated in terms of potential terms showing the existence of
minima/maxima of the orbit (respectively periastron and apastron), and of the ISCO
itself, as we already discussed in the previous section. Using the chain rule we calculate
dr
dτ in terms of the angle ϕ and get:

dr

dτ
(τ) =

dr

dϕ
(ϕ)

dϕ

dτ
=

`

r2(ϕ)

dr

dϕ
(ϕ)
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r =
 6M

r =
 2M

U

V

Figure 3.2: Kruskal diagram showing a ballistic orbit crossing lines of constant r < 6M (dotted

curves). The ISCO (r = 6M) is the ultimate limit of ballistic orbits.

with the angle depending on proper time ϕ = ϕ(τ), we obtain

(3.1.13)
`2

r4

(
dr

dϕ

)2

= ε2 −
(

1− 2M

r

)(
1 +

`2

r2

)
.

The left-hand side of the latter can be evaluated to be, thanks to the ansatz (3.1.12),

(3.1.14)
d

dϕ

1

r
= −eA

R

cos(Aϕ/2)

sin3(Aϕ/2)
⇒ `2

(
d

dϕ

1

r

)2

=
`2e2A2

R2

cos2(Aϕ/2)

sin6(Aϕ/2)
,

while the right-hand side (3.1.13) becomes

(3.1.15) ε2 − 1 +
2M

R

(
1 + e cot2 y

)
− `2

R2

(
1 + e cot2 y

)2
+

2M`2

R3

(
1 + e cot2 y

)3
,

where we have introduced the notation y = Aϕ/2. Multiplying both sides of the equation
by sin6 y, it takes the form

(3.1.16)

e2A2`2

R2
cos2 y =

(
ε2 −

(
1− 2M

R

)(
1 +

`2

R2

))
sin6 y

+

(
2M

R
− 2`2

R2
+

6M`2

R3

)
e cos2 y sin4 y

−
(
`2

R2
− 6M`2

R3

)
e2 cos4 y sin2 y +

2M`2

R3
e3 cos6 y.

Finally we use the identity sin2 y = 1− cos2 y, and equate powers of cos y on both sides,
with the following results: from the constant terms (cos0 y) we retrieve the usual energy
conservation relation for circular orbits (3.1.7)

(3.1.17) ε2 =

(
1− 2M

R

)(
1 +

`2

R2

)
;
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from the coe�cients of cos2 y

(3.1.18) eA2`2 = 2MR− 2`2 +
6M`2

R
;

from the coe�cients of cos4 y

(3.1.19) 2e

(
2M

R
− 2`2

R2
+

6M`2

R3

)
+ e2

(
`2

R2
− 6M`2

R3

)
= 0;

and �nally from the coe�cients of cos6 y

(3.1.20) e

(
2M

R
− 2`2

R2
+

6M`2

R3

)
+ e2

(
`2

R2
− 6M`2

R3

)
+ e3 2M`2

R3
= 0.

The last two equations can be simpli�ed using (3.1.18)

(3.1.21)
e2`2

R2

(
2A2 + 1− 6M

R

)
= 0,

e2`2

R2

(
A2 + 1− 6M

R
+

2eM

R

)
= 0,

from which an expression for the amplitude A follows as

(3.1.22) A2 =
2eM

R
=

1

2

(
6M

R
− 1

)
.

Substitution of these results back into Eq. (3.1.18) then determines the angular momen-
tum:

(3.1.23) `2 =
16M2(

1− 2M
R

) (
1 + 6M

R

) .
As a consequence we �nd for the energy per unit of mass (speci�c energy)

(3.1.24) ε2 =

(
1− 2M

r

)(
1 +

`2

R2

)
=

(
1 + 2M

R

)2
1 + 6M

R

.

Also note, that positivity of A2 requires R < 6M ; for R → 6M the solution transforms
smoothly to the ISCO:

(3.1.25) r = R = 6M, `2 = 12M2, e = A = 0.

Note that r reaches its maximum r = R for Aϕ = π. It follows immediately that the
complete orbit lies within the ISCO, as required.

More precisely, just like for circular orbits, there is only one independent parameter
�xing a ballistic orbit, which we can choose to be the extremal point (apastron) r = R.
The correspondence with circular orbits is not limited to this fact, as we will show shortly.

Summarizing the results obtained so far, these orbits lie completely within the ISCO,
starting from and falling back into the horizon; therefore we refer to them as ballistic
orbits. The constants de�ning the ballistic orbits are

(3.1.26)

A2 =
1

2

(
6M

R
− 1

)
, e =

3

2

(
1− R

6M

)
,

ε2 =

(
1 + 2M

R

)2
1 + 6M

R

, `2 =
16M2(

1− 2M
R

) (
1 + 6M

R

) .
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For these orbits the value of the parameter ξ, de�ned in (3.1.11), is

(3.1.27) ξ = A2 =
1

2

(
6M

R
− 1

)
,

and as a consequence

(3.1.28) ε2 =
2

9

(2 + ξ)2

1 + ξ
.

Thus it is clear that these ballistic orbits inside the ISCO are degenerate in energy and
angular momentum with the stable circular orbits outside the ISCO. We can establish in
this way a 1-1-correspondence with the circular geodesics. This correspondence is evident
if you look at the e�ective potential term (3.1.4) and the possible orbits, see Fig. 3.3.
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Figure 3.3: V`(r) for several `2 ≥ 12M2, where the equality sign determines the ISCO (lowest

curve). The horizontal lines indicate the energy levels of the stable circular orbits (dashed) and

corresponding ballistic orbits (continuous).

There are analytic representations for three kinds of special geodesics: stable and
unstable circular orbits with respectively

(3.1.29) R+ =
6M

1− ξ
, R− =

6M

1 + ξ
,

and special ballistic orbits with apastron

(3.1.30) R =
6M

1 + 2ξ
.

These ballistic orbits are always degenerate in energy and angular momentum with the
stable circular orbit for the same ξ, whilst the unstable circular orbit at this ξ has a
slightly higher energy; however, all three of them become degenerate at the ISCO where
ξ = 0. Other ballistic orbits exist; an analytic representation for these can be obtained
from the ones given in Eqs. (3.1.12) and (3.1.26) by the method of geodesic deviations
[118, 107].
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However observe that the energy of a body on a ballistic orbit is always slightly higher
than the ISCO energy. In fact, the Taylor expansion of the energy (3.1.28) is

ε2 = εISCO + 2
ξ2

9
− 2

ξ3

9
+ o(ξ4),

showing that any variation of order ξ from the ISCO energy is towards increasing the
energy of the test-particle. The degeneracy in energy and angular momentum of the
ballistic orbits and circular orbits implies that in both cases these quantities are greater
than those of the ISCO. Thus it follows that when a test particle in stable motion on the
ISCO is slightly boosted with the correct angular momentum, it can either move up to
a larger distance from the horizon on a stable circular orbit, or move down to such an
infalling ballistic orbit of the same ε and `.

In real systems such a small boost could happen for instance by interaction with a
third body passing by. A ballistic geodesic is the kind of orbit a body would follow when
accelerating from the ISCO towards the horizon, or when being captured by the central
BH in the ISCO region, while being on his way on an outbound orbit. Just as it is,
(3.1.12) represents a �rst order approximation of the real plunging orbit of the smaller
companion in a Supermassive Black Hole Binary Coalescence. Further improvements can
be obtained pursuing the geodesic deviation scheme [107, 18].

3.1.3 Infall on a ballistic orbit

As equation (3.1.12) is invariant under ϕ → −ϕ, the ballistic orbit is symmetric about
the apastron r = R. The second half of the orbit describes the infall of a test mass from
the apastron to the horizon, so we have to consider a de�nite range of values for ϕ in
order to use the interesting branch of this solution, as was already mentioned.

We describe now the infalling orbit in some more detail. Firstly Eq. (3.1.12) expresses
the radial co-ordinate r as a function of ϕ. By using the constants of motion (3.1.26)
one can also determine the explicit functional dependence of the coordinate time t and
the proper time τ on the angle ϕ. The expression for proper time is the simplest one,
obtained by integrating the relation

(3.1.31)
dϕ

dτ
=

`

r2
=

`

R2

(
1 + e cot2 Aϕ

2

)2

,

with the result

(3.1.32)

(
1− e

(3− e)(3− 2e)

)3/2
τ − τ0
2M

=
Aϕ

(3− e)
√
e
− arctan

(
1√
e

tan
Aϕ

2

)

+

√
e(1− e)
3− e

cot Aϕ2
1 + e cot2 Aϕ

2

.

Here τ0 is a constant of integration �xing the zero point of proper time. A convenient
choice will be to take τ = 0 at r = R. Similarly, we can solve for t as a function of ϕ by
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integrating

dt

dϕ
=
ε

`

r3

r − 2M

=
2MRε

`

 R

2M

1(
1 + e cot2 Aϕ

2

)2 +
1

1 + e cot2 Aϕ
2

+
1

R
2M − 1− e cot2 Aϕ

2

 .

(3.1.33)

The result is

1

(2− e)

√
e

2(1− e)
t− t0
4M

=
(3− 2e)2Aϕ

2(2− e)(1− e)2
+
e(3− 2e)

2(1− e)
cotanAϕ2

1 + e cotan2Aϕ
2

− (11− 11e+ 2e2)
√
e

2(1− e)2
arctan

(
1√
e

tan
Aϕ

2

)
− 1

(2− e)

√
e

2(1− e)
arccoth

(√
2(1− e)

e
tan

Aϕ

2

)
.

(3.1.34)

Finally, this result can be translated to a result for t as a function of r:

2

(2− e)

√
e

2(1− e)
t− t0
4M

=

(
11− 11e+ 2e2

)√
e

(1− e)2
arctan

√
r

(6− 4e)M − r

− 2(3− 2e)2

(1− e)2(2− e)
arctan

√
er

(6− 4e)M − r
−
√
er ((6− 4e)M − r)

2M(1− e)

+
1

2− e

√
2e

1− e
arccoth

√
2(1− e)r

(6− 4e)M − r
.

(3.1.35)

A typical ballistic orbit close to the ISCO, with e = 1.5 × 10−3 is shown in Fig. 3.4.
This orbit encircles the black hole about 20 times before crossing the horizon. Moreover,
the radial motion is seen to be small compared to the transverse motion until the radial
coordinate gets in the domain 4M < r < 5M . Once the cross-over to radially dominated
motion is made, only a few turns remain. These observations will be made more precise
in the last section of this chapter.

As one can see from the time relations (3.1.34), (3.1.35), the orbital parameters depend
on the central massM and the eccentricity e (or equivalently R, using relations (3.1.26)).
In the following applications the choice will be on the observer's time in terms of the radial
variable (3.1.35), so treating the radial distance r as independent parameter, because of
computational simplicity4. This requires to invert the initial relation (3.1.12) as well, and
a discussion about the domains of all these functions is necessary.

4A more physically sensible choice would be to have the coordinates xµ(τ) as function of proper time,

but the inversion of (3.1.34) is not possible in closed form and analytically, so the best option, also in

view of numerical applications, is to take r or ϕ as independent variable and let the orbit be described

by that.
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Figure 3.4: The inspiraling ballistic orbit towards the Schwarzschild horizon for e = 0.0015.

We are looking for an orbit that starts from the ISCO and then drives the body all the
way beyond it down to the BH horizon, in the inner region. This means that there is a
starting angle ϕ∗ that corresponds to the body located in the ISCO region. Nevertheless,
one can see that putting R = 6M in all the preceding relations just gives back the stable
ISCO orbit, where r = 6M all the time and A = e = 0, so neither oscillation nor fall
of the body towards the Black Hole. The only possibility is that R < 6M and in order
to conveniently parametrize this requirement, we introduce the parameter δ through the
following de�nition

(3.1.36) R = 6M(1− δ) → δ =
2

3
e,

such that δ is a small dimensionless number. This clearly recognizes that R is the point
of closest approach to the ISCO (r = 6M) of any ballistic orbit. The smaller δ is, the
closer to the ISCO the orbit will start. If we now rewrite energy and angular momentum
in terms of the new parameter δ,

(3.1.37) ` =
4
√

3M(1− δ)√
4− 8δ + 3δ2

(3.1.38) ε =
4− 3δ

3
√

2− 3δ + δ2
,

one can see -as was expected- that in the limit δ → 0 the values for energy and angular
momentum on the ISCO orbit are retrieved with continuity. Analyzing more carefully the
speci�c energy, one can see that we have limits on the values for the parameter δ, due to
the square roots present in the expressions above, and precisely 0 < δ < 2

3 . These limits
match exactly the ones for the eccentricity 0 < e < 1.
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For instance, the expression (3.1.33) τ(ϕ) for the proper time becomes

τ(ϕ) = −12
√

6M(δ − 1)

(2− 3δ)2

√
4

δ
+ 11δ − 3δ2 − 12

[√
δ

2− 2δ
ϕ

(3.1.39)

+
3

2

√
3

2
(δ − 2)

√
δ arctan


√

2
3 tan

(
1
2

√
δ

2−2δϕ
)

√
δ

− 3δ(3δ − 2) tan
(

1
2

√
δ

2−2δϕ
)

6δ + 4 tan2
(

1
2

√
δ

2−2δϕ
) ]

+ constant.

The inverse relation for (3.1.12) reads

(3.1.40) ϕ(r) = ±
arctan

√
er
R−r

b
= ±

√
8(1− δ)

δ
arctan

√
3δr

2(6M(1− δ)− r)
.

As one can see, there is a choice of sign to make. Since it deals with an odd function, this
will decide the orientation the body's trajectory. At the two endpoints of the ballistic
orbit, namely r = 2M and r = 6M the following relations hold

r(ϕ1) = 2M ⇒ ϕ1 = ±2
arctan

√
4
3δ − 2√
δ

2−2δ

+
2kπ√

δ
2−2δ

(3.1.41)

r(ϕ2) = R ⇒ ϕ2 = ± π√
δ

2−2δ

+
2k′π√

δ
2−2δ

.

Since the argument of the cotangent term in (3.1.12) is A
2 ϕ and periodic with period

π, we have to take into account solutions for ϕ with periodicity 2kπ
A , k ∈ Z . The ballistic

orbits are symmetric about the apastron, so if ϕi is any solution of these requirements,
−ϕi is a solution as well. Since we need r = R as starting point and not the other way
around, we pick up a period granting this order. The simplest choice would be to have
ϕ ∈ (ϕ1, ϕ2) with k = k′ = 0,

(3.1.42) − π√
δ

2−2δ

6 ϕ 6 −2
arctan

√
4
3δ − 2√
δ

2−2δ

.

After inverting the relation used for r(ϕ), one can �nd how the angle changes with
respect to the radial distance from the black hole. The range of angles wherein the orbit
is considered for a very small δ, say δ = 0.001 becomes −140.43 rad > ϕ > −2.45 rad so
the particle orbits around the black hole several times, roughly

[
140.43−2.45

2π

]
= 21 ∼ 22

revolutions in a region very close to the ISCO, for the radius does not vary much, and
then there is a fast plunge towards the horizon.



3.1 Ballistic orbits 63

Figure 3.5: Angle evolution with radial distance, from the ISCO to the horizon, for
δ = 0.001

Eventually one can draw the conclusion of choosing negative angles and the minus
sign in the inverted relation (3.1.40). In this way we have chosen a unique period for the
angle ϕ, there is no need to add cumbersome kπ periodicity terms anywhere, and it is
clear how relations τ(r), t(r) such as (3.1.35) have been derived.

Proper time τ(r; δ) in terms of radial distance and the new parameter δ is again

τ(r, δ) =
1

A(e− 1)2

[
− 2 arctan

√
er

R− r
− (e− 3)

√
e arctan

√
r

R− r
+

(e− 1)
√

er
R−r

1 + r
R−r

+ π

(
1 +

(e− 3)
√
e

2

)]
,

(3.1.43)

where we have also made explicit the value of the constant of integration that has been
found by demanding that limr→R τ(r; δ) = 0 . In the same way the relation for the
observer's time t(r; δ) in terms of the radial distance from the BH follows automatically
from replacing (3.1.40) into (3.1.35),
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t(r, δ) =

√
r + 6M(δ − 1)(3δ − 2)√

6rδ3(2− 3δ)2
×

(3.1.44)

[
2
√

6M

√
rδ

6M(1− δ)− r
(
88δ + 135δ3 − 198δ2 − 27δ4

)
arctan

(√
r

6M(1− δ)− r

)

− δ

(
288M

√
r

6M(1− δ)− r
(δ − 1)2 arctan

(√
3

2

√
rδ

6M(1− δ)− r

))

+
√

6(3δ − 2)

r√δ(3δ − 4) + 2M

√
rδ(3δ − 2)

6M(1− δ)− r
log


√

rδ
6M(1−δ)−r +

√
δ

2−3δ√
rδ

6M(1−δ)−r −
√

δ
2−3δ


]

+
Mπ

√
2
δ − 3

√
6(2− 3δ)2

(
144− 88

√
6δ − 288δ + 198

√
6δδ + 144δ2 − 135

√
6δδ2 + 27

√
6δδ3

)
.

The value for the constant of integration, i.e. t0 = t(R), has been recovered by asking
again that limr→R t(r; δ) = 0 (demanding limϕ→ϕ2

t(ϕ; δ) = 0 from (3.1.35) would give
the same result) .

3.1.4 Source terms for the Regge-Wheeler equations

From all the expressions listed in the section above the orbital velocities uµ can be derived
straightforwardly. These will feed the source terms (2.2.32) in the Regge-Wheeler equa-
tions (2.2.26), which have to be solved to extract gravitational radiation from a ballistic
orbit. As we explained in the preceding chapter, one usually moves from Droste's to tor-
toise coordinates (2.2.29), which are useful for the sampling of Schwarzschild spacetime
in the numerical implementation of Lousto-Price's algorithm. Once again the RW/ZM
equation changes accordingly into

(3.1.45)
(
∂2
r∗ − ∂2

t − V̄ lRW/ZM (r∗)
)
ψlmRW/ZM = S̄lmRW/ZM

with V̄ l =
(
1 − 2M

r

)
V l and S̄lRW/ZM =

(
1 − 2M

r

)
SlRW/ZM . A further decomposition of

the source terms is the following [97, 105]

(3.1.46) S̄lmRW/ZM =
(
1− 2M

r

)(
F lmRW/ZM∂rδ(r − rp) +GlmRW/ZMδ(r − rp)

)
.

So all the coe�cients in the spherical harmonics expansion can be evaluated through
the orbital velocity uµ. From them we derive the general (lm) term in the sum for the
source terms S̄lRW/ZM and then the F,G functions mentioned beforehand (2.2.32) which
will be directly put into the code when required. The result of this are the following
expressions for the even modes (Zerilli-Moncrief modes)
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(3.1.47)

F lmZM (r, δ, ϕ) =
−24πµY ∗lm(π2 , ϕ)

(λ+ 1)Λ

[ (2M − r)2
√

2− 3δ + δ2(48M2(δ − 1)2 + r2(4− 8δ + 3δ2))

r4(9δ3 − 36δ2 + 44δ − 16)

]
,

and

(3.1.48) GlmZM (r, δ, ϕ) = g1Y
∗lm(

π

2
, ϕ) + g2Z

∗lm
ϕ (

π

2
, ϕ) + g3U

∗lm
ϕ (

π

2
, ϕ) + g4V

∗lm
ϕϕ (

π

2
, ϕ),

with gi = Ni
Di
, i = 1, 2, 3 having the following meaning

N1 = −8πµ
(
1− 2M

r

)
(3δ − 4)

√
2− 3δ + δ2

[
3M(5M − 3r)r2(4− 3δ)2(3δ − 2)+

(3.1.49)

(4M − r)r3(4− 3δ)2(3δ − 2)λ+ r4(4− 3δ)2(3δ − 2)λ2+

Λ

(
8640M4(δ − 1)3 − 6912M3r(δ − 1)3 + 2Mr3(112− 336δ + 306δ2 − 81δ3)

+ 108M2r2(15δ3 − 47δ2 + 48δ − 16) + r4(54δ3 − 189δ2 + 204δ − 68)

)

− r(r + 6M(δ − 1))(12M(1− δ) + r(3δ − 2))2Λ2

]
,

D1 = 3(2M − r)r4(4− 3δ)2(δ − 2)(δ − 1)(3δ − 2)(1 + λ)Λ2,

N2 = −128
√

3πµ(r − 2M)M
√

(r + 6M(δ − 1))(δ − 2)(δ − 1) (12(1− δ)M + r(3δ − 2)) ,

(3.1.50)

D2 = l(l + 1)r3
√
r3(3δ − 4)(4− 8δ + 3δ2)Λ,

N3 = −1152M2πµ(r − 2M)2(δ − 1)3,

D3 = r6(1 + λ)Λ(3δ − 4)(3δ − 2)sqrt2− 3δ + δ2,

N4 = −4608M2πµ(2M − r)(δ − 1)3,

D4 = r4(3δ − 4)(3δ − 2)
√

2− 3δ + δ2
(l − 2)!

(l + 2)!
.

The odd counterparts (Regge-Wheeler modes) are instead

(3.1.51) F lmRW (r, δ, ϕ) =
2304M2πµ(δ − 1)2

√
2− 3δ + δ2(r − 2M)2(l − 2)!

r5(9δ3 − 36δ2 + 44δ − 16)(l + 2)!
W ∗lmϕϕ (

π

2
, ϕ)

GlmRW (r, δ, ϕ) = −Mπµ

[
9216M(r − 3M)(r − 2M)(δ − 1)2(l − 2)!

r6(9δ3 − 36δ2 + 44δ − 16)(l + 2)!
W ∗lmϕϕ (

π

2
, ϕ)

(3.1.52)

+
64
√

3(r − 2M)(δ − 1)2(12M(1− δ) + r(3δ − 2))
√

r+6M
r3(δ−2)(δ−1) )

l(l + 1)r4(3δ − 4)(3δ − 2)
X∗lmϕ (

π

2
, ϕ)

]
.



3.2 Gravitational Waveforms 66

Now that the ballistic orbits have been constructed, their properties established, and
the resulting source terms in the Regge-Wheeler equations derived, we move to the next
section where the numerical solution of the Regge-Wheeler equations (3.1.46) is shown
and the gravitational waveforms obtained.

3.2 Gravitational Waveforms

Although there exist attempts [119] to build an analytical solution of the Regge-Wheeler
equations (3.1.45), or semi-analytical in the last phases of the evolution and quasi-normal
modes, [100, 120, 101, 102], the best way to obtain a solution is through numerical me-
thods. In works such as [121, 22] an explicit assumption is made about the form of the
�nal solution and integration techniques such as Runge-Kutta methods can be employed.
In our case however we will not rely on any assumption concerning the shape of ψlmRW/ZM
in (3.1.45), albeit we will see eventually that it meets the expectations one could get from
pre-existing literature. We will rely on the simple Lousto-Price algorithm, �rst introduced
in [20], and previously utilized for straight plunge [20, 106, 95], parabolic and eccentric
orbits [97, 95, 17, 18, 96]. The following work, based on [19], represents the �rst instance
where this method is applied to plunging orbits beyond the ISCO.

In this section a brief description of how the Lousto-Price algorithm5 (hereafter LP
algorithm) is used for the ballistic orbits is given, followed by the obtained results about
the potential functions ψlmRW/ZM for the relevant modes, and the subsequent physical
gravitational waves.

3.2.1 The Lousto-Price algorithm implemented for ballistic orbits

For our purposes the LP algorithm has been implemented in C++ programming language;
at every run of the program di�erent values of (l,m) were used, starting from l = 2

modes to l = 4 modes. The l = 0, 1 modes are not radiative modes [2], due to energy and
momentum conservation, so were not considered. The code6 can be found in the following
public folder: https://dl.dropboxusercontent.com/u/38427324/Code_ballistic.zip.

Although the LP algorithm is conceptually simple and its code implementation re-
quires neither particular C++ structures nor detailed explanations, a few words about its
robustness are necessary. More speci�cally it is interesting to see how the obtained wave-
forms are modi�ed by the change of user-de�ned parameters in the code, such as the grid
step ∆, as this helps selecting the physical content of the output. In fact, all the relevant
information ideally should not depend on numerical issues raised by the implementation
itself.

Likewise, the ballistic orbit (3.1.12) ends at the BH horizon, which is a singularity of
Schwarzschild spacetime, in Droste coordinates. This leads to factors and functions that
will blow up as soon as the particle comes closer to the horizon. Numerically there is a
limit to this procedure: numbers too small will be treated like zero by the code with all

5The general idea and concept of the algorithm have been explained in the previous chapter.
6Further details about the code itself can be found upon login request following the link

https://wiki.nikhef.nl/gravwav/Code_�les .

https://dl.dropboxusercontent.com/u/38427324/Code_ballistic.zip
https://wiki.nikhef.nl/gravwav/Code_files
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its consequences. Therefore we have developed a way to describe the body approaching
the horizon, without getting into this problem. This, together with the issues raised in
the previous paragraph, are the object of this subsection.

There are basically three features that in�uence the waveform output and that help
in understanding the physical content obtainable from the LP algorithm applied to the
Regge-Wheeler equations. These are the tuning of initial conditions, so the values for
ψlmRW/ZM and ψ̇lmRW/ZM needed for t = 0, the observer's distance from the central Black
Hole robs, and the grid step ∆. We will show how these in�uence the output and what
can be done to avoid it.

Behaviour changing user-de�ned parameters

The LP algorithm evolves the function ψlmRW/ZM in time in a limited spacetime region,

represented by the past light-cone of the last evaluated point ψlmRW/ZM (r∗obs, tmax). As

was previously mentioned, values for ψlmRW/ZM and its time derivative are needed at time
t = 0 for every position. Thanks to the Taylor expansion,

(3.2.1) ψlmRW/ZM (r∗,∆) = ψlmRW/ZM (r∗, 0) + ψ̇lmRW/ZM (r∗, 0)∆ + o(∆2),

values for ψlmRW/ZM are known at the following time t = ∆ as well. Now the question is,
which initial conditions should be imposed in the solution of the Regge-Wheeler equations?

Claiming ψlmRW/ZM (r∗, t = 0) = 0 is saying that there was no initial gravitational
wave present before time t = 0, which is physically not reasonable, so initial conditions
re�ecting the knowledge of previously radiated gravitational waves would be the most
reasonable assumption. Choosing initial conditions in General Relativity has been and
still is a much debated problem [64], for this as for other interesting situations.

Despite all this, we show that for our case this is irrelevant, for the initial conditions
in�uence only the beginning part of the signal and get soon replaced by the relevant
information coming from the ballistic orbit. This is similar to what happens for periodic
motions, such as eccentric orbits [18], where the initial radiation represents a transient
totally dependent on the numerics of the solving algorithm or the initial conditions [97,
22, 105].

As one can see from the plots in Fig. 3.6, the amplitudes of the Zerilli-Moncrief
function share the same behaviour after the same time. Before this time the evolution
is only in�uenced by the initial conditions, which are, respectively, null initial conditions
ψ

(2,2)
ZM = 0, constant initial conditions ψ(2,2)

ZM = 3×10−7, and gaussian distributed, centered
around 0, initial conditions. The same is assumed for the time derivative, and the order
of magnitude is taken to be comparable with the source terms (3.1.46) for that mass ratio
ν, in order not to overcome the contribution from the source.

This answers the question: the best initial conditions are those that re�ect the physical
situation, but they are not relevant for the physical signal coming from the ballistic orbit.
In the rest of the analysis the particle will be let to orbit on the ISCO for a su�ciently
long period, in order to mimic the last stages of the inspiral in a BH binary coalescence,
then it will follow a ballistic orbit.
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Figure 3.6: Real part of ψ(2,2)
ZM /ν amplitudes for δ = 0.01 with di�erent initial conditions. After

t
2M

= 250 the signal is the same.

Once the complete evaluation of the various ψlmRW/ZM is performed, only the values
at the observer's position are collected. This parameter, namely r∗obs, can be chosen as
one of the initial parameters of the algorithm. Clearly the whole procedure leading to the
Regge-Wheeler equations is valid in the Regge or radiation gauge, which in turn implies
that the observer is already quite distant from the source of gravitational perturbation.
The question is how to quantify this �distant�. The plots in Fig. 3.7 show the same
waveform, for di�erent values of observer's distance. One can deduce that only in the
case where the distance is comparable with the dimensions of the orbit (remind that the
ballistic orbit begins at a distance r ∼ 6M) the signal changes considerably, then staying
the same, provided that other parameters do not change.

These plots have been realized with non-trivial initial conditions, namely letting the
particle orbit on the ISCO at r = 6M for a time t

2M = 300, and then jumping on the
ballistic orbit (3.1.12). This allows to recognize two other important phenomena, valid
for all waveforms.

Everytime there is a change in the orbit, the waveforms undergo �jumps�, just like
the signal originated by the initial conditions is replaced by that in�uenced by the source
terms (3.1.46), as it was clear in the previous plots as well. This is a downside of the
algorithm, which solves a �nite-di�erence di�erential equation, but it helps singling out
the physical reliable signal from the rest. More about this will be said in the next section.
Another physical interpretation of it is that it originates from a sudden change like a
collision of the inspiraling body with a third one, shifting it to another orbit.



3.2 Gravitational Waveforms 69

0 500 1000 1500 2000

-40

-20

0

20

40

t

2 M

R
e@

Ψ
H2

,2
L

Z
M

D�Ν

0 500 1000 1500 2000

-40

-30

-20

-10

0

10

20

30

t

2 M

R
e@

Ψ
H2

,2
L

Z
M

D�Ν

0 500 1000 1500 2000

-40

-30

-20

-10

0

10

20

30

t

2 M

R
e@

Ψ
H2

,2
L

Z
M

D�Ν

Figure 3.7: Real part of ψ
(2,2)
ZM /ν amplitudes for δ = 0.005 observed from di�erent distances,

from left to right respectively robs = 10M, 50M, 100M .

Secondly, the e�ect of the source terms on the waveform starts at a time which is
directly depending on the observer's position relative to the beginning of the ballistic
orbit (3.1.12), namely R = 6M(1− δ). In fact the points calculated including the source
terms appear in the future light-cone of the points along the orbit, as one can check
looking at the scheme in Fig. 2.5. Therefore, in any run of the program, no relevant
signal coming from the ballistic orbit is going to be expected before a time t

2M =
r∗obs−r

∗
0

2∆ .

Finally another user-de�ned parameter, which in�uences the �nal output, is the grid
step ∆. Clearly the smaller this is, the better the continuity limit is achieved, at the
expenses of computational time (more points are evaluated for the same �nal time tmax).
Thus, provided that ∆ is small enough to give a reasonable number of values for ψlmRW/ZM
(this number is given by tmax

2∆ ), what is the error given by the discreteness of the grid?
Without entering the details of the calculations, the various quadratures leading to the

evolution algorithm (2.3.5), (2.3.6) already introduce an overall error of the order o(∆4)

for the cells traversed by the particle trajectory, and of order o(∆3) for non-traversed
ones, for a more detailed discussion about these error estimates, see [20, 106]. These
errors are equivalent errors of order o(∆2) for the �nal waveform ψlmRW/ZM , matching the
truncation error in the Taylor expansion (3.2.1) used for the initial conditions. Therefore
any result coming from the LP algorithm has to be taken with an error of o(∆2).
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Behaviour in the near-horizon region

Thanks to the ballistic orbits (3.1.12) one can describe the motion of the particle all the
way down to the BH horizon. This will be reached in a �nite proper time τ but in an
in�nite observer time t. This means that if we plot the observer's time t(r) as in (3.1.44),
the BH horizon represents a vertical asymptote for this time, as one can see in Fig. 3.8.

2 3 4 5 6

r

M

1900

1950

t HrL

M

Figure 3.8: Observer's time w.r.t. radial distance from horizon (δ = 0.001)

This behaviour must be reproduced by the code as well, but the machine can calculate
and distinguish small numbers only up to a certain �nite digit precision7. Past this
precision, any two very close positions corresponding to two di�erent times will be not
distinguished and will be asssigned the same time value. This implies that one can only
consider a �nite range of time values, despite t→ +∞ at the horizon, and that divisions
by zero might occur (such as for any Schwarzschild factor 1− 2M

r ).
In order to prevent these undesirable e�ects a �nite limiting time -called tcritic

in the code- has been de�ned, after which instead of relying on the derived expression
(3.1.44) for t(r), we switch to a linear relation, such as t(r∗) = αr∗ + β with α and β to
be determined. This is justi�ed by the following argument.

Regge-Wheeler equations (3.1.45) are solved switching to tortoise coordinates, and a
numerical routine is used to recover r-values from r∗-values when needed. When this
routine fails to distinguish di�erent r∗-values, there the corresponding t(r) is de�ned as
tcritic. Then, from the geodesic equations (3.1.5) and following relations one can write

(3.2.2)
dr∗

dt
= −A

√
e

R

l

ε

√
R

r
− 1

(
(e− 1)r +R

er

)
,

with A the amplitude, e the eccentricity, l the speci�c angular momentum, and ε the
speci�c energy. Close to the BH horizon means limr→2M

dr∗

dt . One just needs to be
careful in taking the right sign of cot(Aϕ2 ), because we are dealing with negative values
of ϕ only, for the infalling branch of the ballistic orbit (3.1.12). The result is that the
particle approaches the horizon at the velocity of light, thus it is a good approximation

7Using double precision numbers, only di�erences down to o(10−14) can be appreciated, any number

smaller than 1e10−14 is treated as zero.
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to consider dr∗

dt = −1 for very large negative values of r∗, i.e. close to the horizon, and
solving this equation leads to

(3.2.3) r∗ = −t+ constant,

whose integration constant can be adjusted directly on the last numerically evaluated
point using the usual routines and time relation (3.1.44).

If we now consider the r → 2M limit for other quantities, like the azimuthal angle ϕ
or radial distance r we see that

lim
r→2M

dr

dt
= lim
r→2M

dr∗

dt
·
(

1− 2M

r

)
= 0,

as it is expected, since the inverse derivative dt
dr blows up to in�nity, meaning that it takes

an in�nite observer's time to reach the horizon. Instead, if we look at the angle we get

lim
r→2M

dϕ

dr
=

3
√

3(δ − 1)2

(3δ − 4)M
√

2− 5δ + 3δ2
,

a �nite value depending on δ. This means that the minor body approaches the horizon at
a �nite non-trivial angle depending on the beginning distance parameter δ. Of course the
time variation of the azimuthal angle is null, because limr→2M

dϕ
dt = limr→2M

dϕ
dr ·

dr
dt = 0,

meaning that at the horizon every motion ends.
With this we know how µ approaches the horizon and we can use those limits directly.

The longer the total time of your observation of the waveform signal is, the bigger the
region of spacetime in the light-cone one needs to take into account in the calculation.
The relation (3.2.3) may help, but it is not enough. For this reason we develop the
approximate behaviour of all the interesting quantities for the near-horizon region.

Such a region can be de�ned again like the one where numerical routines for the change
of coordinates fail to distinguish di�erent points from the horizon. Then we move from
the tortoise coordinate de�nition r∗ = r + 2M log

(
r

2M − 1
)
and make an approximation

for an analytical inversion formula. This can be replaced everywhere it is needed and gives
approximate expressions for all the other functions in the near-horizon region. Eventually
one only needs to switch from the old analytic expressions to the approximate ones every
time it is required.

Thus, inverting the tortoise coordinate de�nition, one gets

e
r∗−r
2M =

(
r − 2M

2M

)
,

and in the near-horizon region, one can think of R = r− 2M as an in�nitesimal quantity.
Rephrasing everything in terms of R and then expanding around R = 0, that is r → 2M ,
we get

er
∗−R−2M =

(
R

2M

)2M

∼ er
∗−2M ⇒ R = 2M

(
e
r∗
2M−1

)
� 1,

and so, for instance, the Schwarzschild factor becomes

f(r) = 1− 2M

r
→ R

2M
= e

r∗
2M−1,
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which for very big and negative values of r∗ is a very tiny number, but big enough so that
its inverse does not blow up to in�nity and it can be handled more easily by the code,
avoiding the singularity. A complete list of the �near-horizon� expressions is provided in
the appendix, here there are some examples

Λ(r)→ λ+
3

2
, ϕ(r)→ −

2 arctan
√

3δ
4−6δ√

δ
2−2δ

−
6
√

3(δ − 1)(δ − 1)

(3δ − 4)
√

3δ − 2
e
r∗
2M−1,

V̄ lZM (r∗)→ l4 + 2l3 − l2 − 2l + 3

4M2(l2 + l + 1)
e
r∗
2M−1, V̄ lRW (r∗)→ l2 + l − 3

4M2
e
r∗
2M−1.

(3.2.4)

3.2.2 Regge-Wheeler waveforms for the ballistic orbit

After discussing the numerical procedure implemented to solve the RW/ZM-equations,
we present in this section the waveforms obtained in this way. The values for the Regge-
Wheeler modes ψlmRW/ZM have been collected at the observer's position in the equatorial
plane robs = 500M , su�ciently far from the binary coalescence, as previously argued.
The following waveforms represent the time evolution of the ψlmRW/ZM modes at this �xed
location.

To obtain a reliable wave signal for the infall on a ballistic orbit starting close to the
ISCO from a quasi-periodic orbit, we consider a Schwarzschild spacetime in which the
inspiral of the test mass has produced a continuous set of outgoing gravitational waves.
Realistic initial conditions for the angular modes ψlmRW/ZM are created by letting the test
mass µ run on the ISCO for a su�ciently long period that any initial transient waves
have passed the point where the observer is located and the wave forms are measured.

Next we set the compact mass on a nearby ballistic orbit, and compute the resulting
angular wave modes and metric perturbations. The instantaneous shift in the orbit, even
if small, also produces a transient signal (see for instance Fig. 3.7 where the transition
from ISCO to ballistic orbit is evident). However, for small e the ballistic orbit has
an almost-periodic initial stage during which it runs close to the ISCO for a long time.
During this time the original periodic signal is recovered to a very good approximation. In
fact, initial transients are common in standard numerical techniques, arising for example
from the well-known Gibbs phenomenon [122, 123]. We have checked that changing the
initial conditions in various ways, though a�ecting the transient and the initial signal,
does not change the almost-periodic signal during the initial stage of the ballistic orbit
(see previous section), nor the development of the signal afterwards. Thus it is con�rmed
that, as in other numerical works [22, 124], spurious transients appear only in the initial
phase of the signal8 and are followed by numerically stable physical wave forms.

The next �gures Fig. 3.9 and Fig. 3.10 show the results for the most relevant RW-
and ZM-modes, as calculated for a system with mass ratio ν = µ/M = 10−7 on a ballistic
orbit with e = 1.5 × 103, as observed from the equatorial plane. For convenience of
representation the amplitudes have been rescaled by the inverse of the mass ratio 1/ν.

8In previous papers, such as [122, 22], to quote some of them, these initial transients have been named

�junk radiation�, for they do not represent any physical signal, but just an inevitable numerical feature.
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Figure 3.9: Top row: Real parts (red) of the amplitudes ψllZM for l = 2, 3, 4, magni�ed by 1/ν.

Second row: Imaginary parts (green) of the same amplitudes.

600 800 1000 1200 1400 1600

-0.10

-0.05

0.00

0.05

0.10

t

2 M

R
e@

Ψ
H2

,1
L

R
W

D�Ν

600 800 1000 1200 1400 1600

-1.0

-0.5

0.0

0.5

1.0

t

2 M

R
e@

Ψ
H3

,1
L

Z
M

D�Ν

0 500 1000 1500 2000

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

t

2 M

R
e@

Ψ
I3

,2
M

R
W

D�Ν

600 800 1000 1200 1400 1600

-0.15

-0.10

-0.05

0.00

0.05

0.10

t

2 M

Im
@Ψ

H2
,1

L
R

W
D�Ν

600 800 1000 1200 1400 1600

-0.4

-0.2

0.0

0.2

0.4

t

2 M

Im
@Ψ

H3
,1

L
Z

M
D�Ν

0 500 1000 1500 2000

-0.03

-0.02

-0.01

0.00

0.01

0.02

t

2 M

Im
@Ψ

I3
,2

M
R

W
D�Ν

Figure 3.10: Top row: Real parts of the amplitudes ψ21
RW /ν, ψ

31
ZM/ν, and ψ

32
RW /ν. Second row:

Imaginary parts of the amplitudes ψ21
RW /ν, ψ

31
ZM/ν, and ψ

32
RW /ν.

Both the real and imaginary parts are shown, from the time after the spurious transient
signals have disappeared. The mode with m = l = 2 dominates all others; the modes with
m = l ≥ 3 are subdominant, representing the most important corrections. The modes
with m < l have negligible amplitudes, even for l = 2.

As one can see from the plots of the waveforms, the Regge-Wheeler function ψlmRW/ZM
has the same behaviour, independently of the particular mode: a quasi-periodic shape,
corresponding to the quasi-circular branch of the ballistic orbit (3.1.12), followed by a
chirp emission, with relatively steep increase of amplitude, especially in the non-dominant
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Figure 3.11: Real parts of the m = 0 modes, ψ20
RW /ν, ψ

30
ZM/ν, and ψ

40
ZM/ν.

modes, in the last part, corresponding to the more radial part of the orbit. When the
particle reaches the near-horizon region, another shift to the near-horizon orbital functions
(3.2.4) in the code causes another Gibbs-like jump in the amplitude, (not shown in the
previous plots for practical reasons). After this, the signal basically dies out.

The ψlmRW/ZM waveforms mirror the properties of the spherical harmonics, in fact the
imaginary parts of the m = 0 modes are identically null, and there are symmetries among
the real and imaginary parts of the l,m-modes, namely

Re(ψl,−m) = (−1)mRe(ψl,m)(3.2.5)

Im(ψl,−m) = (−1)m+1Im(ψl,m).

The veri�cation of these properties provide as a consistency check for the solution of
the Regge-Wheeler equation (3.1.45) using the LP algorithm.

3.2.3 Physical GW waveforms, energy and angular momentum

loss rates

Inserting the results for the ψlmRW/ZM into the expression (2.2.40) for the GW amplitude
produces the waveforms shown in the �gures Fig. 3.12, 3.13, as seen from two orthogonal
directions in the equatorial plane.

(3.2.6)

h+(r, t, θ, φ)−ih×(r, t, θ, φ) =
1

r

∑
l,m

(
ψlmZM (r∗obs, t)− 2i

∫ t

−∞
ψlmRW (r∗obs, t

′)dt′
)
−2Y

lm(θ, φ),

Together with the relations for the gravitational waves in the TT-gauge (3.2.6), the
Regge-Wheeler functions contain information about the energy and angular momentum
loss rates, namely (2.2.45):
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dE

dt
=

1

64π

∑
l,m

(l + 2)!

(l − 2)!

(
|ψ̇lmZM (r, t)|2 + 4|ψlmRW (r, t)|2

)
,

dL

dt
= 2<

 i

128π

∑
l,m

m
(l + 2)!

(l − 2)!

(
ψ̇lmZM (r, t)ψ∗lmZM (r, t) + 4ψ∗lmRW (r, t)

∫ t

−∞
ψ∗lmRW (r, t′)dt′

) .

(3.2.7)

In order to calculate these quantities, we have used the data sets plotted in Fig.
3.9 and Fig. 3.10 and streamed them to another short C++ code, taking advantage of
the symmetries (3.2.5) among the di�erent modes. This code basically implements the
previous relations (3.2.6),(3.2.7). The results of this calculation are shown in the following
�gures.
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Figure 3.12: h+(π
2
, ϕ = 0), h×(π

2
, ϕ = 0) polarizations of gravitational waves radiated by a

system with mass ratio ν = 10−7 on a ballistic orbit for e = 0.0015.
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Figure 3.13: h+(π
2
, ϕ = π/2), h×(π

2
, ϕ = π/2) polarizations of gravitational waves radiated by

a system with mass ratio ν = 10−7 on a ballistic orbit for e = 0.0015.

The GW polarizations h+, h× depend upon the angle of observation ϕ; changing it
from 0 to π varies the phase of the wave, but the amplitudes stays the same. This
re�ects the spherical symmetry of the binary system as described by Schwarzschild metric.
Notice that most of the contributions, to both the h+, h× polarizations and the power
and angular momentum rate, come from the dominant (2, 2)-mode whose amplitude's
contribution overcomes that of the other modes.
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Figure 3.14: Angular momentum loss (left) and energy loss (right) on a ballistic orbit
with e = 0.0015.

The �gures Figs. 3.12, 3.13 con�rm that the compact mass µ keeps orbiting for about
20 revolutions quite close to the ISCO, in a quasi-circular motion (see �gure Fig. 3.5).
However, once it reaches a radial distance r ' 4.4M the �nal stage of direct plunge
towards the black hole sets in, during which the radial velocity becomes comparable to
the transverse velocity. The signal then increases in amplitude quite fast, until it crosses
the light ring at r = 3M . After that the gravitational waves red shift and quickly fade.
This behaviour was already envisaged in the Regge-Wheeler waveforms, but is even more
clear here, looking at the physical gravitational signal.

The change in the GW signal of the ballistic orbit from almost periodic to direct
plunge can be identi�ed more easily in the emitted energy and angular momentum, as is
clear from Fig. 3.14. The power peaks at time t = 1536.5M , shortly before the compact
mass crosses the light ring (r = 3M). The total energy emitted during the infall on a
ballistic orbit is a fraction 0.33 × 10−4 of the original energy of motion of the infalling
mass, and most of it is emitted in the last burst before the particle crosses the horizon,
at the beginning of the merger phase.

3.3 The connection between ballistic orbits and BH bi-

nary coalescences

Once that the gravitational waveforms emitted by a binary system with a central Black
HoleM and a smaller companion µmoving on a ballistic orbit (3.1.12) have been presented
(see �gures Figs. 3.9, 3.10, 3.12 and following), we would like to make a connection between
the properties of these waves, from the ballistic orbits, and from other coalescences known
in the literature.

3.3.1 Orbital dependence of the emitted gravitational radiation

As it has already been pointed out several times in the previous sections, the Regge-
Wheeler function ψlmRW/ZM undergoes sudden jumps everytime the source terms (3.1.46)
change shape and there is a transition from one orbit to another. This happens when
passing from data driven only by the initial conditions to source terms containing orbital
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terms depending on the ISCO (r = 6M , ϕ̇ constant. . .), or on the ballistic orbit (3.1.12),
or on the ballistic orbit in the near-horizon region (3.2.4). These chirps in the signal
are due to the way the algorithm is conceived and do not have a physical meaning of
their own, rather they have to be cut out in order to get the correct contributions to
the gravitational radiation, but they do have an utility of their own. They are strongly
dependent on user-de�ned parameters such as the grid step ∆, or the deviation from the
ISCO δ, and in this sense they help in de�ning the part of the signal which is stable.

Following the analysis of this part we have already remarked how the produced gra-
vitational waves can be split into two phases. The �rst phase is characterized by almost-
periodic gravitational radiation, very similar to the waves emitted by a compact mass in
orbit on the ISCO. The second phase instead is much shorter and characterized by a burst
of gravitational radiation in which the amplitude increases by a factor of two before the
mass disappears e�ectively behind the light ring. The amplitude increases only slightly
before this burst of radiation.

These two phases can be immediately accounted for by looking at the properties of the
ballistic orbits. First the point mass µ follows an almost-circular orbit, for which ṙ � rϕ̇;
around r ' 4.4M the radial and circular velocities become comparable, after which the
radial motion dominates. This is clear looking at the plots of the two velocities, Fig. 3.15.

2 3 4 5 6
0.00

0.02

0.04

0.06

0.08

0.10

0.12

r

M

r
 

rΦ

 

Figure 3.15: Evolution of circular and radial velocities as a function of r for the orbit with

δ = 0.001.

This subdivision in the orbit was already recognized in [21], when studying more
general cases of black-hole coalescences. Similar studies in the small-mass-ratio limit of
the transition from inspiral to plunge can be found in [125, 126, 127]. The similarity of
the �rst phase with the radiation emitted by a body orbiting on the ISCO is justi�ed by
the fact that the ballistic orbit starts very close to it. As we have mentioned before, the
apastron of such orbits is R = 6M(1− δ), with δ a small perturbative parameter (3.1.36).
This shows that one can tune δ to obtain di�erent ballistic orbits, starting at di�erent
distant positions from the ISCO.
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It has been shown [21, 128] that the number of revolutions during plunge from the
ISCO for coalescences is roughly (4ν)−1/5, where ν = µ

M is the mass ratio. The mecha-
nism behind this dependence is the fractional loss of energy by emission of gravitational
radiation. As the ballistic orbits are exact geodesics, they do not account for such energy
loss, but we can tune δ to make up for this and obtain a realistic approximation. For
example, ν = 10−7 corresponds to 19 revolutions and δ = 0.0013. In Fig. 3.16 the mode
amplitude for l = m = 2 is shown for values of δ matching with ν = (10−7, 10−5, 10−3),
respectively. One can see directly that the smaller δ is, the longer the quasi-circular phase
is.
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Figure 3.16: ψ(2,2)
ZM /ν amplitudes for δ = (0.0013, 0.0078, 0.0412), only real parts shown. The

values of δ are chosen to match mass ratios ν = (10−7, 10−5, 10−3). The smaller (ν, δ), the longer

the near-circular

phase after t
2M

= 550.

For ballistic orbits in EMR binaries � similar to what is believed to happen for more
general cases � the total energy emitted during infall is only a tiny fraction of the initial
energy. Therefore in practice we expect the deviation from geodesic motion to be small.
Indeed, it has been argued in the literature before [21] that in the particle limit ν → 0

the motion is driven mainly by the central black hole, leading to quasi-geodesic motion.
Moreover, the energy emission is far too weak to exceed the potential barrier created by
the Zerilli potential (2.2.21), which shows a maximum in the region close to the light-ring
r ' 3M . Thus the �nal burst of gravitational waves reaching a distant observer occurs
before the compact mass crosses this barrier. No substantial amount of radiation coming
from the inner region r < 3M can be transmitted to the outer region [129, 130, 131, 124].
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There is clear evidence, also from the plots, that most of the emitted energy (∼ 98%) is
in the dominant (2, 2)-mode.

3.3.2 The universal phase of ballistic EMR

The analysis shows that the ballistic orbit, and therefore the gravitational signal emitted
along it, depends strongly on its apastron, the point of closest approach to the ISCO. The
number of almost circular revolutions is practically decided by the deviation parameter
δ.

Despite this dependence, it is possible to detect a universal behaviour, independent of
δ or even the mass ratio ν, for any such ballistic EMR binary. In fact the radial distance
r∗/M where the cross-over occurs, and the number of turns during the second phase
of radially dominated motion (the change in orbital phase in units of 2π) are virtually
independent of δ. These conclusions are illustrated by the numbers in Table 3.1, calculated
from our analytic formulae.

δ × 103 r∗/M n1 n2

1.3 4.328 18.71 0.49
3.2 4.328 11.59 0.50
7.8 4.328 7.09 0.50
18.3 4.327 4.29 0.50
41.2 4.323 2.53 0.50

Table 3.1: Circular vs. radial phase on ballistic orbits; r∗ is the radial co-ordinate at which the

cross-over occurs; n1 is the number of turns in the orbit before reaching the cross-over; n2 is the

number of turns between cross-over and horizon.

One can calculate from expressions like (3.1.35) the time elapsed during plunge, from
the apastron to the horizon r = 2M , and this time can vary in a range of values such as
t

2M ∈ [60, 1000] for δ ∈ [10−3, 10−1]. Obviously this range of values is determined largely
by the duration of the nearly-circular phase of the orbit. But already from a comparison
of the dominant component of the Regge-Wheeler modes for various values of δ as in
Fig. 3.16 shows quite similar �nal bursts of radiation, whilst the duration of the almost-
periodic part of the signal varies considerably [128, 132, 22]. This suggests the idea of a
universal phase and behaviour of the binary coalescence, independently of the mass ratio.
In fact the deviation from the ISCO δ changes the duration of the quasi-circular part,
but not the direct plunge, as the number of revolutions after the transition to this regime
(fourth column in table 3.1) is virtually the same.

The analogy does not stop at the number of turns in this spiralling motion, but it
extends also forward to the mass ratio. As we mentioned in the previous section, in
[21, 128] the number of revolutions during plunge was already related to the mass ratio.
The idea behind this is that the smaller the companion body is, the less the motion will
deviate from a geodesic path and therefore the quasi-circular phase will be prolonged.
As a check on this, one can compare with another result of [21], elaborated in [22] and
following papers, stating that the onset of universal behaviour starts inside the ISCO at
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co-ordinate distance

(3.3.1)
r

M
= 6− αν2/5,

where α is a constant from 2.5PN calculations (see [21]). As the ballistic orbits are geodesic
and universal, one should expect the values of δ to scale in the same way: δ = γν2/5.
We �nd that this relation holds reasonably well with γ = 0.8 for small values ν ≤ 10−5,
beyond which deviations arise of the order of 10% or more. Table 3.2 summarizes the
numerical results for this comparison.

δ × 103 ν γ = ν−2/5δ

1.3 10−7 0.82
3.2 10−6 0.80
7.8 10−5 0.78
18.3 10−4 0.73
41.2 10−3 0.67

Table 3.2: Test of the universality of the dependence of δ on the mass ratio ν.

As one can see from the table, deviations appear for larger mass ratios. There are at
least two reasons: the center-of-mass motion and back reaction of the compact object on
the Schwarzschild background geometry have been so far neglected, and the kinetic energy
of the compact object is overestimated according to Eq. (3.1.28) by a factor ∆ε/ε = 3δ/8.
These e�ects both increase when the smaller companion µ gains relevance.

3.4 Final remarks

The ballistic orbits (3.1.12) are exact solutions of the geodesic equation for Schwarzschild
spacetime. They describe the motion of a test mass rising up from the horizon to a
maximum radial distance R < 6M , before returning to the horizon; for R close to 6M this
includes a large number of turns around the black hole. As they can come arbitrarily close
to the ISCO and are degenerate in energy and angular momentum with stable circular
orbits, in the limit of small e they can be used to describe test masses in�nitesimally
boosted from the ISCO to the infalling part of a ballistic orbit (3.1.28).

For such infalling test masses we have computed the gravitational waves emitted during
the infall, using these orbits as basis for the source terms (3.1.46) in the Regge-Wheeler
equations (3.1.45) which describe spacetime perturbations of a Schwarzschild background.
The equations have been solved numerically through the Lousto-Price algorithm and from
its results gravitational radiation has been calculated.

In speci�c parameter ranges the ballistic orbits can be used as a �rst approximation
to the infall phase of an EMR binary. Comparing the waveforms for ballistic orbits
with those computed for direct infall from the ISCO9, based on Post-Newtonian and

9The ISCO is commonly regarded to be the region where the transition from adiabatic inspiral and

plunge takes place [21, 128, 124].
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E�ective One-Body approximations [128, 132, 22, 124], it is easy to see that they share
the same qualitative behaviour. The ballistic orbits de�ne also a universal behaviour
in the last stages of the plunge, which is independent of the mass ratio and con�rms
previous expectations from binary coalescences [21, 128]. Finally, we have con�rmed
earlier calculations showing that the total amount of energy converted into gravitational
waves during the plunge phase is small, and that a quasi-geodetic description of this
process for EMR binaries seems adequate.

Since the entire treatment is dynamically conservative, and pure geodesic motion does
not allow for energy losses through gravitational waves, the results reported here can
be improved further. One way is computing perturbative corrections to the orbits by
the method of geodesic deviations, as was done for the quasi-periodic motion during the
inspiral phase in [17, 18]. This method and its application to the ballistic orbit are the
object of the next chapter.
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4 Beyond ballistic orbits

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

In this chapter we generalise the ballistic orbits described and studied in the previous
chapter in order to get a more realistic model for the plunge phase of EMR binaries. As
we mentioned before, the ballistic orbits (3.1.12) are already a good model for the last
stages of a EMR coalescence, but they still have two limitations. Firstly their energy
is always bigger than the ISCO energy -the limit orbit between the di�erent regimes
of inspiral and plunge- contradicting the general model where the energy of the binary
decreases gradually because of gravitational radiation1. Secondly, there is no way to
include at this stage any backreaction or dissipative e�ects, as the ballistic orbits are
solutions of the geodesic equations in Schwarzschild background.

The idea presented in this chapter is to overcome these two �aws by using geodesic
deviation from the ballistic orbits, as we described at the end of chapter 2. New orbits can
be built, starting from a general ballistic orbit, that have the correct energy. Moreover
we will show that the energy and angular momentum of these new orbits can be adjusted
in a continuous fashion in order to ful�ll any additional requirement, be it the decrease of
energy due to GWs, or other dissipative e�ects not included in the usual BH perturbation
theory.

The outline of the chapter is as follows: in the �rst section the ballistic orbits are
displayed again in the more general context of bound orbits in Schwarzschild spacetime,
showing the aforementioned limitations, in the second section the geodesic deviation of
these orbits is presented. A non-trivial discussion about consistent initial conditions
follows next, and in section 4 the symmetries and properties of the newly found solutions
are established, before the concluding remarks are given.

4.1 Associated orbits in Schwarzschild spacetime

Orbits in Schwarzschild spacetime are solutions of the geodesic equations (1.1.3) and can
be derived as we did in the previous chapter (3.1.5), but a more convenient way is writing
down the Lagrangian for a particle of mass m

(4.1.1) L =
m

2

[(
1− 2M

r

)(
dt

dτ

)2

−
(
dr
dτ

)2(
1− 2M

r

) − r2

(
dθ

dτ

)2

− r2 sin2 θ

(
dϕ

dτ

)2
]
,

1Except from particular situations, for instance when a third body is involved giving a push towards

the inner region of the ISCO, see [19].
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with the usual conserved quantities, energy and angular momentum

(4.1.2) E = m

(
1− 2M

r

)
dt

dτ
L = mr2 sin2 θ

dϕ

dτ
.

The Lagrangian (4.1.1) quadratic in the velocities coincides with the proper time hamilto-
nian and it is a conserved quantity itself. A compact object orbiting a Black Hole follows
a timelike geodesic. Therefore we can rescale the proper time such that 2L = m, and
rewrite (4.1.1) in terms of the conserved quantities (4.1.2), obtaining

(4.1.3)

(
dr

dτ

)2

+

(
1− 2M

r

)(
1 +

L2

r2

)
= E2.

This is equivalent to the normalisation condition of the 4-velocity uµuµ = −1 in Schwarz-
schild spacetime. Now, the most natural parametrization for the radial distance is in
terms of the azimuthal angle r = r(ϕ). With this and de�ning u = 1

r(ϕ) , Eq. (4.1.3) can
be rewritten as

(4.1.4)

(
du

dϕ

)2

= 2Mu3 − u2 +
2M

L2
u− 1− E2

L2
= f(u),

together with

(4.1.5)
dτ

dϕ
=

1

Lu2

dt

dϕ
=

E

Lu2(1− 2Mu)
.

The condition to impose in order to have bound motion is E2 < 1, then, depending on the
roots of the equation f(u) = 0, one can distinguish di�erent classes of orbits, following
the analysis �rst developed by Darwin [133, 47].

Here we will focus only on the case where f(u) = 0 has three real roots, which can be
written as

(4.1.6) u1 =
1− η
p

, u2 =
1 + η

p
, u3 =

1

2M
− 2

p
,

such that p is the so-called semi-latus rectum and 0 ≤ η ≤ 1 is the eccentricity of the
orbits. These names refer to the meaning of these parameters in the most common kind
of orbits falling in this category, i.e. elliptic orbits, generally parametrized as

(4.1.7)
1

r
= u =

1 + η cosχ

p
,

with χ the �relativistic anomaly�, a dimensionless parameter describing the motion, not
to be confused with the azimuthal angle, given in this case by ϕ(χ). Elliptic orbits such
as (4.1.7) are limited by the mentioned roots (4.1.6), namely u1 ≤ u ≤ u2. Simplifying
the condition u1 ≤ u2 ≤ u3 leads to the inequality

(4.1.8) p ≥ 2M(3 + η),

which de�nes the �separatrix� in Schwarzschild spacetime for stable orbits (for η = 0, one
obtains the usual ISCO limit). These stable elliptic solutions of the equation (4.1.4) are
called [47] orbits of the ��rst kind�.
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One can also look for solutions of the �second kind�, namely those such that u ≥ u3.
These orbits di�er from those of the �rst kind in their shape, although still being closed
and bound. They do not oscillate between two �xed values, rather they can reach the
central singularity in the Schwarzschild Black Hole. In fact a common parametrization
for these orbits is

(4.1.9) u =

(
1

2M
− 2

p

)
+

(
1

2M
− 3 + η

p

)
tan2 ξ

2
,

with the master equation of motion now being the following

(4.1.10)

(
dξ

dϕ

)2

=

(
1− 6p

M
+

2pη

M

)(
1− 4pη

M − 6p+ 2pη
sin2 ξ

2

)
.

Here parameter ξ plays the same role as χ in (4.1.7). These orbits have been called
associated orbits �rst [133], because they are in 1-1 correspondence with the orbits of
the �rst kind. The ballistic orbits belong to this group of orbits as well, as we will
shortly show, and it is possible to cast them in the form (4.1.9) by a suitable parameter
transformation.

More precisely, it is easy to show that for the special case η = 0 in (4.1.9) the solution
to (4.1.10) can be written as

(4.1.11) ξ =

√
1− 6p

M
(ϕ− ϕ0), with u =

1

r
=

1

p
+

(
1

2M
− 3

p

)
1

cos2 ξ
.

This orbit (4.1.11) begins for ϕ = ϕ0 at a limited radius r = 1
u3

such that 3M ≤ 1
u3
≤ 6M ,

revolving around the black hole several times and then ending in the central singularity.
However from the equations of motion written in terms of the parameter ξ,

(4.1.12)
dτ

dξ
=

1

Lu2

dϕ

dξ
,

dt

dξ
=

E

Lu2(1− 2Mu)

dϕ

dξ
,

one notices that the factor 1−2Mu = 1− 2M
r prevents someone outside the BH horizon to

observe the singularity anyway. The ISCO itself r = 6M is a degenerate solution whereby
the orbit turns out to be stable and circular, thus it represents the envelope orbit of all
such solutions (4.1.11). If one calculates the energy and angular momentum per unit mass
for such orbits, one obtains the same value of stable circular orbits of the �rst kind, with
radius equal to the semi-latus rectum parameter p, in this case,

(4.1.13) ε2 =
(p− 2M)2

p(p− 3M)
`2 =

Mp2

p− 3M
.

This proves that the associated orbits with η = 0, are in 1-1 correspondence with circular
orbits in the outer region r ≥ 6M , for the semi-latus rectum p has to obey (4.1.8) anyway.
The same energy and angular momentum (4.1.13) have been calculated for the ballistic
orbits, in that case2

(4.1.14) p = 6M(1− δ) = (6− 4e) and ε2
ballistic =

2(2− e)2

9− 9e+ 2e2
=

2(2− 3δ)2

9(1− δ)(1− 2δ)
.

2Be careful not to mistake the eccentricity parameter appearing in the ballistic orbits with the general

eccentricity appearing in (4.1.9); for the ballistic orbits e = 3
2
δ indicates the initial distance from the

ISCO, while for the general associated orbit η is the eccentricity. Ballistic orbits have η = 0 in the general

representation (4.1.9).
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Therefore ballistic orbits are associated to outer circular orbits.
Eventually, the energy per unit mass for a generic associated orbit, with η 6= 0 is the

same as for orbits of the �rst kind,

(4.1.15) ε2 =
p2 − 4Mp+ 4M2(1− η2)

p(p− (3 + η2)M)
>

8

9
= ε2

ISCO,

which is always bigger than the corresponding energy for an associated orbit with η = 0,
with energy (4.1.13). This demonstrates that among all the orbits of the second kind,
the ones in correspondence with circular orbits -the ballistic orbits- minimize the energy,
just like circular orbits do for elliptic orbits. However the energy of any associated orbit
is always bigger than that of the ISCO ε2 = 8

9 . In other words,

(4.1.16) ∀η : 0 ≤ η < 1 ⇒ εassociated ≥ εballistic > εISCO.

The interest in associated orbits, and speci�cally in the ballistic orbits, lies in that
they are geodesic solutions apt to describe the last stages of a BH binary, i.e. the quasi-
circular transition from the inspiral to plunge and after the plunge itself. They also
raise the problem of their energy, being in 1-1 correspondence with outer circular orbits.
εballistic is bigger than the εISCO, a case which is not realistic as a model for a binary
coalescence, unless a third body intervenes while crossing the ISCO or an extra push is
given to the infalling body towards the black hole. One way to solve this problem is to
generate an orbit which is a geodesic deviation from an original ballistic orbit. This will
be addressed in the next sections.

4.2 Ballistic geodesic deviations

Previously the ballistic orbits have been introduced and studied, de�ned by

(4.2.1) r =
R

1 + e cot2
(
Aϕ
2

) ,
with the following relations among the parameters characterizing the orbits,

(4.2.2) A2 =
1

2

(
6M

R
− 1

)
= ξ =

e

3− 2e
, e =

3

2

(
1− R

6M

)
.

The eccentricity e appearing here is not the same eccentricity η de�ning a general asso-
ciated orbit (4.1.9); ballistic orbits are in correspondence with outer circular orbits, i.e.
they have null eccentricity in (4.1.9). The relation (4.2.1) can be inverted to give

(4.2.3) ϕ(r) = −
2 arctan

√
er

(6−4e)M−r√
e

3−2e

,

in order to have the correct branch of the orbit, with the following limits on the azimuthal
angle

(4.2.4) − π√
e

3−2e

≤ ϕ ≤ −2
arctan

√
e

2−2e√
e

3−2e

.
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We have derived the complete solution for ballistic orbits in Schwarzschild spacetime
using the radial distance r as independent variable, and the calculation of gravitational
waves has been developed accordingly. Now, in order to write the geodesic deviation
equations one usually requires the proper time τ to be the independent variable and
writes

(4.2.5)
d2nµ

dτ2
+ 2Γµνλ

dxν

dτ

dnλ

dτ
+ ∂νΓµλκ

dxλ

dτ

dxκ

dτ
nν = 0.

As we explained in chapter 1, solving Eq. (4.2.5) for the deviation vector nµ will let us
build a new orbit of the form

(4.2.6) xµ = xµballistic + σnµ + o(σ2),

with σ the geodesic distance. Developing orbits to the �rst order in σ is good enough for
our purposes of improving the ballistic orbits, as we will show shortly.

The geodesic deviation equation (4.2.5) for the θ-component decouples from the rest,
as it is expected in Schwarzschild spacetime, because we keep the spherical symmetry.
The simplest way to show this is to introduce a new parametrization for the angle ϕ, such
that

(4.2.7) λ = − cot
Aϕ

2
, 0 ≤ λ ≤

√
2− 2e

e
,

With the parametrization (4.2.7), the equation for nθ reads

(4.2.8)
d2nθ

dλ2
+

2λ

1 + λ2

dnθ

dλ
= 0,

completely decoupled from the other equations and leading to a simple solution

(4.2.9) nθ = C1 arctan(λ) + C2,

depending on two integration constants. This eliminates nθ among the unknowns. How-
ever, we can ask for the motion to stay planar, or that the deviated orbit starts with the
same conditions of the ballistic orbits, i.e. θ = π

2 and θ̇ = 0, which results in C1 = C2 = 0

and null θ-deviation nθ = 0. This can always be asked, for the Schwarzschild metric is
spherically symmetric and one can shift coordinates accordingly.

The remaining equations can be cast in a matrix form, renaming the coe�cients after
functions ai, bi, ci with i = 1 . . . 4 at most, which depend on the a�ne parameter λ and
e,M . The Ordinary Di�erential Equation (ODE) system given by (4.2.5) would read
then:

(4.2.10) − d2

dλ2

ntnr
nϕ

 =

a1
d
dλ a2

d
dλ ,+a3 0

b1
d
dλ b2

d
dλ + b4 b3

d
dλ

0 c1
d
dλ + c3 c2

d
dλ

ntnr
nϕ

 .

This ODE system (4.2.10) is linear but has non-constant coe�cients, and so there is
no trivial way to solve it in closed form. However, one can try di�erent strategies. In
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Schwarzschild spacetime energy ε and angular momentum l per unit mass are conserved
quantities. Moving from the energy balance Eq. (4.1.3), if now we perform geodesic
deviations on a given orbit, shifting from the orbit xµ to the orbit xµ′ = xµ+σnµ+o(σ2),
to �rst order in the geodesic parameter σ, the previous constants are still conserved,
namely

(4.2.11) εf = ε0 + σε1 + o(σ2), `f = `0 + σ`1 + o(σ2),

where ε0 is the speci�c energy of the background orbit, εf the energy of the �nal orbit
obtained with geodesic deviations, and ε1 is the correction to �rst order in σ to the
starting energy. The same applies to the angular momentum. Starting from a geodesic
orbit, (ε0, `0) are natural conserved quantities. In this case they are the energy and
angular momentum per unit mass of the ballistic orbit (4.2.1).

If we now perform the expansion in the usual relation for the energy in Schwarzschild
metric (2.1.9),

ε =

(
1− 2M

r

)
dt

dτ
⇒ ε =

(
1− 2M

r + σnr

)(
dt

dτ
+ σ

dnt

dτ

)
+ o(σ2)

=

(
1− 2M

r

)
dt

dτ
+ σ

(
dnt

dτ
+

2M

r

(
nr

r
− dnt

dτ

))
+ o(σ2)

= ε0 + σε1 + o(σ2).

(4.2.12)

The same can be done for the angular momentum and for the condition of the normali-
sation of uµ, i.e.

ε2 =

(
dr

dτ

)2

+

(
1− 2M

r

)(
1 +

`2

r2

)
⇒(4.2.13)

(ε0 + σε1)2 =

(
d

dτ
(r + σnr)

)2

+

(
1− 2M

r + σnr

)(
1 +

(`0 + σ`1)2

(r + σnr)2

)
+ o(σ2)⇒

⇒ ε0ε1 =
dr

dτ

dnr

dτ
− nr

r2

(
`20
r

(
1− 3M

r

)
−M

)
+
`0`1
r2

(
1− 2M

r

)
;

leading to the following three expressions,

ε1 =

(
1− 2M

r

)
dnt

dτ
+

2M

r2

dt

dτ
nr,

`1 = r2 dn
ϕ

dτ
+ 2r

dϕ

dτ
nr,(

1− 2M

r

)(
dt

dτ
ε1 −

dϕ

dτ
`1

)
=
dr

dτ

dnr

dτ
− nr

(
r

(
dϕ

dτ

)2(
1− 3M

r

)
− M

r2

)
.

(4.2.14)

After some straightforward algebra one can prove that ε1 and `1 are conserved quan-
tities, because from (4.2.14)

dε1

dτ
=

(
1− 2M

r

)(
D2nt

Dτ2
−Rtνλκuνnλuκ

)
= 0,

d`1
dτ

= r2

(
D2nϕ

Dτ2
−Rϕνλκuνnλuκ

)
= 0,

(4.2.15)
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which are the geodesic deviation equations for nt, nϕ in covariant form (2.4.1). This result
holds for any geodesic deviation in Schwarzschild spacetime, not just the ones based on
ballistic orbits, and proves that, to �rst order in the parameter σ, the energy and the
angular momentum are conserved.

Now the crucial point is that one can treat ε1 and `1 as constants of motion to be
tuned matching the resulting values εf = ε0 + σε1 and `f = `0 + σ`1 with those of a
chosen orbit. In this way (ε1, `1) are not constants of motion to be found, rather they
become necessary to solve the geodesic deviation equations. The system of �rst integrals
(4.2.14) is a simpler ODE, because it is of �rst order and the third equation shows that
nr is decoupled from the other equations. So, in principle one can solve for nr from the
third equation, and then use this solution in the other two equations and �nd the missing
components with a single quadrature.

The constants ε1 and `1 are to be chosen such as to tune the �nal energy and angular
momentum (εf , `f ) to the desired values. This means that for every couple of values
(ε1, `1) one can solve for a di�erent deviation and obtain a di�erent orbit, satisfying
the desired requirements. The major problem we are trying to address with ballistic
deviations is that the energy (and angular momentum) of the simple ballistic orbit are
too big to account for a generic binary coalescence. They refer to special cases, as we have
already discussed in the �rst section. We refer to the next sections for a more detailed
discussion about this; for the time being, just consider (ε1, `1) constant values such that
(εf = εballistic + σε1, `f = `ballistic + σ`1) are known.

The next most convenient step is to rewrite the �rst integrals (4.2.14) in terms of the
radial variable, obtaining

ε1 =

(
1− 2M

r

)(
dnt

dr

dr

dτ
+

2Mε0

r2
nr
)
,

`1 = r2 dn
ϕ

dr

dr

dτ
+

2`0
r
nr,

ε0ε1 −
`0`1
r2

(
1− 2M

r

)
=

(
dr

dτ

)2
dnr

dτ
+

(
M

r2
− `20
r3

(
1− 3M

r

))
nr.

(4.2.16)

Renaming the apastron of a ballistic orbit R = (6 − 4e)M , the following limits can be
easily veri�ed

(4.2.17) lim
r→R

dr

dτ
= 0, lim

r→R

d2r

dτ2
=
`20Me2

R4
,

leading to the Taylor expansion in proper time of the radial distance for a ballistic orbit,

(4.2.18) r(τ) = R+
`20Me2

R4
τ2 + o(τ3).

Therefore the radial velocity term dr
dτ into the third �rst integral in (4.2.16) is null at

τ = 0. This entails that if we now take as initial condition on the deviation component
nr the fact that initially the deviated orbit coincides with the original ballistic orbit, so
nr(τ = 0) = 0, from the third of Eqs.(4.2.16), one gets

(4.2.19) ε0ε1 −
`0`1
R2

(
1− 2M

r

)
= 0 i.e. ε1 =

√
1− e

2(3− 2e)

`1
(2− e)(3− 2e)M

,
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requiring a constraint between the correction values (ε1, `1). From now on, we will solve
the �rst integrals (4.2.16) in all generality and then apply the relation between the energy
and angular momentum corrections as given in (4.2.19). Notice that both the energy
correction and the angular momentum correction share the same sign.

Solving for the radial component nr(r)

The third of the �rst integrals (4.2.16) can also be written as(
dr

dτ

)2

= ε0ε1 −
`0`1
r2

(
1− 2M

r

)
−
(
M

r2
− `20
r3

(
1− 3M

r

))
nr

=

[
ε2

0 −
(

1− 2M

r

)(
1 +

`20
r2

)]
dnr

dr
,

(4.2.20)

where in the second line the hamiltonian constraint (4.1.3) has been used. Now we can
de�ne an ad hoc function g(r) such that

(4.2.21)
dg(r)

dr
=

d

dr

[
ε2

0 −
(

1− 2M

r

)(
1 +

`20
r2

)]
= −2

(
M

r2
− `20
r3

(
1− 3M

r

))
,

therefore Eq. (4.2.20) becomes
(4.2.22)

h(r) = ε0ε1−
`0`1
r2

(
1− 2M

r

)
= g(r)

dnr

dr
−1

2

dg(r)

dr
nr → h(r)

g(r)
√
g(r)

=
d

dr

(
nr√
g(r)

)
.

The solution for the radial component nr(r) can be found via a simple quadrature, namely
(4.2.23)

nr =
√
g(r)

∫
h(r)

g(r)
√
g(r)

dr, with nr(R) = 0 (equivalent of nr(τ = 0) = 0 ).

For the sake of reporting a more detailed calculation, we present are the fundamental
steps leading to the solution nr(r),∫

h(r)

g(r)
√
g(r)

dr = (3− 4e+ e2)(3− 2e)3/2

∫ (
r

R− r

) 3
2 a0 + a1r

3 + a2r

(R− (1− e)r)3
dr,

with a0 = 4M2`1(3 − 2e), a1 = (2 − e)
√

2(1−e)
3−2e ε1, a2 = −2M`1(3 − 2e). Now, the key

transformation to do is s2 = r
R−r , which gives∫

h(r)

g(r)
√
g(r)

dr =
2

R2
(3− 4e+ e2)(3− 2e)3/2

∫
s4
(
a0 + b1s

2 + b2s
4 + b3s

6
)

(1 + s2)2(1 + es2)3
ds,

with b1 = 3a0 + Ra2, b2 = 3a0 + 2Ra2, and b3 = a0 + R3a1 + Ra2. The �nal result is
obtained solving this last integral in the dummy variable s and then replacing it with its
radial counterpart. Eventually the integral is multiplied by

√
g(r) and the resulting func-

tion gives the radial component of the deviation vector nr(r) up to an additive constant.
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The �nal result derived from (4.2.23), upon using the relation (4.2.19) for the energy
per unit mass ε1, is

nr(r) =−
(3− 2e)3/2

(
3− 4e+ e2

)
`1

(6− 4e)2(1− e)3

√
(R− r)

(9− 18e+ 11e2 − 2e3) r3
(R− (1− e)r)

·

(
4(1− e)
M
√

r
R−r

r −
(1− e)(3− 2e)

(
15− 44e+ 13e2

)
e2
√

r
R−r (R− (1− e)r)

r

− 24(3− e)(3− 2e) arctan

√
r

R− r
+

2(3− e)(1− e)2(3− 2e)

e2
(

r
(R−r

)3/2

(R− (1− e)r)2

r2

+
3(3− 2e)

(
3− 15e+ 37e2 − 9e3

)
e5/2

arctan

√
er

R− r

)
,

(4.2.24)

and it automatically satis�es the requirement nr(R) = 0, so there is no need to add an
integration constant. The only singular points in the solution (4.2.24) are for r = R

1−e > R

which is irrelevant because outside of the domain of the original ballistic orbit, and clearly
the origin of Schwarzschild coordinates r = 0, where nr(r) ∼ 1

r for r → 0. Therefore nr(r)
is well-de�ned and regular at all points 2M ≤ r ≤ R.

Solving for the temporal and azimuthal components nt(r), nϕ(r)

Once the solution for the radial component (4.2.24) is known, the other two �rst integrals
(4.2.16) give the remaining components by simple quadratures. In fact from the second
of (4.2.16) one reads, modulo an additive constant,

(4.2.25)
dnϕ

dr
=

(
`1
`0
− 2

nr(r)

r

)
dϕ

dr
→ nϕ(r) =

`1
`0
ϕ(r)− 2

∫
dϕ

dr

nr(r)

r
dr.

The integral to be performed is the following

∫
nr(r)

r

dϕ

dr
dr = c0

∫ c1r√R− r
r

+ c2

√
rR−rr

R− (1− e)r
+ c3

r2(R−rr )
3
2

(R− (1− e)r)2

 dr

r3

+ c0

∫ (
c4 arctan

√
r

R− r
+ c5 arctan

√
er

R− r

)
dr

r3
,

(4.2.26)

with

c0 =
(3− 2e)(3− e)M`1

2(1− e)2
√

9− 18e+ 11e2 − 2e3
, c1 =

4(1− e)
M

, c2 = − (1− e)(3− 2e)(15− 44e+ 13e2)

e2
,

c3 =
2(3− e)(1− e)2(3− 2e)

e2
, c4 = −24(3− e)(3− 2e), c5 =

3(3− 2e)(3− 15e+ 37e2 − 9e3)

e
5
2

.
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The �nal result of this integration, with the same techniques used in (4.2.23), contributes
to the azimuthal component of the deviation vector, nϕ(r), i.e.

nϕ(r) = −
√

(3− 2e) (3− 4e+ e2)`1

M(3− 2e)(1− e)2
√
e(9− 18e+ 11e2 − 2e3)R2

arctan

√
er

R− r

+
(3− 2e)(3− e)`1

2M(1− e)2
√

9− 18e+ 11e2 − 2e3R2

[
3
(
18− 105e+ 179e2 − 129e3 + 43e4 − 6e5

)
e2

√
R− r
r

+
3(1− e)

(
9− 42e+ 27e2 − 2e3

)
e2

(
R− r
r

) 3
2

− 4(3− e)(1− e)3(3− 2e)r

e(R− (1− e)r)

√
R− r
r

+ 14(3− e)(3− 2e) arctan

√
r

R− r
+ 72(3− e)(3− 2e)

R2 − r2

r2
arctan

√
r

R− r

+
18− 171e+ 97e2 − 3e3 + 21e4 − 10e5

e
3
2

arctan

√
er

R− r

+
3(3− 2e)

(
3− 15e+ 37e2 − 9e3

)
e

5
2

R2 − r2

r2
arctan

√
er

R− r

]
+ nϕc .

(4.2.27)

Likewise one can derive the solution for the temporal component nt(r). Again, from
the �rst equation in (4.2.16),

dnt

dr
=

(
r2(

1− 2M
r

) ε1

`0
− 2Mε0

`0
nr

)
dϕ

dr

→ nt(r) =

∫
r2(

1− 2M
r

) ε1

`0

dϕ

dr
(r)dr −

∫
2Mε0

`0
nr(r)

dϕ

dr
(r)dr,

(4.2.28)

together with an additive constant. These integrals can be performed in the same way
as the previous ones, the only di�erence being in the �rst term, where the Schwarzschild
factor appears. This accounts for the observer's time delay when getting close to the BH
horizon r → 2M . In fact the �rst term in (4.2.28), upon using the relation for the energy
and angular momentum (4.2.19) given by nr(R) = 0, looks like∫

dϕ

dr

r2ε1

`0
(
1− 2M

r

)dr =

∫ √
2(3− e)(1− e)`1R2s6

(6− 7e+ 2e2)M(1 + s2)2(1 + es2)(2M + (2M −R)s2)
ds,

with the dimensionless dummy variable s2 = r
R−r . The term

1
(2M+(2M−R)s2) -taking into

account the correct domain for s- gives a arccoth
(
r(R−2M)
2M(R−r)

)
term in the �nal solution,

which is divergent at the BH horizon.
This being said, the �nal result for the temporal component of the deviation vector
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nt(r) is the following, up to an additive constant ntc:

nt(r) =
`1

2
√

6− 2e(1− e)2

[
− (2− e)(3− e)

(3− 2e)2

(
3(1− e)

(
9− 42e+ 27e2 − 2e3

)
e2

√
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r

−
2(1− e)2
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9− 9e+ 2e2

)
r

e(R− (1− e)r)

√
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+ 8
(
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)
arctan

√
r

R− r

+ 24
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) R− r
r

arctan

√
r

R− r
+

9− 99e− 19e2 + 75e3 − 14e4

e
3
2

arctan

√
er

R− r

−
3(3− 2e)

(
3− 15e+ 37e2 − 9e3

)
e

5
2

R− r
r

arctan

√
er

R− r

)

+
(3− e)(1− e)3

(2− e)(6− 7e+ 2e2)M2

(
4
√

2M2 arccoth
√

2(1−e)r
R−r√

1− e
− 2(2− e)M

1− e
√
r(R− r)

+ 4M2 22− 33e+ 15e2 − 2e3

(1− e)2
arctan

√
r

R− r
− 8(3− 2e)2M2

√
e(1− e)2

arctan

√
er

R− r

)]
.

(4.2.29)

4.3 Criteria for initial conditions

The procedure for solving the geodesic deviation equations (4.2.5) based on ballistic orbits
(4.2.1) depends on some global constants. These are the boundary conditions that one
can impose on the �nal orbit. As we have already mentioned, the �nal orbit will have a
conserved energy and angular momentum (εf , `f ) to �rst order in the geodesic deviation
o(σ), obeying the following relationship

(4.3.1) εf = εballistic + σε1, `f = `ballistic + σ`1,

where without loss of generality we can put σ = 1, by a rescaling of the constants (ε1, `1)

still to be chosen. These represent the corrections to the energy and angular momentum
of the original orbit -the ballistic orbit- such that the resulting �nal energy and angular
momentum comply with a general binary coalescence behaviour, for instance requiring
that εf < εISCO.

In a generic binary coalescence, after the adiabatic inspiral has ended,3 there is a
�rst quasi-circular motion, where angular velocity prevails over the radial one, followed
by a more direct plunge, a feature which the ballistic orbits likewise agree with. Due
to gravitational radiation emission, some energy and angular momentum are lost during
these stages and the initial energy (and angular momentum) are anyway less than those
of a stable orbit at the ISCO. Ballistic orbits alone do not meet this requirement, but a
correction through geodesic deviations can help.

Since we are virtually able to solve the deviation equations (4.2.11) for any couple of
values (ε1, `1), i.e. we are able to place the smaller companion in the binary coalescence

3This happens in the region of the ISCO, depending on the mass ratio ν = µ/M .
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in any inspiralling orbit with any energy, we are left with determining the values of such
initial parameters.

The correction to the new orbit, i.e. the geodesic deviation vector nµ, can make the
�nal parameters (εf , `f ) equal to the ISCO ones. These represent an orbit beginning
immediately after leaving the ISCO with its same energy and angular momentum. In this
case the corrections would be

ε1 ≤ εISCO − εballistic =
2
√

2

3
−

√
2(2− e)√

9− 9e+ 2e2
< 0,

`1 ≤ `ISCO − `ballistic = 2
√

3M − 2M(3− 2e)√
(3− e)(1− e)

< 0,

(4.3.2)

and they would depend only on the eccentricity e of the original ballistic orbit, which we
have shown in the previous chapter to be strictly correlated to the mass ratio ν = µ/M .

Although we are able to �nd good deviations from the ballistic orbits for any couple
(ε1, `1) satisfying (4.3.2), we have shown that requiring the deviation nµ to start at τ = 0,
or r = R = (6 − 4e)M , i.e. exactly on the ballistic orbit, puts bounds on the values of
energy and angular momentum of the �nal orbit. In particular (4.2.19) shows that the
energy correction required depends on the value of the angular momentum correction, via

(4.3.3) ε1 =

√
1− e

2(3− 2e)

`1
(2− e)(3− 2e)M

.

Upon using this constraint one can legitimately ask whether the conditions (4.3.2) are still
satis�ed. This happens to be the case, because one can always choose freely the angular
momentum correction `1 such that `f ≤ `ISCO, then the energy correction is �xed and
the resulting �nal energy εf is automatically less than the ISCO energy. For instance,
taking `1 = `ISCO − `ballistic, i.e. the value saturating the inequality (4.3.2) above, the
energy is

(4.3.4) ε1 =
2
√

1−e
6−4e

(√
3− 3−2e√

3−4e+e2

)
(2− e)(3− 2e)

,

which gives a �nal energy of the deviated orbit less than the ISCO one. The following plot
Fig. 4.1 shows the energy di�erence w.r.t. di�erent eccentricities to be always positive,
meaning that the ISCO energy is the upper limit of the energy of deviated orbits. This
limit is reached in the case e = 0, whereby the ballistic orbit coincides with the ISCO,
and the corresponding deviated orbit has null corrections ε1 = 0 = `1.

This �xes the problem of the energy of associated orbits raised in (4.1.16), and forces
the smaller body to move on a geodesic orbit with the correct requirements. As it was
expected the other initial parameters, i.e. ntc, n

ϕ
c , are independent of this energy and

angular momentum balance. That is why the deviated ballistic orbit ful�lling (4.3.2) is
not unique, but there is a class of orbits, given by a simple initial shift in the observer's
time t and the azimuthal angle ϕ.

In the next section we are going to report in more detail the features of such devi-
ations from ballistic orbits, studying the behaviour of the orbit xµ = xµballistic + nµ. In
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Figure 4.1: Plot of the energy di�erence per unit mass εISCO − εf ≥ 0 between the ISCO and

the orbit built on the deviation from a ballistic orbit with eccentricity e.

doing so, we will use the conditions (4.3.2),(4.3.3) for the energy and angular momentum
corrections.

4.4 Behaviour of the newly built solution

As long as the constraint (4.3.4) is satis�ed, any value of `1 below

(4.4.1) `1 ≤ `ISCO − `ballistic ⇒ `1 ≤ 2
√

3M − 2M(3− 2e)√
(3− e)(1− e)

∀e ≥ 0,

gives a good orbit modeling the plunge of an EMR binary. Once the limit (4.4.1) is violated
the �nal angular momentum (and the energy too) will be bigger than the corresponding
ISCO values.

In this section we wish to show the e�ects of the deviations on the original ballistic
orbit. Being small deviations, one does not expect the e�ect of nµ to change dramatically
the qualitative behaviour of the ballistic orbit, in fact the order of magnitude of the devia-
tion is �xed by `1 itself. In the limit where `1 → 0 the �nal energy and angular momentum
(εf , `f ) are equal to the ISCO ones, the inequality (4.4.1) is saturated and the geodesic
deviation nµ = 0 ceases to exist. One can notice trivially that every component is directly
proportional to the angular momentum correction `1, see Eqs. (4.2.24),(4.2.27),(4.2.29).

Keeping this in mind, the deviation a�ects the original ballistic orbit mainly in the
radial distance and in the observer's time. For the sake of representation, we are using an
angular momentum correction `1 = −4.3388 · 10−6, which is calculated using the ISCO
as reference orbit, so saturating the inequality (4.4.1) for (e = 0.0015,M = 10), the same
values used previously for the analysis of ballistic orbits. This means that the particle
orbiting the new orbit has the same energy per unit mass as a particle on the ISCO.

The radial component nr(r) presents an initial local maximum, soon after r = R, and
it reaches a �nite value nr(2M) 6= 0 at the BH horizon, independently of the mass M . A
plot of this component over the domain 2M ≤ r ≤ (6− 4e)M is shown in Fig. 4.2.

The deviation is working against the fall into the black hole, increasing only at the
very beginning the radial distance. This e�ect is considerably reduced in the limit e→ 0,
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Figure 4.2: Radial component of the deviation vector nµ(r), for (e = 0.0015,M = 10). The

angular momentum correction used is the one saturating the inequality (4.4.1), which for the

given values of eccentricity and mass amounts to `1 = −4.3388 · 10−6.

as one can see in Fig. 4.3. The only way to invert this small correction in order to have
the minor body fall faster towards the BH with respect to the original ballistic orbit,
would be to swap sign in the parameter σ, namely to use r − nr, but this would give an
energy and angular momentum always greater than those on the ISCO (4.3.1). This is an
indication that one is accelerating the body towards the BH with an extra acceleration
and more kinetic energy, a situation which we want to avoid.
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Figure 4.3: Radial coordinate r+nr(r) (red) against the original radial variable r (dashed line)

for di�erent values of (e, `1), massM = 10. The angular momentum correction is chosen in order

to saturate (4.4.1) in all cases. e = (0.0015, 0.15) respectively for the two plots.

Next to the radial motion, one can calculate the corrections nt, nϕ to the observer's
time and azimuthal angle choosing the integration constants in such a way that time t = 0

is measured at the beginning of motion -like it was done for the ballistic orbit- and at the
same angular position. This can be achieved asking that

(4.4.2) lim
r→R

t(r) + nt(r) = 0, lim
r→R

ϕ(r) + nϕ(r) = ϕ0 = −
√

3− 2e

e
π,
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and �xing the integration constants accordingly. This reduces to the following conditions

ntc =
`1π

4
√

6− 2e(2− e)2(1− e)2e3/2(3− 2e)

(
72− 660e+ 1080e3/2 + 230e2

− 1908e5/2 + 951e3 + 1236e7/2 − 1060e4 − 348e9/2 + 454e5 + 36e11/2 − 90e6 + 7e7

)
,

nϕc =
`1π

12(3− 2e)M

(
3 (1−

√
e) (3− e)

(
18 + 54

√
e− 63e− 117e3/2 − 11e2 + 39e5/2 + 30e3 + 10e7/2

)
4 (1 +

√
e)

2
e3/2
√

9− 18e+ 11e2 − 2e3

− 6

√
9

e
+ 11e− 2e2 − 18

)
.

(4.4.3)

Once the conditions (4.4.3) have been taken into account, the solution xµballistic + nµ is
complete. The variations in the time and angle components are minimal, as Fig. 4.4
shows.
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Figure 4.4: Time (left) and angular (right) deviation components for e = 0.0015,M = 10, `1 =

−4.3388 ·10−6 after applying conditions (4.4.3). The deviations are even at their largest absolute

values six or more orders of magnitude smaller than the original orbit ( t
2M
∼ 103, and ϕ ∼ 10).

It is relevant to notice that, although the arccoth()-term in nt (4.2.29) tends to −∞
working against the time dilation of an observer approaching the BH horizon, this e�ect
is still too small to overcome the time dilation of the original ballistic time at the horizon
r → 2M .

Using the deviation vector it is not di�cult to compute its e�ect on the orbital velo-
cities and the di�erence in the source terms appearing in the Regge-Wheeler equations,
thus predicting qualitatively how much the wave solutions could deviate from the ballis-
tic ones. The orbital velocities appearing in the source terms (2.2.32) get contributions
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directly proportional to the radial deviation nr(r) and they read

ut =
dtballistic

dτ
+ σ

dnt

dτ
=

ε0(
1− 2M

r

) + σ

(
ε1(

1− 2M
r

) − 2Mε0

r2
nr

)
,

uϕ =
dϕballistic

dτ
+ σ

dnϕ

dτ
=
`0
r2

+ σ

(
`1
r2
− 2`0

r3
nr
)
,

ur =
drballistic

dτ
+ σ

dnr

dτ
=√

ε2
0 −

(
1− 2M

r

)(
1 +

`20
r2
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(4.4.4)

4.5 Discussion

As a �rst step towards a calculation of gravitational radiation, after checking the modest
contribution of the deviation vector to the radial direction, one can investigate the source
terms F lmZM/RW and GlmZM/RW and what is the order of magnitude of change between
the original ballistic orbit and the new more general orbit. For the sake of simplicity we
report only the source terms for the dominant mode (l,m) = (2, 2) in the following Fig.
4.5. One can notice that the plots overlap with each other almost perfectly, suggesting
that any di�erence is very small and not easy to detect.
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Figure 4.5: Source terms for the dominant mode (l,m) = (2, 2), with e = 0.0015,M = 10, µ =

10−6. Comparison between source terms for the original ballistic orbit (dashed lines) and the

new deviated orbit (continuous lines). Real parts in red, imaginary ones in green.
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In the next plots in Fig. 4.6 one can actually observe that the di�erences are one
to two orders smaller than the magnitude of the source functions for the source term
F

(2,2)
ZM . The immediate consequence of this is that one can expect the �nal waveforms to

be pretty close to the original ballistic ones discussed in the previous chapter; see also
[19]. In contrast to this, the di�erences in the G(2,2)

ZM are more relevant, specially during
the �rst quasi-circular revolutions around the central black hole.
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Figure 4.6: Top row: di�erence for the dominant mode source function F
(2,2)
ZM between the

original ballistic orbit and the new deviated orbit. Real part on the left, imaginary part on the

right.

Bottom row: zoom in of the G
(2,2)
ZM in proximity of the initial position R = (6 − 4e)M , where

the di�erence among the deviated orbit (continuous curve) and the original (dashed curve) is

greatest. Real parts in red, imaginary ones in green. The same values for eccentricity and BH

masses as in Fig. 4.5 have been used.

On a slightly di�erent note, one can also look at the total number of revolutions during
the new deviated orbit, as we did already for the ballistic orbits. This is easily evaluated
considering the orbital phase change, i.e. the di�erence in radians between the azimuthal
angle at the beginning of motion (which we have put equal to the corresponding one in
the ballistic orbit by choosing nϕc (4.4.3)) and the �nal value reached at the BH horizon,
i.e. limr→2M ϕballistic + nϕ.

With these conditions in mind the di�erence ∆n between the number of revolutions
following a deviated orbit and following a simple ballistic orbit is then given by the
di�erence of the limits of the orbital phase at the BH horizon between the two orbits, for
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the same parameters (e,M). After a straightforward calculation one obtains

∆n = lim
r→2M

nϕ(r) =
`1

4Mπ
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√
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3 π

]
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(4.5.1)

As one can see Eq. (4.5.1) is directly proportional to the ratio of the angular momentum
correction over the central BH mass. The angular momentum correction `1 is also the
parameter �xing the order of magnitude of the deviation itself, which cannot be bigger or
comparable to the size of the original ballistic orbit, otherwise it is not a slight deviation
anymore, but rather a major change in the companion's motion.

So far we have determined limits (4.3.2) on the correction `1 such that the �nal energy
is not bigger than that of the ISCO. These represent upper limits on the correction
parameters. What can be said about the lower limits, if any, of these corrections? Eq.
(4.5.1) can help to ascertain how far below the energy of the ISCO we can get with
deviations. In fact, if `1 is too big, two undesired phenomena can happen. First the
radial correction, which we described in Fig. 4.2 and 4.3, becomes too big and nµ is not
just a simple deviation to the ballistic orbit; it is pushing too much the minor body µ
back towards the ISCO, such that in the initial phase of motion, for a given distance r,
rballistic + nr > 6M . This would be counterintuitive, as afterwards the body falls back
into the BH anyway. Secondly the number of revolutions could di�er signi�cantly from
the original one, leading to a di�erent relation between the eccentricity e and the mass
ratio ν = µ/M .

The di�erence in the number of revolutions (4.5.1) can be rewritten as

(4.5.2) ∆n =
`1

4Mπ
f(e),

with f(e) a scalar function of e, plotted in Fig. 4.7. In this plot one can notice that for
e < 0.3 the number of revolutions can only increase, i.e. ∆n > 0, as `1 is always negative.
If we look back at section 3.3.2 in the previous chapter, we see that there is a relation
between the number of revolutions and the mass ratio of the EMR binary. From Tables
Tab. 3.1 and 3.2 one can see that the mass ratio ν = µ/M increases, while the number of
revolutions decreases following a power law ∼ (4ν)−1/5 [21, 128]. The di�erence among
revolutions corresponding to di�erent mass ratios can be used to set a lower limit on the
angular momentum correction.

One needs to calculate for di�erent mass ratios the expected number of revolutions
and compare it to the ones that the deviated orbit takes. The deviation nµ will increase
the original number given by the ballistic orbit, but this increment cannot be so big as
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Figure 4.7: Plot of f(e) as de�ned in (4.5.2). For e < 0.3, so for all practical values of e, the

curve is always negative.

to reach the number of revolutions needed for the next bigger mass ratio. So, for a given
mass ratio ν0, the corresponding ballistic orbit, following Tab. 3.2, has a speci�c value
of the parameter δ0 and the eccentricity e0. For this eccentricity the deviation from the
ballistic orbit takes an extra number of revolutions ∆n(e0, `1) given by (4.5.1) more than
the original ballistic orbit. This cannot be bigger or comparable with the di�erence in
revolutions coming from the next mass ratio ν1, smaller by one order of magnitude with
respect to ν0. These considerations are summarized in the following table Tab. 4.1. For

ν nexpected ∆nexpected δ × 103 e× 103 ∆n(e)

10−8 30.17 10.96 0.5 0.8 -8198.82
10−7 19.21 7.12 1.3 1.9 -2147.91
10−6 12.09 4.50 3.2 4.8 -545.74
10−5 7.59 2.80 7.8 11.7 -137.27

Table 4.1: nexpected is the expected number of turns for the corresponding mass ratio ν according

to the power law ∼ (4ν)−1/5; next ∆nexpected is the di�erence of turns w.r.t. the next bigger

order of magnitude for ν; δ and e the corresponding parameters for the ballistic orbit; ∆n(e) is

the di�erence of number of revolutions of the deviated orbit w.r.t. the ballistic one, in units of

`1/M .

instance for an EMR binary of mass ratio ν ∼ 10−7, such as those studied throughout this
dissertation, one expects to have roughly nexpected ∼ 19 turns, ∼ 10.96 revolutions less
than what comes for the next smaller order of magnitude of mass ratio ν ∼ 10−8. The
ballistic orbit ful�lling these requirements, in agreement with [21, 128, 19], as discussed in
the previous chapter, has a δ = 0.0013 or e = 0.00195; with these values the deviated orbit
would turn ∆n(e) = −2147.91 `1M times more than the original ballistic orbit. Therefore
this sets a lower limit for `1 (or an upper limit for |`1|), in fact

(4.5.3) ∆n(e)
`1
M
� ∆nexpected ⇒ `1 �

∆nexpectedM

∆n(e)
,

for ∆n(e) < 0 for this range of values of the eccentricity. Applying this argument (4.5.3)
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for the mass ratios reported in the previous table Tab. 4.1, one gets the following lower
limits for the angular momentum correction:

ν e× 103 `1
10−7 1.9 � −0.0051035M

10−6 4.8 � −0.0130444M

10−5 11.7 � −0.0328173M

Table 4.2: Di�erent mass ratios ν correspond to di�erent values of eccentricity e and give

di�erent lower limits (third column) for the angular momentum correction `1.

For instance, the case of µ = 10−6,M = 10, the range of possible values for `1 is:

−0.051035� `1 ≤ −4.3388 · 10−6.

One is then left with comparing the global magnitude of the deviation with respect to
the original orbit, in order to prevent r > 6M .

4.6 Concluding remarks

The ballistic orbits (4.2.1) have been very useful in determining an initial model for the
plunge phase of an EMR binary coalescence, but by using them one is naturally confronted
with the issue of the energy of the body following such orbits. This is always bigger than
the corresponding energy for the ISCO orbit, as it happens for every associated orbit
(4.1.16). Being the neighbourhood of the ISCO the region where the transition between
adiabatic inspiral and plunge occurs, it is necessary for a realistic model of an EMR binary
to have continuously decreasing energy and angular momentum as the coalescence evolves
in time.

In this chapter we have used the method of geodesic deviations [18] in order to over-
come this limit of the model based on ballistic orbits. We have solved the geodesic
deviation equations in the radial variable to �rst order and obtained the deviation vector
nµ(r) (4.2.24),(4.2.27), and (4.2.29). The energy and angular momentum of the �nal orbit
can be tuned smoothly to any value, as the solutions of the deviation equations depend
on the constant values of the energy and angular momentum corrections (ε1, `1), provided
certain conditions (4.3.2), (4.5.3) are satis�ed. This turns the original ballistic orbits into
a very diverse tool for modeling the plunge of any EMR coalescence.

We have analysed the e�ect of the deviation on the original orbit. This results mainly
into a delay e�ect, i.e. causing more revolutions, in the initial quasi-circular stage of the
plunge phase. However other consequences on the source terms are very small and any
gravitational radiation obtained from that should not di�er much qualitatively from the
ones obtained originally from the ballistic orbits only. Fig. 4.3 and Fig. 4.5 relate to this.

Clearly solving the Regge-Wheeler equations (2.2.26) with the deviated ballistic or-
bits would provide the �nal test on these orbits, and in fact this is the goal of future
investigation.
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5 Spinning compact objects in

EMR binaries
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The Schwarzschild metric can give a good account of all the celestial phenomena with
spherical symmetry which involve no rotations, or spins, but there is more to that, even
just limiting oneself to the binary coalescences. It is well-known that astrophysical black
holes do rotate, as one can already deduce from the fact that they originate after the
collapse of stars, so if the star was originally rotating, a substantial part of its angular
momentum will be transferred to the black hole.

Spinning objects are the most common ones among the observed astrophysical bodies.
As far as coalescences are concerned, this entails rotations for both objects involved in
their celestial dance. The solution of the Einstein �eld equations including the spin of the
black hole is relatively simple and well-known: it is the Kerr solution [117], and it gives
the most complete account for all the tidal phenomena brought about by the addition of
spin to a spherical distribution of mass.

Nevertheless it is just as important to know how a generic spinning body behaves in
a curved background. Phenomena such as the precession of the spin or Lense-Thirring
e�ects on the orbits of spinning bodies are a current astrophysical reality. Rather than
considering how the background is in�uenced by the rotation of the mass, the question
is how a generically curved background, be it Schwarzschild, be it Kerr1, in�uences the
motion of a spinning object, like a gyroscope, and what its backreaction to the given
background metric is. This problem dates back to the founding works of Papapetrou [24]
and Pirani [134] and it is related to the analogous situation in quantum mechanics, where
these aspects were considered already long before [135] and used for the semi-classical
description of elementary particles.

Clearly a spinning compact object such as a neutron star or a planet has an extension,
and every attempt to reduce it to a spinning pointlike gyroscope is an approximation,
but it is appropriate for an Extreme Mass Ratio coalescence. Here, in fact, the pointlike
nature of the companion body is already granted by the assumptions behind the de�nition
itself of an EMR binary. The smaller companion (∼ 106 orders of magnitude smaller) is
regarded as pointlike and its backreaction to the central major body metric is initially
neglected. Therefore a spinning body in such a binary is a perfect example of a spinning

1Or any other curved background, such as gravitational waves, de Sitter. . .
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particle in a curved background.
In this chapter an analytical and mathematically consistent formalism for a spinning

object in any curved background is presented. Even if neglecting the internal structure
of the spinning body already allows for many simpli�cations, this topic is rather involved
and the literature about is quite vast (see [136] for a recent review). In the �rst section
a self-contained review of the progress made in the last sixty years will be given, to be
followed by the actual formalism we presented in [26]. After that, in the third section,
the equations for a worldline deviation expansion are given, including also the spin, up
to second order in the worldline deviation. This completes the mathematical framework
needed for the application of the methods described in the previous chapter to spinning
compact objects. An example of this is already given in the second section of this chapter,
but an extended use of these methods to eccentric or ballistic orbits in Schwarzschild
background, or in Kerr background, is beyond the scope of this thesis.

5.1 Spinning particles in General Relativity

Studying spinning objects in General Relativity one is confronted with a vast astrophysical
phenomenology, ranging from rotating black holes to smaller compact bodies such as
neutron stars and white dwarfs. Since the �rst developments of GR it was clear though
[23, 24] that a lot of systems could be conveniently represented by the �spinning-particle
model�. When one of the moving bodies is signi�cantly smaller than the other, for instance
in an EMR binary coalescence, such that its in�uence on the motion of the other bodies
can be neglected, it is called a test particle. A spin can be attached to this particle, so
rotational degrees of freedom in the form of an antisymmetric tensor or a vector, making
it a spinning test particle [137, 138]. Clearly this problem is directly connected to the
dynamics of angular momentum in curved spacetime and has been deeply investigated
since the early days of GR itself [139, 140, 135, 141, 142, 143].

Historically two approaches [144] have been considered for spinning particles. The
�rst approach [23, 24, 142] builds on the energy-momentum tensor representative of the
system, develops a multipole expansion out of it, and �nally enforces the conservation law
for the energy-momentum tensor Tµν ;ν = 0. Writing down the covariant and divergence-
free energy-momentum tensor of matter has the advantage to possibly account for e�ects
due to the internal structure of the body, and the test-particle limit is reached considering
Tµν to be non-null in a sphere of diminishing radius surrounding the spinning particle
[24]. In classical electrodynamics [98] one can construct a multipole expansion where
the extended body is represented by a set of moments of its current density 4-vector jα;
likewise here the system gets represented by a set of �inertial� or �gravitational� moments
of Tµν , building an expansion commonly referred to as �gravitational skeleton� [23]. In
this skeleton the bones representing a spinning particle are the integrals up to the dipole
term, in a �rst approximation. Treating the particle as a single pole accounts for its
motion as a pointlike object, the next step is adding the spin, making it a pole-dipole
particle [24]. The moments are de�ned with respect to a representative worldline of the
body, namely a point is taken as representative of the whole body.

The second approach assigns directly an overall position, momentum, and spin to the
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spinning body, considering it a pointlike object and neglecting any internal structure.
Moving from here, an action principle, or a hamiltonian structure, is introduced and
equations of motion are derived. This approach focusses on the interaction of the spin
with the background and other external �elds, leaving room for a semi-classical description
of elementary particles as well [145, 146, 147, 148, 149, 28, 150, 151, 152, 153, 154, 155].
The formalism that is presented in this chapter (see the following section) belongs to this
family of methods, in that we introduce the dynamical variables describing the spinning
particle and the symplectic structure (hamiltonian and Poisson brackets) from which the
equations of motion are derived.

Independently of the approach followed to derive them, the equations of motion for
a spinning particle in curved background are known as the Mathisson-Papapetrou equa-
tions. In their most common form they read

DPµ

Dτ
=

1

2
RµναβU

νΣαβ ,

DΣµν

Dτ
= PµUν − P νUν ,

(5.1.1)

where Pµ is the total 4-momentum, Σµν the antisymmetric spin and Uµ is the 4-velocity
tangent to the reference worldline xµ(τ). Notice that the relation between 4-velocity and
4-momentum is not as simple as the usual relation, rather

(5.1.2) Pµ = MUµ + Uν
DΣµν

Dτ
,

with the extra quantity Uν DΣµν

Dτ usually called �hidden� momentum [156, 136]. As one
can easily count, there are extra degrees of freedom and the system of equations is un-
derdetermined (4 unknowns from Pµ, 6 independent components of Σµν , 3 independent
components from Uµ, for only 10 equations). Because of this, another condition is usually
introduced, commonly referred to as �spin supplementary condition�:

(5.1.3) Σµνfν = 0,

where fν is a timelike vector �eld de�ned along xµ. The choice of the di�erent fν

gives rise to di�erent supplementary conditions, among which the most common are:

• the Corinaldesi-Papapetrou condition [157] fν = uν , with uν corresponding to static
observers, with zero 3-velocity in the coordinate frame;

• the Mathisson-Pirani condition [134], fν = Uν , with Uν corresponding to the 4-
velocity of the spinning body;

• the Tulczyjew-Dixon condition [158, 159], fν = P ν

m , corresponding to an observer
in the zero 3-momentum frame.

Di�erent conditions are usually chosen on physical grounds or for mathematical conve-
nience. For a concise review of the di�erent spin conditions (5.1.3) and their consequences,
see [160, 161, 136].
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Depending on the condition used the covariantly conserved quantities change. For a
long time it has not been clear which choice is the most correct one, and several discussions
have argued in favour or against particular choices [160], even claiming that some give
birth to unphysical motions [25]. However all choices are physically equivalent and reduce
to a gauge-�xing procedure [162]. As long as one is consistent within the same framework,
one is able to describe the evolution of the spin and its in�uences on the body's trajectory.
The di�erent descriptions have to be physically equivalent.

The reasons for such a plethora of spin conditions lies in the choice of the worldline
along which the spinning particle is taken to move. Every condition leads to one of many
possible di�erent worldlines, all contained in the minimal worldtube delimited by the
worldlines de�ned for observers that move almost at light speed with respect to the body's
rest frame [43, 161]. The presence of spin, in fact, ensures -already in �at spacetime- that
the spinning body has a minimal size2, such that it need not rotate with superluminal
speed, recalling again the impossibility of pointlike particles in GR.

On the other hand, in works like [163, 164, 26], descriptions have been devised which
avoid any supplementary condition, not introducing extra degrees of freedom, as it will
be more clear in the next section. In these models the ambiguity of the worldline choice
is shifted from the supplementary condition (5.1.3) to the de�nition itself of the represen-
tative location of the spinning particle. The motion of this point de�nes the worldline xµ

which is the reference for the multipole expansion in the gravitational skeleton or the po-
sition coordinate appearing in the hamiltonian. The equations of motion stemming from
these approaches [165, 26] are consistent with the previously mentioned MP-equations
(5.1.1), for they entail covariant conservation of the spin tensor DΣµν

Dτ = 0, simplifying
considerably the relation between spin and momentum. Therefore the system is no longer
underdetermined and there is no need for supplementary conditions.

Although these di�erent approaches have been interpreted as competitive ones for a
long time, they are, de facto, equivalent. In order to have an idea of the origin of such
di�erences, one can consider what happens already with the most intuitive choice for a
representative point of the spinning body, the center of mass. For instance, taking the CM
as representative point means that the observer is comoving with it [161, 136], and the CM
is measured in its own rest frame3, which is nothing else but a result of imposing Pirani
condition ΣµνUν = 0. However one should not forget that the CM is observer-dependent,
Fig. 5.1 below clari�es.

The previous �gure shows the intrinsic di�culty in de�ning a representative point for
an extended body in GR. This is actually related to the major fact that there is no such
thing as a �rigid body� in relativity, as the mutual distance between any two points of it
is observer-dependent. Therefore any de�nition of the center of mass will depend on the
observer's location; centers of mass de�ned with respect to various timelike observers are
also called centroids. Angular momentum in a curved background, spins, and rotations
clearly su�er from the same ambiguity, for their de�nitions revolve around an observer-

2The argument for the minimal size of a spinning body is worked out in [43], Exercise 5.6. The result

is brie�y r0 ≥ s
m
, where s =

√
gµνsµsν , with sµ = − 1

2
εµνρσUνΣρσ the spin vector w.r.t. the frame with

4-velocity Uµ = pµ

m
, the 4-velocity of the Centre of Mass, and m =

√
−pσpσ its rest mass.

3The naturalness of this choice was advocated by Pirani himself [134].
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Figure 5.1: An uniform spinning body in �at spacetime, seen from above. The observer O
is at rest w.r.t. the axis of rotation, therefore measures the CM in xCM , coinciding with the

geometrical centre of the body. Observers O′ and O′′ instead are moving w.r.t. O, opposite to
the rotation of the body. The points on the right of the body are perceived as faster than those

on the left, then more massive. Therefore the CM measured by these observers shifts to the right

to x′CM and x′′CM respectively. Figure credit to [136].

dependent reference point. Nevertheless the spin helps de�ne [25, 166, 162] a �mass dipole
moment� (duG)

α

(5.1.4) (duG)
α ≡ −Σαβfβ , and ∆xα = −Σαβfβ

m
,

as measured by an observer of 4-velocity uα. The vector ∆xα connected to it is instead the
displacement of the CM position relative to the reference worldline xµ. In fact choosing
the CM reference frame means that the reference worldline is the one of the CM as
measured by the observer [162], the displacement ∆xα is null, and one gets back to the
condition Σαβuβ = 0. Thus again it is shown how the choice of representative point, in
this case the CM with respect to the observer, selects the condition (5.1.3) and/or the
reference worldline xµ. The mass dipole moment [136] represents an important vector
clarifying the physical interpretation of the equations of motion (5.1.1).

Anyway, considering all possible observers, the corresponding centroids �ll a circular
disc with radius RMøller <

|S|
m , the ratio between the spin vector and the rest mass of the

spinning body, which is the minimal size of a spinning body as well [161, 136]. In this
way the worldlines of all possible centroids de�ne the surface of the minimal worldtube
containing all the worldlines xµ along which the spinning test particle can move.

5.2 E�ective hamiltonian formalism

There are various equivalent ways to describe a spinning particle in a curved background,
as we have discussed in the previous section. Most of these approaches start from writing
the equations of motion for a spinning test mass, to be complemented with supplementary
conditions (5.1.3), in order to get rid of extra degrees of freedom and �x the relation
between Pµ and Uµ. The internal structure of the body and its backreaction on the
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background are completely neglected, since these are the necessary assumptions made at
the beginning of the procedure leading to the equations of motion (5.1.1).

In this section we want to introduce a hamiltonian formalism which does not introduce
extra degrees of freedom and which can suit di�erent kinds of spinning compact objects,
giving at the same time some account for their internal structure. By the end of this
section it will be clear why this is, to all intents, an e�ective hamiltonian formalism.
Some basic ideas underlying the formalism were formulated �rst in Khriplovich's paper
[163] on the subject, and take into account a vast literature about hamiltonian models
for spinning particles [146, 147, 148, 149, 28, 154], even in supersymmetric frameworks
[150, 151, 152, 153].

Hamiltonian dynamical systems are speci�ed by three sets of ingredients: the phase
space, identifying the dynamical degrees of freedom, the Poisson-Dirac brackets de�ning
a symplectic structure, and the hamiltonian generating the evolution of the system with
given initial conditions by specifying a curve in the phase space passing through the
initial point. The parametrization of phase space is not unique, as it is familiar from the
Hamilton-Jacobi theory of dynamical systems [167]. Changes in the parametrization can
be compensated by rede�ning the brackets and the hamiltonian.

A convenient starting point for models with gauge-�eld interactions is the use of
covariant, i.e. kinetic, momenta rather than canonical momenta 4, in contrast to what
was done in preceding works such as [154, 143]. As usual (5.1.1), the spin degrees of
freedom are described by an antisymmetric tensor Σµν , which can be decomposed into
two spacelike 4-vectors by introducing a timelike unit vector u: uµuµ = −1, and de�ning

(5.2.1) Sµ =
1

2
√
−g

εµνκλ uνΣκλ, Zµ = Σµνuν .

By construction both four-vectors S and Z are spacelike:

(5.2.2) Sµuµ = 0, Zµuµ = 0.

In the following we take u to be the proper four-velocity of the particle. Then S is the
Pauli-Lubanski pseudo-vector, from which a magnetic dipole moment can be constructed,
whilst the components of Z, which will be referred to as the Pirani vector [134], can
be used to de�ne an electric or mass dipole moment [25, 136], as we have introduced in
(5.1.4). In fact, the same spin tensor can be used for a description of the quantum spin of
particles, in which case the vector S is the equivalent of the usual spin vector [169], or it
can de�ne the mass dipole moment. The last one is more interesting for our case, as it is
related to the description of a classical spin particle (as opposed to a quantum one) and
to the problem of de�ning the Centre of Mass of a rotating body in curved space. Refer
back to the previous section for more extended account and references thereof.

One can also de�ne [27] a third space-like vector

(5.2.3) Wµ = − 1√
−g

εµνκλuνSκZλ = (Σµν − uµZν)Zν ,

4See [168] and references cited therein for a general discussion, and [163] for the application to spinning

particles.
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orthogonal to the other ones:

(5.2.4) W · u = W · S = W · Z = 0.

Thus (u, S, Z,W ) form a set of independent vectors, one time-like and three space-like,
which can be used to de�ne a frame of basis vectors carried along the particle world-line.

Observe that one can invert the relations (5.2.1) to write

(5.2.5) Σµν = − 1√
−g

εµνκλ uκSλ + uµZν − uνZµ.

Therefore, if the Pirani vector5 vanishes: Z = 0, the full spin tensor can be reconstructed
from S. However, in non-�at spacetime this is generally not the case. The spin vector S
is maybe the easiest to visualize in terms of physical spin. Suppose one has a spinning
neutron star or other compact object orbiting around a central black hole. Precession of
the spin in the orbit, such as given by the Lense-Thirring e�ect, is the precession of the S
vector, alignment of the spin is the parallelism between this vector and the orbital angular
momentum, orthogonal to the plane of the orbit, in a dynamically conservative description
of the system. Nevertheless here we deal �rst with more fundamental quantities, as all
the degrees of freedom describing the rotation of the test particle are encapsulated in the
spin tensor Σ.

The full set of phase space coordinates of a spinning particle thus consists of the
position coordinate xµ, the covariant momentum πµ and the spin tensor Σµν . These are
the dynamical variables required for the formalism we are introducing. Together with
them come the anti-symmetric Dirac-Poisson brackets

(5.2.6)

{xµ, πν} = δµν , {πµ, πν} =
1

2
ΣκλRκλµν ,

{Σµν , πλ} = Γ µ
λκ Σνκ − Γ ν

λκ Σµκ,{
Σµν ,Σκλ

}
= gµκΣνλ − gµλΣνκ − gνκΣµλ + gνλΣµκ.

The brackets imply that π represents the generator of covariant translations, whilst the
spin degrees of freedom Σ generate internal rotations and Lorentz transformations. It is
straightforward to check that these brackets are closed in the sense that they satisfy the
Jacobi identities for triple bracket expressions. Thus they de�ne a consistent symplectic
structure on the phase space. Other sets of brackets have been proposed [143] based on a
larger set of degrees of freedom, some of which are subsequently removed by supplemen-
tary constraints. In this case there is no need for supplementary conditions (5.1.3) to be
imposed, as there are no extra degrees of freedom to get rid of. However we like to add
that the same set of equations of motion we obtain from the system (5.2.6) coincides with
those obtained with the Ohashi-Kyrian-Semerák spin condition [170, 161], where the spin
tensor is also covariantly constant and there is no hidden momentum (5.1.2), as we will
shortly show.

5If Z = 0, then the well-known Pirani condition Σµνuν = 0 is enforced, whence the name Pirani

vector, which we �rst adopted in [26].
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In order to get a well-de�ned dynamical system one needs to complete the phase-
space structure with a hamiltonian generating the proper-time evolution of the system.
In principle a large variety of covariant expressions can be constructed; however if we
impose the additional condition that the particle interacts only gravitationally and that
in the limit of vanishing spin the motion reduces to geodesic motion, the variety is reduced
to hamiltonians

(5.2.7) H = H0 +HΣ, H0 =
1

2m
gµνπµπν ,

where HΣ = 0 whenever Σµν = 0. By changing the hamiltonian it is possible to ob-
tain di�erent descriptions for di�erent compact objects, possibly taking into account the
internal structure of the rotating bodies. In that sense the hamiltonian is an e�ective

hamiltonian, suitable to describe the motion of various types of objects in so far as the
role of other internal degrees of freedom can be restricted to their e�ects on overall posi-
tion, linear momentum and spin. An example of a non-trivial hamiltonian will be given
in the next sections, now we focus on deriving the equations of motion.

Eqs. (5.2.6) and (5.2.7) specify a complete and consistent dynamical scheme for spin-
ning particles. The simplest model is obtained by restricting the hamiltonian to the
minimal geodesic term H0. By itself this hamiltonian generates the following set of
proper-time evolution equations,

(5.2.8) ẋµ = {xµ, H0} ⇒ πµ = mgµν ẋ
ν ,

stating that the covariant momentum π is a vector tangent to the world line, proportional
to the proper 4-velocity u = ẋ. This is quite di�erent from situations where extra quan-
tities such as the hidden momentum appear (5.1.2) and the equations of motion are not
su�cient to determine the motion. However in this case no extra supplementary condition
is required. Next to (5.2.8) one has

(5.2.9) π̇µ = {πµ, H0} ⇒ Dτπµ ≡ π̇µ − ẋλΓ ν
λµ πν =

1

2m
ΣκλR ν

κλµ πν ,

which speci�es how the worldline curves in terms of the evolution of its tangent vector.
Finally the rate of change of the spin tensor is

(5.2.10) Σ̇µν = {Σµν , H0} ⇒ DτΣµν ≡ Σ̇µν + ẋλΓ µ
λκ Σκν + ẋλΓ ν

λκ Σµκ = 0.

In these equations the overdot denotes an ordinary derivative w.r.t. proper time τ , whereas
Dτ denotes the pull-back of the covariant derivative along the world line xµ(τ). By
substitution of Eq. (5.2.8) into Eq. (5.2.9) one �nds that

(5.2.11) D2
τx

µ = ẍµ + Γ µ
λν ẋ

λẋν =
1

2m
ΣκλRµνκλẋ

ν ,

which reduces to the geodesic equation in the limit Σ = 0. The worldline is the solution
of the combined equations (5.2.11) and (5.2.10) satisfying some given initial conditions.
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This worldline is a curve in spacetime along which the spin tensor is covariantly constant.
It has been remarked by many authors [163, 171, 165, 156] that the spin-dependent force
(5.2.9) exerted by the spacetime curvature on the particle is similar to the Lorentz force
with spin replacing the electric charge and curvature replacing the electromagnetic �eld
strength6. In this analogy the covariant conservation of spin along the worldline is the
natural equivalent of the conservation of charge.

Even though the spin tensor is covariantly constant, this does not hold for the Pauli-
Lubanski and Pirani vectors S and Z individually. Indeed, due to the gravitational
Lorentz force

(5.2.12)

DτS
µ =

1

4m
√
−g

εµνκλΣκλΣαβRαβνρu
ρ,

DτZ
µ =

1

2m
ΣµνΣαβRαβνρu

ρ,

where Σµν is the linear expression in terms of Sµ and Zµ given in eq. (5.2.5). The rate
of change of both spin vectors is of order O[Σ2]. In particular, as Z is not conserved in
non-�at spacetimes the condition Z = 0 cannot be imposed during the complete motion
in general. Indeed, the evolution of the system is completely determined by eqs. (5.2.8),
(5.2.9), (5.2.10), and leaves no room for additional constraints.

In fact, any condition of the form (5.1.3), like Σµνvν = 0, with vν a linear combination
of the existing relevant vectors and objects, such as Σµν , Zµ, ẋµ, would either lead at all
times to vν = 0 or to a contradiction with the equations of motion (5.2.9),(5.2.10). In fact,
suppose that such a vector vµ = αSµ+βZµ+γẋµ exists, with α, β, γ numeric coe�cients.
Then the covariant derivative of a supplementary condition on vµ like Σµνvν = 0 would
give, by virtue of (5.2.10),

Σµν
Dvν
Dτ

= 0.

From here Dvµ
Dτ = λvµ, with λ ∈ C. We can write down the covariant derivative using

Eqs.(5.2.9),(5.2.12) and obtain

Dvµ
Dτ

=
1

2m
ΣαβRαβ

ν
ρẋ
ρ

(
α

2
√
−g

εµνκλΣκλ + βΣµν + γgµν

)
= λvµ

⇒ 1

2m
ΣαβRαβ

ν
ρẋ
ρ = λẋν .

Contracting then both members with ẋν it is clear that λ = 0, because of the anti-
symmetry of the Riemann tensor and the normalization condition ẋν ẋν = −1 on velocity.
Therefore one is left with Dvµ

Dτ = 0. This leads only to

α

2
√
−g

εµνκλΣκλ + βΣµν + γgµν = 0,

which can be ful�lled only by γ = 0 and βZµ = −αSµ. In this way, by its own de�nition,
vµ = 0 and the whole procedure of introducing such a vector becomes futile, as we
advocated.

6This is among the basic analogies giving rise to gravitomagnetism phenomena, for an extensive review

see [156].
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The Pirani vector, which is intimately connected to the mass dipole of the system
(5.1.4), indicates the di�erence between the worldline consistently de�ned through the
hamiltonian system (5.2.6),(5.2.7) and other worldlines de�ned through di�erent set-ups.
In order to show the physical equivalence of the worldline (5.2.8), and the motions de-
scribed by it, with other worldline, it is necessary to take into account the time-evolution
of the Z vector as well. Therefore in our formalism Zµ is a dynamical variable as necessary
for describing the motion as the spin vector Sµ.

5.2.1 Conservation laws

From this formalism one is able to deduce conservation laws. These depend on the speci�c
hamiltonian chosen; here we �rst give the ones for the minimal hamiltonian, then in the
last part of this section we will show what happens adding a non-trivial term to (5.2.7).
By construction the time-independent hamiltonian represented by (5.2.7) is a constant
of motion for the spinning body, irrespective of the speci�c geometry of the spacetime
manifold. In particular for the minimal geodesic hamiltonian H0 we have

(5.2.13) H0 = −m
2
.

Another obvious constant of motion is the total spin, just as it happens in any other
equivalent description for spinning bodies in curved backgrounds, as mentioned in the
previous section,

(5.2.14) I =
1

2
gκµgλνΣκλΣµν = SµS

µ + ZµZ
µ.

Another conserved quantity is the pseudo-scalar product [27]

(5.2.15) D =
1

8

√
−g εµνκλΣµνΣκλ = S · Z.

In addition, there exist conserved quantities J(x, π,Σ) resulting from symmetries of
the background geometry, as implied by Noether's theorem [142, 160, 172]. They are
solutions of the generic equation
(5.2.16)

{J,H0} =
1

m
gµνπν

[
∂J

∂xµ
+ Γ κ

µλ πκ
∂J

∂πλ
+

1

2
ΣαβRαβλµ

∂J

∂πλ
+ Γ κ

µα Σλα
∂J

∂Σκλ

]
= 0.

It follows that any constants of motion linear in momentum [172] are of the form

(5.2.17) J = αµπµ +
1

2
βµν Σµν ,

with

(5.2.18) ∇µαν +∇ναµ = 0, ∇λβµν = R κ
µνλ ακ.

These equations imply that α is a Killing vector on the spacetime, and β is its antisym-
metrized gradient:

(5.2.19) βµν =
1

2
(∇µαν −∇ναµ) .
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Similarly constants of motion quadratic in momentum [173] are of the form

(5.2.20) J =
1

2
αµνπµπν +

1

2
β λ
µν Σµνπλ +

1

8
γµνκλΣµνΣκλ,

where the coe�cients have to satisfy the ordinary partial di�erential equations

(5.2.21)

∇λαµν +∇µανλ +∇ναλµ = 0,

∇µβκλν +∇νβκλµ = R ρ
κλµ ανρ +R ρ

κλν αµρ,

∇ργµνκλ = R σ
µνρ βκλσ +R σ

κλρ βµνσ.

Thus α is a symmetric rank-two Killing tensor, and the coe�cients (β, γ) satisfy a hi-
erarchy of inhomogeneous Killing-like equations determined by the αµν . In the case of
Grassmann-valued spin tensors Σµν = iψµψν the coe�cient γ is completely antisym-
metric and the equations are known to have a solution in terms of Killing-Yano tensors
[174].

In fact, one can infer more about the solutions of Eq.(5.2.21), namely α is a Killing
tensor and as such it can be written in terms of antisymmetric Killing-Yano tensors
Fµν = −Fνµ, satisfying a Killing-like equation

(5.2.22) ∇µFνλ +∇νFµλ = 0,

and precisely αµν = FµλFν
λ satis�es (5.2.21). Killing-Yano tensors have the property

that

(5.2.23) ∇κ∇λFµν = Rµνκ
αFαλ +

1

2
Rκµλ

αFαν −
1

2
Rκνλ

αFαµ −
1

2
Rµνλ

αFακ,

and using this relation one can �nd the expression for the tensor β after some straight-
forward calculations,

(5.2.24) βκλ
µ = Fµν∇νFκλ +

1

2
(Fκ

ν∇νFλµ − Fλν∇νFκµ) .

Instead the most complete Ansatz form for γµνκλ can also be written in terms of the
Killing-Yano tensor as:

4γµνκλ = 4c∇ρFµν∇ρFκλ + 2d (∇ρFµκ∇ρFνλ −∇ρFµλ∇ρFνκ)

+ 2e
(
RµνρσF

ρ
κF

σ
λ +RκλρσF

ρ
µF

σ
ν

)
+ 2f (RµνρσF

ρσFκλ +RκλρσF
ρσFµν)

+ g
(
RµρκσF

ρ
νF

σ
λ −RµρλσF ρνFσκ −RνρκσF ρµFσλ +RνρλσF

ρ
µF

σ
κ

)
+ h (RµρκσF

ρσFνλ −RµρλσF ρσFνκ −RνρκσF ρσFµλ +RνρλσF
ρσFµκ)

+m (RµρκσF
ρ
λF

σ
ν −RµρλσF ρκFσν −RνρκσF ρλFσµ +RνρλσF

ρ
κF

σ
µ)

+ p (RµνκρF
ρ
σF

σ
λ −RµνλρF ρσFσκ +RκλµρF

ρ
σF

σ
ν −RκλνρF ρσFσµ) .

(5.2.25)

From the third equation in (5.2.21) one can consider the trace parts, namely

4∇γκρλρ = Rµνκ
ρ (2F νσ∇σFρλ + Fλ

σ∇σFρν − Fρσ∇σFλν)

+Rµνλ
ρ (2F νσ∇σFρκ + Fκ

σ∇σFρν − Fρσ∇σFκν) ,
(5.2.26)
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and

(5.2.27) ∇µγκλκλ = Rµνκλ
(
F νσ∇σFκλ + Fκσ∇σFλν

)
.

By using Bianchi and Ricci identities, and anti-symmetrization of the property (5.2.23)
one obtains that
(5.2.28)

Rµνκλ
(
F νσ∇σFκλ + Fκσ∇σFλν

)
=

1

4
∇µ
(
RκλνσF

νσFκλ
)
⇒ γκλ

κλ =
1

4
RκλµνF

κλFµν ,

valid for spacetimes with vanishing Ricci tensor, such as Schwarzschild or Kerr metric.
Moreover, considering the complete antisymmetrization of the equation for γ in (5.2.21),
one can show that

(5.2.29) εµνκλγµνκλ = εµνκλ
(

1

2
RµνρσF

ρ
κF

σ
λ +∇ρFµν∇ρFκλ

)
,

and this together with (5.2.28) constrains the coe�cients in the general Ansatz (5.2.25)
to obey the following relations:

(5.2.30) m = 1 + g − 2e, h = 2f, 2e+ 2f − g = 1.

It follows that the general solution for γ can be further constrained to be as

(5.2.31) γµνκλ = Aµνκλ +
e

2
Bµνκλ +

f

2
Cµνκλ,

with

Aµνκλ = c∇ρFµν∇ρFκλ +
d

2
(∇ρFµκ∇ρFνλ −∇ρFµλ∇ρFνκ)

− 1

4
(RµρκσF

ρ
νF

σ
λ −RµρλσF ρνFσκ −RνρκσF ρµFσλ +RνρλσF

ρ
µF

σ
κ) ,

Bµνκλ = RµνρσF
ρ
κF

σ
λ +RκλρσF

ρ
µF

σ
ν

+RµρκσF
ρ
νF

σ
λ −RµρλσF ρνFσκ −RνρκσF ρµFσλ +RνρλσF

ρ
µF

σ
κ,

Cµνκλ = RµνρσF
ρσFκλ +RκλρσF

ρσFµν

+RµρκσF
ρσFνλ −RµρλσF ρσFνκ −RνρκσF ρσFµλ +RνρλσF

ρσFµκ

+RµρκσF
ρ
νF

σ
λ −RµρλσF ρνFσκ −RνρκσF ρµFσλ +RνρλσF

ρ
µF

σ
κ

+RµρκσF
ρ
λF

σ
ν −RµρλσF ρκFσν −RνρκσF ρλFσµ +RνρλσF

ρ
κF

σ
µ,

(5.2.32)

and c, d, e, f still to be determined, depending on the background spacetime.

The constants of motion (5.2.17) linear in momentum are special in that they de�ne a
Lie algebra: if J and J ′ are two such constants of motion, then their bracket is a constant
of motion of the same type. This follows from the Jacobi identity

(5.2.33) {{J, J ′} , H0} = {{J,H0} , J ′} − {{J ′, H0} , J} = 0.
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Thus, if {ei}ri=1 is a complete basis for Killing vectors

αµ = αieµi , eνj∇νe
µ
i − e

ν
i∇νe

µ
j = f k

ij e
µ
k ,

the constants of motion de�ne a representation of the same algebra:

(5.2.34) Ji = eµi πµ +
1

2
∇µeiν Σµν ⇒ {Ji, Jj} = f k

ij Jk.

Such constants of motion are helpful in the analysis of spinning particle dynamics [160,
175, 176].

5.2.2 Application to EMR Schwarzschild Black Hole

The dynamics of spinning bodies can be illustrated by the motion in a static and spheri-
cally symmetric Schwarzschild spacetime, for which the hamiltonian H0 in Droste coor-
dinates is given by

(5.2.35) 2mH0 = − 1

1− 2M
r

π2
t +

(
1− 2M

r

)
π2
r + r2π2

θ + r2 sin2 θ π2
ϕ.

Schwarzschild spacetime admits four Killing vectors, for time-translations and rotations.
They give rise to the conservation of kinetic energy

(5.2.36) − E = πt +
M

r2
Σtr,

and angular momentum

(5.2.37)

J1 = − sinϕπθ − cotanθ cosϕπϕ

−r sinϕΣrθ − r sin θ cos θ cosϕΣrϕ + r2 sin2 θ cosϕΣθϕ,

J2 = cosϕπθ − cotanθ sinϕπϕ

+r cosϕΣrθ − r sin θ cos θ sinϕΣrϕ + r2 sin2 θ sinϕΣθϕ,

J3 = πϕ + r sin2 θΣrϕ + r2 sin θ cos θΣθϕ.

It is straightforward to check that these satisfy the usual algebra of time-translations and
spatial rotations:

(5.2.38) {E, Ji} = 0, {Ji, Jj} = εijkJk.

As usual, the conservation of total angular momentum and the spherical symmetry of the
spacetime geometry allow one to take the angular momentum J as the direction of the
z-axis, such that

(5.2.39) J = (0, 0, J).
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For spinless particles, for which the angular momentum is strictly orbital, this implies
that the orbital motion is in a plane perpendicular to the angular momentum 3-vector;
with our choice of the z-axis this is the equatorial plane θ = π/2.

In the presence of spin the result no longer holds in general, as the precession of
spin can be compensated by precession of the orbital angular momentum, resulting in
a non-planar orbit [177]. However, one can ask under which conditions planar motion
is still possible. As in that case the directions of orbital and spin angular momentum
are separately preserved, it means that necessary conditions for motion in the equatorial
plane are

(5.2.40) J1 = J2 = 0, πθ = 0,

and therefore also

(5.2.41) Σrθ = Σθϕ = 0.

Furthermore the absence of acceleration perpendicular to the equatorial plane expressed
by Dτπθ = 0 implies that

(5.2.42) Σtθ = 0.

Thus planar motion requires alignment of the spin with the orbital angular momentum;
it is straighforward to show that the reverse statement also holds [178]. Aligned spin
does not precess, a statement con�rmed even by more intuitive models [179] and by
astrophysical observations as well.

From the de�nition (5.2.15) it follows that such orbits satisfy the conservation law

(5.2.43) D = S · Z = 0,

while, in terms of the four-velocity components, one is now left with relevant constants
of motion

(5.2.44) E = m

(
1− 2M

r

)
ut − M

r2
Σtr,

and

(5.2.45) J = mr2uϕ + rΣrϕ,

in addition to the hamiltonian constraint

(5.2.46)

(
1− 2M

r

)
ut 2 = 1 +

ur 2

1− 2M
r

+ r2uϕ 2,

and the conservation of total spin I, or equivalently:

(5.2.47) Σtϕ 2 = − 1

r2

I + Σtr 2

1− 2M
r

+
Σrϕ 2(

1− 2M
r

)2 .
These equations show that all the non-vanishing spin components can be calculated from
Eqs. (5.2.44), (5.2.45) and (5.2.47), once the orbital velocities are known.
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The simplest type of planar orbit is the circular orbit r = R = constant, ur = 0. In
this case the symmetry of the orbit implies that (ut, uϕ) are constant in time, and that
Σtϕ = 0. This can be shown as follows. First, absence of radial acceleration Dτu

r = 0

gives, upon using the conservation laws for E and J ,
(5.2.48)(

1− 2M

R

)(
2− 3M

R

)
mut 2 −

(
1− 3M

R

)
mR2uϕ 2 = 2E

(
1− 2M

R

)
ut +

JM

R
uϕ,

whilst the hamiltonian constraint (5.2.46) simpli�es to

(5.2.49)

(
1− 2M

R

)
ut 2 = 1 +R2uϕ 2.

These two equations can be solved for ut and uϕ in terms of (R,E, J), implying that they
are constant. An immediate consequence is that Σtr, Σrϕ and Σtϕ are constant as well,
and actually Σtϕ vanishes. This follows directly from the absence of four-acceleration:

(5.2.50)
dut

dτ
=

M

mR
uϕΣtϕ = 0,

duϕ

dτ
=

M

mR3

(
1− 2M

R

)
utΣtϕ = 0.

Then also the rate of change of Σtϕ must vanish
(5.2.51)

−M
R

(
1− 2M

R

)
dΣtϕ

dτ
=

(
1− M

R

)(
1− 3M

R

)
mutuϕ+

JM2

R4
ut−E

(
1− 2M

R

)
uϕ = 0.

Now from Eqs. (5.2.48) and (5.2.49) it follows that

(5.2.52)
2E

m

(
1− 2M

R

)
ut = 2− 3M

R
− JM

mR
uϕ +R2uϕ 2.

These equations then allow the elimination of E and ut, with the result that

(5.2.53)
JM

mR2

(
2M

R
+R2uϕ 2

)
= Ruϕ

[
M

R
−
(

1− 6M

R
+

6M2

R2

)
R2uϕ 2

]
.

As for the total spin, for circular orbits the expression (5.2.47) can be written as

(5.2.54)

I = −Σtr 2 +
R2Σrϕ 2

1− 2M
R

= − R
4

M2

[(
1− 2M

R

)
mut − E

]2

+
1(

1− 2M
R

)2 [J −mR2uϕ
]2
.

Thus for circular orbits uϕ and ut are constants which can be expressed in terms of R and
J , in turn �xing E and I as well. Solving the relation (5.2.52) gives the modi�ed third
Kepler law in the presence of spin. Notice that the spinless case Σµν = 0 gives back the
usual Kepler �law of harmonies� for a circular orbit [180]. Suppose in fact that Σµν = 0,
then solving together (5.2.49),(5.2.52) for the velocities, one gets

(5.2.55) uϕ 2 =
M

R3

1

1− 3M
R

ut 2 =
1

1− 3M
R

,
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and therefore

(5.2.56)

(
ut

uϕ

)2

=

(
dt

dϕ

)2

=
T 2

4π2
=
R3

M
,

that is third Kepler's law for a circular orbit [180, 181].

5.2.3 Application to a non-minimal hamiltonian

So far we focussed on the dynamics generated by the minimal hamiltonian H0 (5.2.7).
However, the purpose of the formalism introduced with (5.2.6) is to build a mathematically
consistent description for a spinning test-particle in a curved background. On one side
changing the metric gµν one is able to consider di�erent spacetimes, and we have shown
an example of the simple situation of circular orbits in Schwarzschild spacetime. On the
other side changing the hamiltonian one is able to describe di�erent types of compact
objects in the same background. A gravitational analogue of the Stern-Gerlach force is
described by the hamiltonian

(5.2.57) HΣ =
κ

4
RµνκλΣµνΣκλ,

including the spin-spin interaction via spacetime curvature. This force has been investi-
gated by Khriplovich [149]. The choice of hamiltonians can be enlarged further by inclu-
ding charges coupling the particle to vector �elds like the electromagnetic �eld [163, 169].

It is straightforward to derive the equations of motion:

(5.2.58)

ẋµ = {xµ, H} ⇒ πµ = mgµν ẋ
ν ,

π̇µ = {πµ, H} ⇒ Dτπµ =
1

2m
ΣκλR ν

κλµ πν −
κ

4
ΣκλΣρσ∇µRκλρσ,

Σ̇µν = {Σµν , H} ⇒ DτΣµν = κΣκλ (R µ
κλ σΣνσ −R ν

κλ σΣµσ) .

Comparing again with the electromagnetic force, the middle equation manifestly describes
a gravitational Lorentz force and a gravitational Stern-Gerlach force, coupling spin to the
gradient of the curvature. Therefore the coupling parameter κ has been termed the
�gravimagnetic ratio� [28, 182]. Like in the electromagnetic case [183] the Pauli-Lubanski
and Pirani-vectors are a�ected by this Stern-Gerlach force:
(5.2.59)

DτS
µ =

1

4m
√
−g

εµνκλΣκλΣαβ
(
Rαβνσu

σ − κ

2
Σρσ∇νRρσαβ

)
,

DτZ
µ = −κΣκλR µ

κλ νZ
ν +

(
κ+

1

2m

)
ΣµνΣκλRκλνσu

σ − κ

4m
ΣµνΣκλΣρσ∇νRκλρσ.

The second equation simpli�es strongly for the special value

(5.2.60) κ = − 1

2m
.
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In that case an initial condition Zµ = 0 is conserved up to terms of cubic order in spin.
For the extended hamiltonian the conditions for the existence of constants of motion
are modi�ed. The total spin I de�ned in (5.2.14) is still conserved, but the conserved
hamiltonian now is of course H = H0 +HΣ. Finally the constants of motion J of the form
(5.2.17) are preserved under this modi�cation of the hamiltonian. To see this, observe
that

(5.2.61) {J,HΣ} = −κΣµνΣρσ
(

1

4
αλ∇λRµνρσ + βµλR

λ
νρσ

)
.

For the Killing-vector solutions (5.2.18) the right-hand side takes the form
(5.2.62)

ΣµνΣρσ
(

1

4
αλ∇λRµνρσ + βµλR

λ
νρσ

)
=

1

2
ΣµνΣρσ (∇µ∇ρ∇σ +∇ρ∇µ∇σ)αν

=
1

2
ΣµνΣρσ (∇µ∇ρ +∇ρ∇µ)βσν = 0,

due to the antisymmetry of the tensor βσν . Therefore in particular the expressions (5.2.36)
and (5.2.37) also de�ne constants of motion in Schwarzschild spacetime in the presence
of Stern-Gerlach forces, as described by the non-minimal hamiltonian (5.2.57).

The minimal choice of hamiltonian is the one which describes the geodesic motion of
spinless particles. Instead, non-minimal hamiltonians like (5.2.57) can provide more com-
plicated dynamics, as required for example for objects with non-vanishing gravimagnetic
ratios [28, 165]. In this case the spin rotates around �eld-lines of constant curvature.
Clearly the brackets (5.2.6) and the conservation laws (5.2.17),(5.2.20) can be extended
to other non-minimal hamiltonians of di�erent kind, but restricting to the hamiltonians
like the one (5.2.57) we have dealt with, one can already obtain a description of various
compact objects simply by tuning the gravimagnetic ratio κ. This could in principle con-
tain information coming from the internal structure of the body, like an equation of state
for a neutron star.

In this sense one uses the non-minimal hamiltonian (5.2.57) as an e�ective approach.
In contrast to [163, 28, 165] where κ has a �xed value, here κ is considered as a free
parameter to be tuned case by case, inferring it from the speci�c energy-momentum
tensor of the source or from observations.

5.3 Spin worldline deviation

When spin is involved in GR, tidal e�ects take place and these lead the worldline to
diverge from its original path, sometimes even tearing the compact object apart, as it
happens to neutron stars approaching a Kerr Black Hole. In order to take such e�ects
into account, deviations from the usual geodesic path can be introduced. Moreover this
would also be a way to generalize special solutions, such as the circular orbit described
previously, to more general orbits. Therefore we show in this section how the method of
geodesic deviations �ts in the framework of spinning compact objects in GR.

Suppose one wants to apply this method to a generic orbit for a spinning compact
object, one has to consider deviations of the spin tensor (5.2.5) alongside the deviations
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of the orbit itself. Since there is also spin involved in the dynamical evolution of the
body through spacetime, the motion follows a worldline, and therefore we will deal with
worldline deviations, rather than geodesic deviations [118]. Such worldline deviations
have already been considered, for instance, when attaching Lorentz indices to the body in
the framework of a supersymmetric theory, where the spin tensor was composed of more
fundamental degrees of freedom such as Grassmann variables [147, 108].

In other works [178, 184] worldline deviations from the Mathisson-Papapetrou equa-
tions (5.1.1) have been considered, in a linearised regime, leading to a restriction of the
phase space of spin and orbital con�gurations.

In this section we �rst describe the e�ects of worldline deviation for a spinning compact
object to �rst order. Then we continue to derive the equations up to second order in the
worldline deviation. The results are derived here for the case of a spinning body, using the
same notation of this chapter, but they can also be applied to any non-trivial right-hand
side in a geodesic equation, such as the Lorentz term appearing for a charged particle in
curved background.

5.3.1 Worldline deviation equations

We �rst introduce some notation that will be used throughout this chapter. Consider a
generic worldline, described in some system of coordinates by xµ(τ), with τ some timelike
parametrization for the curve. The velocity is the tangent vector uµ = dxµ

dτ = Dxµ

Dτ , where
the last one indicates the covariant derivative [43, 44]. More extensive remarks about the
deviation equations have already been described in section 2.4; for the sake of clarity we
report here only the main points before applying it to the formalism of spinning bodies.

If one takes the covariant derivative of the velocity uµ along the same curve xµ, one
gets the so-called �geodesic equation�

(5.3.1)
D2xµ

Dτ2
=
d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
=

{
0 in free space,
fµ with other external force.

Since we want to �nd the worldline deviation to the equations (5.2.10), (5.2.11), we will
consider the case of a worldline with a non-trivial external force, represented in this case
by fµ = 1

2m ΣκλRµνκλ ẋ
ν . In order to �x the notation, notice that we can also write the

left-hand side as
D2xµ

Dτ2
=
Duµ

Dτ
= (u · ∇u)µ.

Now, given a certain background spacetime, it is possible to parametrize the family
of the geodesic curves in such a way that moving from one geodesic to another requires
just a change in this parameter. To make a simple example with a known metric: in
Schwarzschild spacetime consider the family of all the circular orbits which are solutions
of the geodesic equations (3.1.5). These are parametrized by their radial distance R and
moving from one geodesic to another means changing the radius of the orbit. Nevertheless
more complicated situations can be built, with non-trivial displacements from one geodesic
to the other. The theory about the geodesic deviation is well-known [43] and it gives
insight in the meaning of the Riemann tensor as well.
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Without loss of generality one can consider a family of worldlines described by a
timelike parameter for moving along the worldline τ , and another parameter for moving
between worldlines within the same family. Be this new parameter σ. Then one can
de�ne the rate, at �xed value of τ , of moving from one geodesic to the other inside the
same family to be

(5.3.2) nµ =
dxµ

dσ

∣∣∣∣
σ=0

=
Dxµ

Dσ
,

this is the �rst order worldline deviation vector. The name is due to the following Taylor
expansion at the same �xed value of the timelike parameter τ

(5.3.3) xµ = xµ0 + σ
dxµ

dσ

∣∣∣∣
σ=0

+
σ2

2!

d2xµ

dσ2

∣∣∣∣
σ=0

+
σ3

3!

d3xµ

dσ3

∣∣∣∣
σ=0

+ o(σ4)

where xµ0 is a well-known worldline which is the starting point of the worldline deviation
expansion. Moving among members of the family of worldlines one can go from this one
to another one xµ(τ ;σ).

Nevertheless this is not a covariant expression and in order to handle it at di�erent
points in spacetimes one has to rewrite the expansion (5.3.3) in terms of covariant quanti-
ties such as nµ in (5.3.2). For this reason one de�nes the second order worldline deviation

vector

(5.3.4) kµ =
D2xµ

Dσ2

∣∣∣∣
σ=0

=
Dnµ

Dσ

∣∣∣∣
σ=0

=
d2xµ

dσ2
+ Γµνλ

dxλ

dσ

dxν

dσ

so that the Taylor deviation expansion becomes

(5.3.5) xµ = xµ0 + σnµ +
σ2

2!
(kµ − Γµνλn

νnλ) + o(σ3).

The deviation vector (5.3.2) changes along the curve itself, i.e. its rate of change with
respect to the timelike parameter τ is:

Dnµ

Dτ
=

D2xµ

DτDσ
= (u · ∇n)µ

=
dnµ

dτ
+ Γµνλ

dxλ

dτ

dxλ

dσ
=
d2xµ

dτdσ
+ Γµνλ

dxλ

dτ

dxν

dσ
.

(5.3.6)

From this last expression one can see there is symmetry in the derivatives with respect
to τ and σ, thanks to Schwarz's theorem, so duµ

dσ = dnµ

dτ or stated di�erently that

(5.3.7) (u · ∇n)µ = uν∇νnµ = nν∇νuµ = (n · ∇u)µ ⇒ u · ∇n = n · ∇u,

a property which we are going to use extensively in the following proofs. A �rst application
is given by the covariant expression for the geodesic �acceleration� term, which we derive
here for the most general case, namely when the right-hand side of (5.3.1) is not trivially
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zero.

D2nµ

Dτ2
= uν∇ν(uτ∇τnµ) = uν∇ν(nτ∇τuµ)

= uν∇νnτ∇τuµ + uνnτ∇ν∇τuµ = nν∇νuτ∇τuµ + uνnτ∇ν∇τuµ

= nν∇ν(uτ∇τuµ)− nνuτ∇ν∇τuµ + nτuν∇ν∇τuµ

= nν∇ν(uτ∇τuµ) + nτuν(∇ν∇τ −∇τ∇ν)uµ

= nν∇ν(uτ∇τuµ) + nτuνRµντκu
κ

= Rµντκu
νnτuκ + fµ;νn

ν

(5.3.8)

where Rµντκ is the Riemann tensor associated with the background metric. This is the
usual geodesic deviation equation (2.4.1) with an extra term associated to the background
�elds. For instance a particle with charge q and mass m follows the worldline equation

(5.3.9)
D2xµ

Dτ2
=

q

m
Fµν

dxν

dτ
= fµ,

and the corresponding �rst order worldline deviation equation is

(5.3.10)
D2nµ

Dτ2
= Rµντκu

νnτuκ +
q

m
Fµλ;νn

νuλ +
q

m
Fµλ

Dnλ

Dτ
.

We can already apply the result (5.3.8) for the �rst-order worldline deviation equation
with background �elds to the spinning particle case. In this case one takes the equation
of motion (5.2.11), which we recall here to be

(5.3.11)
D2xµ

Dτ2
=

1

2m
ΣκλRµνκλu

ν = fµ,

and then from (5.3.8) after some straightforward algebra one derives the �rst order world-
line deviation equation with the Stern-Gerlach term as background �eld
(5.3.12)

D2nµ

Dτ2
= Rµκνλu

κuλnν +
Σκλ

2m
Rµνκλ

Dnν

Dτ
+

1

2m

(
ΣκλRµνκλ;ρu

νnρ + JκλRµνκλu
ν
)
.

In this equation we have introduced the antisymmetric tensor Jκλ. This is the spin
counterpart of nµ. In fact, together with the worldline deviation itself, one has to consider
the spin deviation, or

(5.3.13) Jκλ =
DΣκλ

Dσ
.

The worldline deviation equations for a spinning particle would not be complete without
the deviation equations for the spin tensor, as this is a dynamical degree of freedom as
well. This implies a Taylor expansion of the spin tensor Σ like (5.3.3):

(5.3.14) Σµν = Σµν0 + σ
dΣµν

dσ

∣∣∣∣
σ=0

+
σ2

2!

d2Σµν

dσ2

∣∣∣∣
σ=0

+
σ3

3!

d3Σµν

dσ3

∣∣∣∣
σ=0

+O(σ4).
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Once the de�nition for the spin �rst-order deviation tensor (5.3.13) has been given, one
can proceed to write down the deviation equation. First observe that, by the de�nition
of the Riemann tensor in torsion-less spacetimes [43], one can write

(5.3.15) [∇µ,∇ν ]Σκλ = Rµν
[κ
ρΣ

ρλ] = Rµν
κ
ρΣ

ρλ −RµνλρΣρκ = [Rµν ,Σ]κρ.

Finally, the �rst order deviation equation for the spin term Jκλ reads

(5.3.16)
DJµν

Dτ
= −Rκλ[µ

ρΣ
ρν]uκnλ = [Rκλ,Σ]µνuκnλ.

Summarizing, to �rst order in the Taylor expansions (5.3.3), (5.3.14), the worldline devi-
ations for a spinning test-particle are given by the vector nµ and the tensor Jκλ, whose
evolution equations [108] are

D2nµ

Dτ2
= Rµκνλu

κuλnν +
Σκλ

2m
Rµνκλ

Dnν

Dτ
+

1

2m

(
ΣκλRµνκλ;ρu

νnρ + JκλRµνκλu
ν
)
,

DJκλ

Dτ
= [Rµν ,Σ]κλuµnν .

5.3.2 Second order worldline deviation

The next step is to derive the second order deviation equation, that is the equations
concerning kµ and its spin analog. The second order deviation vector has already been
de�ned in (5.3.4), while the spin counterpart is Kµν , i.e. the second order covariant
derivative of the spin tensor

(5.3.17)
D2Σµν

Dσ2
=
DJµν

Dσ
= Kµν .

With this de�nition, one can write down the worldline expansion in the spin (5.3.14)
in covariant terms as

Σµν = Σµν0 + σ
(
Jµν − ΓµκλΣκνnλ − ΓνκλΣµκnλ

)
+
σ2

2!

(
Kµν − Γµκλ,ρΣ

κνnρnλ − Γνκλ,ρΣ
µκnρnλ − (ΓµκλΣκν + ΓνκλΣµκ)

(
kλ − Γλρτn

ρnτ
)

− Γµκλn
λ
(
Jκν − ΓκρτΣρνnτ − ΓνρτΣκρnτ

)
− Γνκλn

λ
(
Jµκ − ΓκρτΣµρnτ − ΓµρτΣκρnτ

))
+O(σ3).

(5.3.18)

Unlike (5.3.12) which are second order di�erential equations, the Eq. (5.3.16) for Jµν is
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of the �rst order, so one can expect the equation for Kµν to be of the same order,

DKκλ

Dτ
= u∇(n∇Jκλ)

= u · ∇(n · ∇Jκλ) + (n · ∇u)∇Jκλ − (u · ∇n)∇Jκλ

= u · ∇(n · ∇Jκλ) + n · ∇(
DJκλ

Dτ
)− uµnν∇ν∇µJκλ

− u · ∇(n · ∇Jκλ) + uµnν∇µ∇νJκλ

= n · ∇(
DJκλ

Dτ
) + (∇µ∇νJκλ −∇ν∇µJκλ)uµnν

= n · ∇(
DJκλ

Dτ
) + [Rµν , J ]κλuµnν ⇒

DKκλ

Dτ
= [Rµν ;ρ,Σ]κλuµnνnρ + 2[Rµν , J ]κλuµnν + [Rµν ,Σ]κλ(

Dnµ

Dτ
nν + kνuµ).

(5.3.19)

The following equalities have been used

u · ∇(n · ∇Jκλ) = (u · ∇n) · ∇Jκλ + uµnν∇µ∇νJκλ,
[∇µ,∇ν ]Jκλ = [Rµν , J ]κλ,

n · ∇(
DJκλ

Dτ
) = nρ∇ρ(uµ∇µJκλ)

= nρ∇ρ([Rµν ,Σ]κλuµnν)

= [Rµν ;ρ,Σ]κλuµnνnρ + [Rµν , J ]κλuµnν + [Rµν ,Σ]κλ(
Dnµ

Dτ
nν + kνuµ)

(uµnν);ρn
ρ = n · ∇(uµnν)

= n · ∇uµnν + n · ∇nνuµ

=
Dnµ

Dτ
nν + kνuµ

n · ∇nν = kν .

We are left with the equation for kµ in the presence of a non-trivial external force, as
the Stern-Gerlach term in (5.3.11). While it is relatively easy to �nd the geodesic deviation
equations in GR textbooks, and even the generalizations to non-trivial background �elds
have already been considered in the literature [118, 108, 178, 184], performing it to the
second order is a more involved task. An easy way to �nd out this equation is employing
a di�erent formalism than the one used so far. We rely heavily on the vector formalism
established in [107], whose basic elements are recalled here.

So, be X,Z two vectors tangent to two di�erent curves in the curved spacetime and be
[X,Z] = ∇XZ−∇ZX their Lie derivative. As it is well-known the curvature is expressed
by the Riemann tensor, whose de�nition would read, using these vectors,

R(X,Z)Y = [∇X ,∇Z ]Y −∇[X,Z]Y,

and the interpretation of the covariant derivatives in the usual symbols leads to

∇W (∇XY µ) = Wα(Y µ;νX
ν);α.
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As check one can derive again the �rst order worldline deviation equation; just by making
the following replacements

X → nµ,

Z → uµ,

⇒ ∇ZZ = uµuλ;µ = fλ,

u · ∇n = n · ∇u⇒ ∇XZ = ∇ZX and [X,Z] = 0,

[∇α,∇β ]nαuβu = R(n, u)u⇒ [∇X ,∇Z ]Z = R(X,Z)Z,

one obtains the �rst order worldline deviation equation (5.3.8)

D2nµ

Dτ2
= uν(uλnµ;λ);ν = ∇Z(∇ZX) = ∇Z(∇XZ)

= ∇Z(∇XZ)−∇X(∇ZZ) +∇X(∇ZZ)

= R(Z,X)Z +∇X(∇ZZ) = Rµαβγu
αnβuγ + fµ;νu

ν .

(5.3.20)

Before moving to the second order geodesic deviation equation, an important obser-
vation is necessary. Be Y a so-called Jacobi-�eld such that [Y,Z] = 0 = [X,Z], then,
through Jacobi identity one deduces that [[Y,X], Z] = 0. Be W = [Y,X], also W is a
Jacobi �eld whose Lie derivative along the curve tangent to Z is null as well. This implies
the following identities which will be useful later on. The �rst one is

∇Z(∇ZW ) = ∇2
Z([X,Y ]) = R(Z, [X,Y ])Z +∇[X,Y ](∇ZZ)

= ∇2
Z(∇XY −∇YX) = R(Z,∇XY −∇YX)Z +∇[X,Y ](∇ZZ)

= ∇2
Z(∇XY )−∇2

Z(∇YX) = R(Z,∇XY )Z −R(Z,∇YX)Z +∇[X,Y ](∇ZZ),

implying that
(5.3.21)
∇Z(∇Z(∇YX))−R(Z,∇YX)Z = ∇Z(∇Z(∇XY ))−∇[X,Y ](∇ZZ)−R(Z,∇XY )Z.

One can always exchange the order between the couples (X,Y ), (Y,Z) and (X,Z) since
these are all Jacobi �elds. Keeping this in mind, we take the covariant derivative of the
left-hand side of the equation above and get

∇Z(∇Z(∇XY )) = ∇Z(∇Z(∇XY )−∇X(∇ZY )) +∇Z(∇X(∇ZY ))

= ∇Z(R(Z,X)Y ) +∇Z(∇X(∇ZY ))

= (∇ZR)(Z,X)Y +R(∇ZZ,X)Y +R(Z,∇ZX)Y

+R(Z,X)∇ZY +∇Z(∇X(∇ZY )).

This equality helps in the evaluation of ∇2
Z(∇YX) − R(Z,∇YX)Z, which is the crucial

calculation to get to the second order worldline deviation equation. In fact, one can notice
that

∇2
Z(∇YX)−R(Z,∇YX)Z = (∇ZR)(Z,X)Y +R(∇ZZ,X)Y +R(Z,∇ZX)Y

+R(Z,X)∇ZY +∇Z(∇X(∇ZY ))−∇[X,Y ](∇ZZ)−R(Z,∇XY )Z.
(5.3.22)
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Now, since

∇XR((Z, Y )Z) = (∇XR)(Z, Y )Z +R(∇XZ, Y )Z +R(Z,∇XY )Z +R(Z, Y )∇XZ

one can rewrite (5.3.22) in the following way

∇2
Z(∇YX)−R(Z,∇YX)Z = (∇ZR)(Z,X)Y +R(∇ZZ,X)Y +R(Z,∇ZX)Y +R(Z,X)∇ZY

+∇Z(∇X(∇ZY ))−∇[X,Y ](∇ZZ) + (∇XR)(Z, Y )Z

+R(∇XZ, Y )Z +R(Z, Y )∇XZ −∇X(R(Z, Y )Z)

= R(∇ZZ,X)Y −∇[X,Y ](∇ZZ)

+ (∇ZR)(Z,X)Y +R(Z,X)∇ZY
+ (∇XR)(Z, Y )Z +R(Z, Y )∇XZ
+R(Z,∇ZX)Y +R(∇XZ, Y )Z −∇X(R(Z, Y )Z)

+∇Z(∇X(∇ZY ))−∇X(∇Z(∇ZY ))︸ ︷︷ ︸
R(Z,X)∇ZY

+∇X(∇Z(∇ZY )).

From now on take into account only the last six terms (last two rows of the equation
above), which can be rewritten as �ve

R(Z,X)∇ZY +R(Z,∇ZX)Y +∇X(∇Z(∇ZY )) +R(∇XZ, Y )Z −∇X(R(Z, Y )Z).

Now we exchange the order of X,Z in covariant derivatives, since their Lie derivative is
null

R(Z,X)∇ZY +R(Z,∇XZ)Y +∇X(∇Z(∇Y Z)) +R(∇XZ, Y )Z −∇X(R(Z, Y )Z),

and then subtract and add the same term

R(Z,X)∇ZY +R(Z,∇XZ)Y +∇X(∇Z(∇Y Z))−∇X(∇Y (∇ZZ))︸ ︷︷ ︸
∇X(R(Z,Y )Z)

+∇X(∇Y (∇ZZ))

+R(∇XZ, Y )Z −∇X(R(Z, Y )Z).

Third and fourth term give another covariant derivative of the Riemann tensor term which
annihilates with the last term, leaving only

(5.3.23) R(Z,X)∇ZY +∇X(∇Y (∇ZZ)) +R(Z,∇XZ)Y +R(∇XZ, Y )Z.

Thanks to Bianchi identity R(U, V )W + R(V,W )U + R(W,U)V = 0 the last two terms
can be replaced with −R(Y,Z)∇XZ = R(Z, Y )∇XZ and one can now collect all the
terms together obtaining the so longed equation

∇2
Z(∇YX)−R(Z,∇YX)Z =

terms disappearing if Z is geodesic tangent vector︷ ︸︸ ︷
R(∇ZZ,X)Y −∇[X,Y ](∇ZZ) +∇X(∇Y (∇ZZ))

+ (∇ZR)(Z,X)Y + (∇XR)(Z, Y )Z

+ 2R(Z,X)∇ZY + 2R(Z, Y )∇XZ.

(5.3.24)
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Notice that the �rst three terms on the right-hand side would all vanish if considering a
geodesic curve, so with ∇ZZ = 0. In order to retrieve from this very general expression
the worldline deviation one needs the following replacements

X = Y → nµ,

Z → uµ,

⇒ ∇ZZ = ∇uuµ = fµ,

∇YX = ∇XX =
Dnµ

Dσ
= kµ.

Finally one obtains

∇2
u(∇nn)−R(u,∇nn)u = R(∇uu, n)n−∇[n,n](∇uu)

+∇u(∇n(∇uu)) + (∇uR)(u, u)n

+ (∇nR)(u, n)u+ 2R(u, n)∇un+ 2R(u, n)∇nu.
(5.3.25)

or

D2kµ

Dτ2
+Rµ(k, u)u =

Rµ(f, n)n+
D

Dτ

Dfµ

Dσ
+
DRµ

Dτ
(u, n)n+

DRµ

Dσ
(u, n)u+ 4Rµ(u, n)

Dn

Dτ
.

(5.3.26)

Stated di�erently, one can say that everytime there is a worldline equation of the type
D2xµ

Dτ2 = fµ, the second-order worldline deviation equation is

D2kµ

Dτ2
+Rνρσ

µkνuρuσ =

Rνρσ
µnρnσfν +

D

Dτ

Dfµ

Dσ
+ uλuνnρnσ

(
Rνρσ

µ
;λ −Rρνλ

µ
;σ + 4Rνρσ

µuνnρ
Dn

Dτ

)
.

(5.3.27)

This is the second-order worldline deviation equation for the vector kµ. The non-trivial
right-hand side of the equation of motion (5.3.11) has to be replaced instead of fµ in
order to obtain the worldline deviation equation coupled to (5.3.19).

Summarizing, the second-order worldline-deviation equations, describing the proper-
time evolution of the second-order deviation vector kµ and tensor Kµν , are respectively:

D2kµ

Dτ2
+Rνρσ

µkνuρuσ =

Rνρσ
µnρnσfν +

D

Dτ

Dfµ

Dσ
+ uλuνnρnσ

(
Rνρσ

µ
;λ −Rρνλ

µ
;σ + 4Rνρσ

µuνnρ
Dnσ

Dτ

)
,

(5.3.28)

(5.3.29)
DKκλ

Dτ
= [Rµν ;ρ,Σ]κλuµnνnρ+2[Rµν , J ]κλuµnν +[Rµν ,Σ]κλ(

Dnµ

Dτ
nν +Kνuµ).
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5.4 Concluding remarks

The notion of pointlike mass in GR is troublesome, because any mass has a corresponding
Schwarzschild radius rS = 2GM

c2 , indicating the minimal size of the body as de�ned by its
corresponding horizon [43]. On top of this for a spinning mass there is the minimal size
[185] typi�ed by its Møller radius rM = S

m . These two de�ne the scale of the approxima-
tion for a compact body rotating in curved spacetime. The body has to be considerably
smaller than the radius of curvature of the background in order to be considered a spinning
test-particle [186, 176].

Once these conditions are ful�lled, a representative point can be chosen for the spin-
ning compact object, and much e�ort has been put in the literature to de�ne such a
position variable, which is not unique. The result is that di�erent worldlines correspond
to physically equivalent descriptions of the same system [23, 25, 166, 136]. These di�erent
choices can be enforced through di�erent spin supplementary conditions (5.1.3) or directly
in the de�nition of the position variable xµ appearing in the hamiltonians and actions
describing the system [149, 165, 26, 27]. An important role in connecting di�erent choices
is played by the mass dipole moment (5.1.4) or the Pirani vector (5.2.1). In particular, the
closed set of Dirac-Poisson brackets (5.2.6) provides a unique and unambiguous starting
point for the derivation of equations of motion for any representation of the spin degrees
of freedom, allowing for a large class of physical implementations as �xed by the choice of
hamiltonian. Two such choices, a minimal and a non-minimal one, have been presented
and analyzed in the second section of this chapter.

The equations of motion (5.1.1), (5.2.9), (5.2.10) show that the spin-orbit coupling
makes the motion of the test mass non-geodetic. Geodetic motion for spinless particles
is retrieved with the minimal hamiltonian (5.2.7), for spinning particles this provides
covariant conservation of the spin tensor (5.2.10). Other constants of motion can be
introduced (5.2.13), (5.2.14), (5.2.17), (5.2.20), even for non-minimal hamiltonians con-
sidering a gravimagnetic ratio κ [165]. This formalism gives the opportunity to take into
account other e�ects, such as internal structure of the spinning body, by tuning this para-
meter, making (5.2.7) an e�ective hamiltonian. The question which e�ective hamiltonian
to use for which physical system now becomes a matter of phenomenology. One should
either derive the correct e�ective hamiltonian from �rst principles [182, 28], connecting
the formalism to the speci�c energy-momentum tensor, or determine it from experiments
or observations. For the particular case of rotating black holes it could presumably be
measured by observing gravitational waves from Extreme-Mass-Ratio binary systems in-
volving a stellar-mass black hole.

An example is given by the Schwarzschild geometry, where the minimal hamiltonian
case has been analyzed and the correspondence between aligned spin, i.e. non-precessing,
and circular orbits has been reestablished and con�rmed. Small deviations from this
motion have shown little precession of the orbit in a con�ned region of spacetime [177, 178]
in a linearised regime. In order to use fully General Relativity one needs to provide the
formal worldline deviation expansions, as well for the orbit as for the spin degrees of
freedom. This formalism has been further extended, providing the mathematical proofs
for any curved background in all generality, in the last section of this chapter.
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6 Conclusion

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

In this work two aspects of the dynamics of Extreme Mass Ratio (EMR) binary sys-
tems have been investigated. First we established a model for the �plunge� phase within
Black-Hole perturbation theory, and the gravitational radiation coming from it has been
calculated. The limits and possibilities of this method have been discussed and further
extended using geodesic deviations. Secondly, spin has been added to the minor com-
panion of the binary, exploring the dynamics of a spinning particle in curved background
by establishing a new e�ective formalism and with applications, for instance to circular
orbits in Schwarzschild spacetime.

During the last stages of an EMR binary, the orbit of the minor companion is con-
siderably less eccentric than it was during the previous long inspiral stage. The plunge
phase and the following merger start in the proximity of the Innermost Stable Circular
Orbit (ISCO) and we have devised a geodesic solution of the Schwarzschild background
(assuming for convenience that the central major black hole is non-rotating) that begins
for r < 6M in the inner region and ends on the BH horizon r = 2M . This is an example
of the so-called �ballistic orbits�, a special subclass of Darwin's associated orbits [133, 47].
We have analysed their properties, thanks to the fact that these orbits are known ana-
lytically and in closed form. They are a valuable model for the plunge phase of an EMR
binary as they reproduce a quasi-circular motion �rst, followed by a more direct spiralling
drive towards the horizon.

The ballistic orbits are exact solutions of the geodesic equation for Schwarzschild
spacetime, they have their apastron at r = R = (6− 4e)M , with e being an �eccentricity�
parameter for the orbits. For R close to 6M the quasi-circular phase includes a large
number of turns around the central black hole. They can come arbitrarily close to the
ISCO and are degenerate in energy and angular momentum with outer stable circular
orbits, those with radius rc > 6M . This implies that their energy and angular momentum
are slightly higher than those of the ISCO, so in the limit of small e they can be used to
describe test masses in�nitesimally boosted from the ISCO and then falling into the black
hole. Following a ballistic orbit the test mass µ orbits �rst along an almost-circular orbit,
for which ṙ � rϕ̇. Then near r = 4.3M the radial and circular velocities become equal,
and after this cross-over the radial motion dominates. This subdivision in the orbit is a
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well-known fact, already recognized when studying more general cases of BH coalescences
[21, 22]. As far as the initial revolutions are concerned, one can account for their number
using power laws of the mass-ratio ν = µ

M , valid in the regime of Extreme Mass Ratio
(for ν ∼ 10−4 the relation breaks down). These considerations also mark the presence
of a �universal phase�, independent of the mass ratio, starting with the transition from
quasi-circular to more radial motion.

For the infalling test mass we have computed the gravitational waves emitted during
the infall. This has been done within Regge-Wheeler perturbation theory, exploiting the
spherical symmetry of the Schwarzschild background. The implicit assumption made here
is that the backreaction of the test mass and the waves on the background metric may be
neglected. The Regge-Wheeler equations then have been solved numerically through the
Lousto-Price algorithm implemented in C++ code. The behaviour of the waves obtained
in this way con�rms the kinematics of the orbit, in that the waves slowly and smoothly
increase in amplitude and frequency throughout the quasi-circular phase, then a sudden
increase with a �nal burst occurs (with amplitudes increasing by a factor of 2), followed
by a damped and dying signal. Whereas the initial slow increase is strongly dependent
on the parameters of the ballistic orbit, like the distance between its apastron and the
ISCO, or the mass ratio, the �nal burst is virtually independent and in analogy with the
second part of the ballistic orbit.

In speci�c parameter ranges the ballistic orbits can then be used as a �rst approxima-
tion to the infall phase of an EMR binary. The waveforms obtained in this way reproduce
qualitatively known results. One is left with the issue of energy and angular momentum
being higher than the corresponding ISCO values. In order to obtain a more realistic
model for the plunge phase of EMR binaries, we have applied the technique of geodesic
deviations to the ballistic orbits. We have been able to �nd an analytic solution of the
geodesic deviation equations discovering �rst integrals of the equations, and eventually
to perturb the original orbit. The deviation is not large and it a�ects mainly the radial
motion. Our calculations have shown that in this way one can increase the number of
revolutions in the quasi-circular phase, leaving the universal phase practically untouched.
The main advantage though comes from the possibility of tuning the parameters of the
deviation, the energy and angular momentum corrections ε1, `1. This allows to shape the
�nal orbit with any desired energy and angular momentum, provided certain reasonable
constraints are satis�ed. Clearly, in this way the energy of the test particle can be re-
duced to that of the ISCO or to lower values, which re�ects a more realistic behaviour for
a general EMR binary, where energy is continuously decreasing due to emission of GWs.

As far as EMR binaries are concerned, there is also the possibility to include spin into
this framework. The simplest situation is when the minor body rotates, as in Neutron
Star - Black Hole binaries. This can be described by a test particle with attached a
classical spin vector moving in the curved background of the central major body. The
equations for a spinning particle, where the e�ects of spin are taken up to dipole order
and again the backreaction on the background metric is neglected, are long-known [136].
The spin degrees of freedom are included in an antisymmetric spin-tensor Σµν and in the
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common procedure one introduces reasonable �supplementary conditions� to get rid of
the extra degrees of freedom, thus de�ning the worldline of the representative point of
the spinning test-particle. The canonical momentum does not coincide with the product
mẋµ, but it includes the spin as well. Instead in our case we have introduced a covariant
formalism with a built-in worldline, i.e. the representative position xµ is de�ned as the
one satisfying the equations of motion derived from an appropriate set of Poisson-Dirac
brackets. In this case the equality πµ = mẋµ is restored. Within this formalism, we
have derived again the equations of motion for a spinning test-particle, established the
constants of motion, and under which conditions they are conserved. Afterwards we have
provided an application to circular orbits in Schwarzschild spacetime and a non-minimal
hamiltonian, showing that the applications are independent of the chosen hamiltonian.

The Poisson-Dirac brackets used in our derivation were partly investigated already
by Khriplovich [163], but with a di�erent meaning and interpretation. Here we used the
hamiltonian as an e�ective one, namely one can change the hamiltonian with the one
best �tting the particular object under study. In this way the information relative to
the internal structure of the body represented by the test-particle is included into extra
terms and factors in the hamiltonian. For the minimal hamiltonian H = 1

2mgµνπ
µπν

the usual equations of motion are retrieved. One can then include other e�ects such as
Stern-Gerlach terms and electromagnetic �elds.

Together with the brackets we have introduced conserved quantities, such as the total
spin, energy, and total angular momentum, but also a system of orthogonal 4-vectors
(u,W, S, Z) forming a basis of independent vectors de�ning a frame to be carried along
the particle worldline. One of these, the Pirani vector Zµ, is the �mass dipole moment�,
de�ning the connection between the particle's worldline and the center-of-mass worldline.
On top of this, we have investigated the conserved quantities quadratic in the momenta
πµ, establishing the relations to be satis�ed in terms of Killing-Yano tensors. All these
results are general and valid for any background metric.

As an application of the formalism we have considered the Schwarzschild metric for
convenience and we have shown how to build circular orbits in the equatorial plane,
�nding deviations from Kepler's third law. Another application has been realized with a
non-minimal hamiltonian made by Stern-Gerlach terms, which still preserve constants of
motion to �rst order in the gravimagnetic ratio κ. Finally, we have extended the geodesic
deviation equations to spinning particles, up to second order in the deviation parameter
σ, thus laying down the foundations for a worldline deviation method including spin.

The spin formalism discussed in this thesis can be further investigated, especially
in the relation with the other equivalent decriptions requiring the use of supplementary
conditions. Changing these conditions is like making a gauge choice, therefore it should be
possible to reduce the di�erences between orbital descriptions, the position of the center of
mass with respect to the body's worldline, the spin vectors, and so on, to a transformation
from a worldline to another, as a coordinate change. The results obtained about spinning
compact objects are useful for EMR binaries, as these naturally satisfy the test-particle
requirements, and have found further application through worldline deviations for circular
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orbits in Schwarzschild and Reissner-Nordstrøm backgrounds [27], determining also how
the ISCO changes due to spin e�ects. Further improvements can be done in this direction,
beyond planar motions or to other metrics, like Kerr.

The extension to Kerr metric is important because of the signi�cance of this metric
in modelling astrophysical pheonomena, namely any black hole can be represented by a
Kerr BH. The problem can be tackled �rst along the equatorial plane, for convenience of
calculation. This is valid for the spin as for the geodesic deviation in general. In this case
the ballistic orbits can be employed again for the plunge phase.

Another interesting application is to explore to which extent the ballistic orbits can
be matched to previous stages in the EMR coalescence. Through deviations one could
devise orbits matching directly the eccentric orbits before the ISCO, so with a higher
energy, and in this way complete the picture of inspiral/quasi-circular transition/direct
plunge and merger of the binary coalescence. Gravitational radiation has been extracted
from a ballistic orbit, but it can be compared to the corresponding one from the deviated
ballistic orbit or to backreaction e�ects, as the deviations allow to adjust the orbit in
order to take even those into account.

All these possible directions aim at a better understanding of the EMR dynamics and
the gravitational radiation emitted by their binaries. Con�rmation of the existence of
gravitational waves came this year from the ground-based detector of second generation
aLIGO, which can detect in the range of comparable-mass-ratio binaries, as GW150914
was. This should be a stronger drive to search also for EMR binaries as sources of GWs
and it will even further increase the interest in eLISA, scheduled to be launched in 2034.
Gravitational waveforms for EMR binaries will be ready by that time, if their dynamics
will have been explored su�ciently. GW detection is a considerable step forward and
the beginning of a new era; all the combined e�orts in waveform prediction and GW
detection will provide us with stronger tests of General Relativity and most of all, with a
new instrument to look at the sky and investigate the properties of astrophysical objects.
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A Near-horizon source terms

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Here below are reported the F lmZM/RW , G
lm
ZM/RW source functions and similar expressions

evaluated near the black-hole horizon, for a small body of mass µ moving on a ballistic
orbit (3.1.12). These are needed for the implementation of the Lousto-Price algorithm
when the test-particle is approaching the BH horizon, as it is discussed in section 3.2.1.

A superscript (h) indicates that these are the same terms appearing in the Regge-
Wheeler equations, but evaluated close to the horizon by using the approximation for the
in�nitesimal quantity R = r − 2M . Expanding around R = 0, that is r → 2M , one gets

er
∗−R−2M =

(
R

2M

)2M

∼ er
∗−2M ⇒ R = 2M

(
e
r∗
2M−1

)
� 1,

and so, for instance, the Schwarzschild factor becomes

f(r) = 1− 2M

r
→ R

2M
= e

r∗
2M−1,

A subscript p indicates a quantity calculated along the particle's orbit. The following
are results of Taylor expansions around R = 0 to second order in the di�erence R =

r = 2M , for the terms appearing in the source integral in the Lousto-Price algorithm
expression (2.3.7).

Auxiliary functions:

Λ(h)(r) = λ+
3

2
,

V̄
l(h)
ZM (r∗) =

l4 + 2l3 − l2 − 2l + 3

4M2(l2 + l + 1)
e
r∗
2M−1,

V̄
l(h)
RW (r∗) =

l2 + l − 3

4M2
e
r∗
2M−1,

ϕ(h)
p (r∗) = −

2 arctan
√

3δ
4−6δ√

δ
2−2δ

−
6
√

3(δ − 1)(δ − 1)

(3δ − 4)
√

3δ − 2
e
r∗
2M−1,

ṙp(r
∗) = −1− 9(1− δ)(4− 5δ)

4M(4− 3δ)
√

2−3δ
(2−δ)(1−δ)

√
4− 12δ + 11δ2 − 3δ3

e
r∗
2M−1.

(A.0.1)
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Odd modes (Regge-Wheeler):

F
lm(h)
RW (rp, t)

f2(rp)
= −288πµ(1− δ)2

√
2− 3δ + δ2

M (16− 44δ + 36δ2 − 9δ3)

(l − 2)!

(l + 2)!
W ∗lmϕϕ

(π
2
, ϕp

)
+

864πµ(1− δ)2
√

2− 3δ + δ2

M (16− 44δ + 36δ2 − 9δ3)

(l − 2)!

(l + 2)!
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(π
2
, ϕp

)
e
r∗
2M−1 + o

(
R2
)
,

(A.0.2)

∂
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(A.0.3)
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Even modes (Zerilli-Moncrief):

F
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G
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Summary

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

�On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer
Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave
signal� such is the beginning of the �rst paper in Gravitational Wave (GW) astronomy
ever, issued on 12 February 2016 [4], exactly a hundred years after the �rst prediction
of GWs by Einstein himself [30]. The detection of gravitational waves has been a long
awaited event1, it is the result of long-lasting e�orts, and contributes to make our epoch a
very exciting one. This discovery is of a fundamental importance not only because it fully
con�rms the current theory of the gravitational interaction -General Relativity (GR)- in
regions which we have never been able to test before, but also because it represents the
�rst of a series of other similar observations which altogether will give us a completely
new view on the universe.

The detection of Gravitational Waves

Two detectors are involved in this discovery, one in Hanford, Washington and the other
at Livingston, Louisiana, in the US. Both these interferometers are part of the LIGO
experiment, and their data, including the mentioned formidable detection, have been
analysed by the joint collaboration of LIGO and Virgo (another interferometer experiment
situated in Italy, soon starting to take data too). In simple terms, an interferometer is a
big experimental set-up with laser and mirrors, where the laser beams travel along two
orthogonal arms and then recombine together. The purpose of the experiment is that
if a gravitational-wave signal passes by the interferometer, then the laser undergoes tiny
deformations that can be noticed when the laser beams recombine. The principle is not
di�erent from similar optical set-ups, but what makes it incredible is the precision that
has to be reached in order to hear a gravitational wave. To give an idea, the inteferometer
has to be so sensitive to measure a variation of distance smaller than an atom over a total
path the size of the distance Earth-Sun!

It takes long time and technological progress and e�orts to reach such sensitivities,
and this is all justi�ed by the quest for gravitational waves. These have been �rst theore-
tically predicted, but what truly convinced scientists to invest their time and energy into
gravitational waves' hunt was the collection of indirect proofs of their existence that we

1The detection event itself has been named GW150914, with obvious referral to the date.
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kept gathering until nowadays. The most notorious one was the observation of a binary
pulsar2 (a couple of rotating neutron stars emitting a beam of electromagnetic radiation)
whose behaviour could only be explained with gravitational wave emission. This discov-
ery in 1974 was worth a Nobel prize to in 1993. Forty years later we observed GW150914,
a binary system of black holes emitting gravitational waves.

Before GW150914 we were able to see the sky only thanks to electromagnetic radiation,
be it light (from our naked eye looking up above on a clear night to the powerful telescopes
of remote observatories), be it other non-visible radiation (caught by huge antennas such
as in radiotelescopes or other devices). Now we can �hear� the universe with a di�erent
tool, interferometers, and this is just like going from old silent �lms to present-day movies:
a whole new pack of information is now available to us. Moreover the �rst detection
of gravitational waves brings along other discoveries relevant on their own, namely the
detected waveforms come from a system of two black holes inspiraling and then merging
together. This is a con�rmation of the existence of black-hole binaries and also the
�rst detection ever of a black-hole merger. Physicists have many good reasons for being
excited.

General Relativity as the theory of Gravity

All these fascinating phenomena, gravitational waves and black holes, stem out of the
theory of General Relativity, which we owe mainly to Einstein's work, and that consti-
tutes the best explanation we currently have experimentally tested for gravity. Without
this theory, we would have not predicted these astrophysical wonders and therefore not
even observed them. Since the �rst experiments by Galilei on free fall, and Newton's
law of universal gravitation explaining Kepler's empirical laws for the motion of planets,
to nowadays satellites and GPS system, we have come a long way. In Einstein's general
relativity picture space and time are not independent, but coupled together into a new en-
tity: spacetime. While with Newtonian gravity the Earth is attracted by the gravitational
force of the Sun, in the new general-relativistic picture the Earth is moving freely, but in a
geometry curved by the mass of the Sun, therefore it is not following a straight-line path,
but rather an elliptic orbit around the Sun. The usual image of spacetime provided by
GR is that of a carpet extending throughout space and time where astrophysical objects
move according to its curvature, its bendings. In this pictorial representation gravitatio-
nal waves are ripples, vibrations of the carpet itself, propagating along spacetime, and
black holes are holes, sinks, engul�ng whatever comes too close to them, beyond the so-
called �event horizon� of the black hole. Even light does not escape from them, therefore
they are black.

However, black holes move and by doing so the spacetime carpet gets wrinkled and
the ripples propagate: moving black holes, or more generally moving masses, generate
gravitational waves in spacetime. We have built speci�c �antennas� -the interferometers-
to feel these waves and we recently succeeded. This would have not been possible if we

2The pulsar is named PSR B1913+16, or more commonly known as the Hulse-Taylor binary pulsar,

from the names of its discoverers. After this pulsar, similar others have been found.
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had not �rst developed predictions and models for the signal to be detected and for the
black holes generating it.

Numerical simulations of the gravitational waves (in red/orange) produced by inspiraling black

holes. The blue and purple curves represent their orbits, while the green arrows their spins.

Simulation credit to C. Henze/NASA Ames Research Center.

The thesis

This thesis is concerned with the study of pairs of compact objects -binary systems- that
can be black holes or other kind of astrophysical objects, such as neutron stars3. In
particular this thesis is devoted to models for the orbit of these objects and to the e�ect
of other parameters, such as the spin (the content of the second part of this dissertation),
in order to make predictions for the emitted gravitational radiation. For instance, a black-
hole binary is a system of two black holes orbiting around each other for very long time
and eventually merging into a unique �nal black hole. This whole process is commonly
called �coalescence�, from Latin coalescere, that is literally joining together. The kind
of coalescence and its behaviour are strictly dependent on the masses of the two black
holes and their spins. The black holes in the binary detected in GW150914 have masses
respectively of 36 and 29 M�, so they have comparable masses4. Whenever the mass

3Neutron stars are the densest and smallest stars known to exist in the Universe and are composed

almost entirely of neutrons; gravitational waves from neutron star systems can help us de�ne better their

inner structure.
4M� = (1.98855± 0.00025)× 1030 kg is the solar mass, the mass of the Sun.
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ratio of the two objects is smaller than 1 in 100000, that is one of the two has a mass
at least 105 times bigger than the other, the binary is an Extreme Mass Ratio binary
(EMR). Usually in order to justify such big masses the only possibility is that the heavier
body is a Supermassive Black Hole, with a mass ∼ 106M�. This distinction between
comparable-mass binaries and EMR binaries is crucial in identifying the time scale of the
phenomena at hand, the frequency of the emitted gravitational waves, and the techniques
that can be employed to describe these systems. Extreme-mass-ratio binaries5 are the
main topic of investigation of this thesis.

Despite these distinctions, the qualitative behaviour of di�erent-mass-ratio binaries is
the same: the �rst, long part consists of the two objects orbiting around each other in
slowly shrinking orbits, in the second part they spiral towards each other. This happens
because during their motion they lose energy through emission of gravitational waves.
After this phase, called inspiral, the two bodies rapidly accelerate their motion, the am-
plitude and frequency of the emitted radiation increases: the two components are merging
-merger phase- and one is left with the end result of the coalescence, a �nal massive ob-
ject. Next comes the ringdown phase where most of the energy has been radiated away
and the system is stabilising into a new-born star, or more commonly a new-born black
hole. For an extreme-mass-ratio binary the center of gravity of this motion is practically
inside the major body, so it is more intuitive to describe everything as the minor body
orbiting around its companion (which can always be done with the appropriate coordinate
system). One sees then that the orbit of the minor body turns from an eccentric one to a
more circular one during the inspiral, until the Last Stable Orbit is reached. Afterwards
the motion is more radial and this stage is commonly referred to as plunge, because the
minor body is like plunging into the other before merging.

As one can already understand from the title of this dissertation, the study of extreme-
mass-ratio binaries has mostly focused on this last stage of the coalescence, after the last
stable orbit, by employing a special kind of orbits developed to this aim, the ballistic

orbits. We named them ballistic because they can be used to represent a body shot
from the black hole towards the outer space, and then coming back to it. With some
mathematical modi�cations they o�er unique features good to describe the last phase of
the EMR binary. This is contained in [19] and chapter 3 of this thesis. A way to address
some problems raised by these orbits by using other clever methods of orbit perturbation
(geodesic deviation's method) is discussed in chapter 4, turning the ballistic orbit into a
very versatile tool for binary coalescences.

Moreover, in the second part of the thesis we introduced a new formalism to treat
the spin, namely the rotation, of the minor body. This is also an old topic in the scien-
ti�c literature dedicated to general relativity, for which di�erent approaches have been
developed, and it is of vital importance to describe the e�ects of spin of the components
of a binary, see [26, 27] or chapter 5 of this thesis. Usual compact objects involved in
binary systems, such as neutron stars or black holes, rotate and therefore have spin. This
a�ects the orbital motion and the gravitational waves emitted by the binary. Therefore
it is important to include the spin into the description of binary coalescences.

5Sometimes people refer to EMRI's, EMR Inspirals, rather than simply EMR binaries, but the inspiral

is only one phase of the coalescence of a binary system, not the whole evolution.
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Image from the GW150914 discovery paper [4]. The panel shows the reconstructed gravitatio-

nal wave together with the corresponding di�erent stages of the black-hole binary coalescence,

represented by the two black shapes.

The future

As we already mentioned, the black holes detected by the gravitational-wave interfero-
meter LIGO have comparable mass, while the ones involved in EMR binaries have a big
mass di�erence. The ground-based interferometers such as LIGO, Virgo, and the coming
ones in Japan and India are not big enough to detect the lower frequencies of gravita-
tional waves emitted by extreme-mass-ratio binaries. We need longer arms, we need less
background noise, therefore we need to go into space. This is the reason why we are
now building a space-based interferometer, made up of three satellites orbiting above the
Earth: eLISA (from evolving LISA, current upgrade of the previous experiment). The
international collaboration supporting this experiment managed so far to send into space
some part of it, the Lisa Path�nder, but the full completion and launch of the mission
is scheduled by 2034. Hopefully by that time we will detect also the extreme-mass-ratio
binaries and other softer gravitational sounds from the universe.

Before that though, we need to study the possible sources of gravitational waves and
get prepared making predictions of the signal. The research contained in this thesis is an-
other step in that direction, and surely more needs to be done. Moreover we can consider
ourselves lucky, because the detections coming from the ground-based interferometers will
provide us more information and help us also with understanding EMR binaries. As we
said, the era of gravitational-wave astronomy has just begun.

The study of binary coalescences, the detection of gravitational waves, and the tech-
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The gravitational wave spectrum. Today we have access only to the far right of the spectrum;

eLISA will provide us information from supermassive black holes and extreme-mass-ratio binaries.

nological advancement are all part of the same scienti�c quest aimed at explaining the
most common of the physical interactions in our everyday life: gravity. It should be
clear by now that GWs were not a casual discovery, one of those serendipitous events
like the discovery of penicillin by A. Fleming, but rather the fruit of decades-long e�orts
and many-people collaboration. This discovery, as the content of this thesis, �t in the
framework of general relativity. It is in this theory that gravitational waves were �rst
predicted. It is with this paradigm of the gravitational interaction that black holes and
compact binaries were born and the quest for experimental con�rmation started. Gen-
eral Relativity, Einstein's creature, has proven once again to be a successful explanation
for the gravitational interaction. Although we know that we need to reconcile it with
quantum mechanics somehow, since there are still many open problems lurking at micro-
scopic scales, maybe we will already learn new fundamental facts with gravitational-wave
astronomy6. After all, beforehand we could only see it, but now we can even hear it: the
universe is out there to be explored.

6For instance the discovery GW150914 already allowed us to put bounds on the mass of the graviton:

we do not know yet if it exists, but suppose it exists, it cannot be heavier than 1.2× 10−22eV/c2 .
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The success of a paradigm -whether Aristotle's

analysis of motion, Ptolemy's computations of

planetary positions, Lavoisier's application of the

balance, or Maxwell's mathematization of the

electromagnetic �eld- is at the start largely a

promise of success discoverable in selected and still

incomplete examples. Normal science consists in the

actualization of that promise, an actualization

achieved by extending the knowledge of those facts

that the paradigm displays as particularly revealing,

by increasing the extent of the match between those

facts and the paradigm's predictions, and by further

articulation of the paradigm itself.

Few people who are not actually practicioners of a

mature science realize how much mop-up work of

this sort a paradigm leaves to be done or quite how

fascinating such work can prove in the execution.

-T.S. Kuhn, The Structure of Scienti�c Revolutions
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