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Abstract

A well-studied and repeatedly detected class of gravitational signals is
that of gravitational chirps, produced by astronomical binary coalescing
systems. One of the most challenging aspects in this field is parameters
estimation, since signals are highly embedded in interferometers and ambient
noises. Therefore, the retrieval of the exact waveform hidden in the noise is
particularly demanding. The aim of this report is to present the result of
parameters assessment on simulated gravitational chirps detections through
the exploitation of different methods. The matched filtering technique is
applied in order to detect simulated signals, using different algorithms to
choose filters characteristics. The main goal is to evaluate the masses of the
two objects generating the signals. However, gravitational waveforms do
not directly depend on the two masses, but only on particular combinations
of them. Therefore, it is shown that the most efficient and precise way to
recover the actual waveform is to perform analysis in different parameter
spaces. In particular, a change of space parameter coordinates is shown to
be a critical pillar of the whole procedure. Further on, the development
of fine-tuning procedures enables to achieve a higher degree of accuracy on
parameters evaluation. In the end, the applicability of outlined procedures
to real interferometers data is discussed, in order to legitimate the validity
of developed techniques.
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Introduction

In 1916, Albert Einstein published the General Theory of Relativity, revolution-
izing the old concepts of space and time. In this framework, he predicted the
existence of gravitational waves as propagating perturbations of the space-time
manifold. After almost one century, on the 14th of September 2015, gravitational
waves were detected for the first time1. Although several types of gravitational
waves exist, depending on the mechanism of production, this work is concerned
with the analysis of gravitational chirps emitted by two circularly orbiting and
gravitationally bound compact bodies2.
In the so called Newtonian approximation, exhaustively pointed out in Appendix
A, the generated waveforms depend on a single variable, the chirp mass M of the
system. Appendix D entirely deals with the detection of a signal embedded in
white noise in the Newtonian picture3.
However, in proximity the merger 4, the Newtonian approximation yields wrong
predictions, requiring Post-Newtonian corrections to be implemented5. In the
Post-Newtonian picture, the emitted waveforms do depend on the separate masses
of the bodies. Therefore, the analysis should be carefully carried out taking this
difference into account.
The core of this report is to develop a new procedure, which leads to better estima-
tion in a computationally feasible way and overcomes the limits of the proposed
matched filtering technique. In the following, this new method will be referred
to as the “Grid (M-ν) approach”. The starting point is to notice that the pre-
vious analysis has been conducted in non-optimal coordinates. In fact, being a
correction of the Newtonian picture, the Post-Newtonian expansion firstly aims at
reproducing the source’s chirp mass. Therefore, masses arbitrarily different from
the true ones may give rise to high Signal to Noise Ratios6, as long as they provide
a sufficiently good estimation of the chirp mass.
However, looking closely at the formulae in E.1, the Post-Newtonian terms can be
written also as an expansion involving the symmetric mass ratio ν. Thus, all the
previous analysis can be performed in the (M-ν) plane, showing a better conver-
gence to the source values. Then, through the change of coordinates described in
E.2, it is possible to go back to the initial (m1-m2) plane to calculate the resulting

1Although indirect proofs already were provided.
2Terms arising from spin-orbit coupling will not be taken into account.
3The implemented mathematical and computational tools are thoroughly reported in Appen-

dices B and C.
4Phase immediately before the coalescence, between the inspiral and the ringdown.
5As a matter of fact, only the early inspiral, which is often too small to be revealed, can

be satisfactorily described in the Newtonian landscape. The Post-Newtonian picture accurately
describes even the late inspiral, but not the actual merger.

6Denoted as SNR in the following.
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estimate on the masses.
In Section 1 the outcomes of the Newtonian and the Post-Newtonian pictures are
contrasted. As for the time of detection, an interesting comparison is made, show-
ing that treating a Post-Newtonian chirp signal with a Newtonian approach brings
inaccurate results7, as expected. In the end, an example of a network of detectors
8 is illustrated, leading to the ultimate estimate of the couple of masses. It will
be remarked that these achievements strongly depend on the characteristics of the
selected range of masses. In conclusion, the final error on the masses is underesti-
mated by a factor of 2 circa9.
In particular, Section 2 sets the conceptual basis of the “Grid (M-ν) approach”
and should be understood as the first level of a multilayered analysis. Analo-
gously to what done beforehand, the procedure’s intrinsic limit is displayed and
the compatibility between the time of detection and the time of arrival is checked
up. Having done these preliminary tests, a sensible first estimate of the precision
of the two masses can be provided. It must be noticed that, in contrast to the
(m1-m2) picture, the error does not depend on the range of masses chosen, since
the analysis is performed in the (M-ν) plane. The error associated to the gauged
masses selects a region in the (M-ν) space.
Moving from this achievement, Section 3 develops a further analysis. The main
idea is to examine the above-mentioned region evaluating the SNR for tenths of
thousands number of internal points. Simulating a network of separate detectors,
fictitiously all parallel, characterised by white noise and organized so as to be
completely equivalent, a proper assessment of the final error on the masses can be
furnished. Remarkably, the ultimate error is strongly reduced with respect to the
previous procedure.
Finally, Section 4 briefly targets the study of a signal embedded in real noise. In
particular, data coming from the LIGO “GW150914” event are taken into account
and fully examined. The approach is carefully outlined and involves the “Spectral
whitening” of the initial data. As expected, it is shown that, once the input is
whitened, the situation in real noise tends to the white noise case. Therefore,
dealing with Gaussian white noise represents a meaningful approximation.

7It must be specified that spinning and angular parameters, as well as precise waveforms
modelled from numerical integration simulations will not be considered in this report.

8With same orientation, sensitivity and characterised by white noise.
9Notice that, in principle, one could overcome this issue enlarging the range of masses or

using a finer grid, whose structure is fully exploited in Appendix C. However, this is incredibly
demanding from a computational point of view.
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1 Gravitational Chirp Simulations

In this section, the actual simulation of gravitational waves detection10 is outlined.
Detections are performed using the matched filtering method (see Appendix B for
a detailed explanation and implementation). Different parameters for filters are
tested on data using the “Grid of Masses” technique (see Appendix C). The pur-
pose is to simulate the detection of a chirp signal in the Newtonian approximation,
evaluating its chirp mass and arrival time. Noise in detectors is modeled as white
(i.e. flat power spectrum). The core idea of the whole work is to use a network
of detectors that carry out independent measures. At the end the whole structure
produces an overall estimate. Considerations on the accuracy of this results are
discussed in paragraph 1.2. The workflow could be summarized as follows:

1. Parameters Setting: Ranges in which the analysis is carried out are fixed.
Then, amplitude of noise, number of detectors etc. are chosen.

2. Signal and Noise Generation: A signal from a randomly chosen couple
of masses is generated. At the same time, different white noise is produced
in every sensor.

3. Injection: Starting from a randomly chosen time, signal is injected into
noise in every detector.

4. Detection: Using the above-described technique, SNR is computed in every
detector for the set grid of masses.

5. Selection: Maximum of SNR is chosen in every simulated sensor. Also the
couple of masses that maximizes SNR over all the detectors is determined.

6. Time Measurements: Matched filtering technique automatically provides
the time at which the signal is detected in every sensor: this measure is
compared to its injection time.

7. Results: Obtained results are plotted by exploiting an easy-to-read struc-
ture.

Combined Measures An estimation of parameters from the whole network
can be given in the following way: SNR is evaluated over the whole grid for every
detector. Then, the obtained values corresponding to every couple of masses are
averaged over all detectors. In this way, the average SNR grid is obtained. The
maximum over this new grid usually gives a better estimate of the parameters
than single-detector measurements, since noise is ”averaged” over all detectors.

10Refer to codes Newtonian Detectors.mlx (explained in appendix D.3 and fully reported in
appendix D.5) and PN Simple Detectors.mlx
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Figure 1: Average SNR over all the detectors from a run simulating a signal with
m1 = 25 M� and m2 = 20 M� in the Newtonian (left) and in the post-Newtonian
(rigth) case. A grid step of 0.1 M� is used. This plot confirms that the Newtonian
signal depends only on the parameter M, since all the couples of masses on the
curves withM = const. return the same SNR value. In the post-Newtonian case,
instead, small differences allow single masses identification: bands having same
value of SNR are much smaller.

1.1 Example Runs

In order to have a better understanding of the simulation performed, it is useful
to take a look at the results both in the Newtonian and the post-Newtonian cases.
It is important to keep in mind that in the former case only the chirp mass is
evaluated, while in the latter one an estimation of both masses can be provided.
All the hereafter presented results have been produced by simulating 4 detectors
and choosing noise RMS equal to 3 times the signal mean absolute value, a grid
step of 0.2 M� and fixing the masses values to m1 = 25 M� and m2 = 20 M�
(M = 19.44 M� ). Examples of the pattern of the mean SNR over the 4 detectors
are presented in Figure 1, where the application of grid technique to data in both
Newtonian and post-Newtonian cases is explicitly shown.

It is evident that, in both cases, the parameter that mostly influences the out-
come of the application of matched filtering is the chirp mass: same-color curves
represent combinations of masses having the same value of M. It is also interest-
ing to report the displayed outputs, which are presented in a user-friendly table.
Examples of such tables, reported in Figure 2, are presented for the same runs
used for Figure 1. The main difference between the Newtonian is in the columns
dedicated to errors: whereas in the former case it was only meaningful to study
the error on the measuredM, in the latter it is important to evaluate the precision
of the estimation provided for both masses. It must be remarked that the names
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Figure 2: Screenshots of the displayed results over 4 detectors for runs with m1 =
25 M�, m2 = 20 M� (M = 19.44 M�), grid step of 0.2 M�, and noise RMS equal
to 5 times the signal mean absolute value are reported in both Newtonian (upper)
and post-Newtonian (lower) cases. The last lines of each table reports results
for the combination having the best overall SNR. Detectors names are fictitious,
being all exactly equivalent (same orientation and same characteristics). In the
Newtonian case, the masses are not well evaluated, but the estimated chirp mass
is very close to its true value, as one expects. In the post-Newtonian case, instead,
a better measure of the two masses is also provided, even if it is not always highly
accurate.

of detectors in the tables are not linked to real detectors characteristics: they have
only been used to identify different simulated sensors, all being exactly equivalent.

1.2 Behaviour of Precision

The most interesting results obtained from many iterations of these simulations are
presented in this section. A complete catalogue of the results obtained from these
simulations is reported in Appendix D.4 for the Newtonian case and in Appendix
F.4 for the post-Newtonian case. In all simulations, the post-Newtonian corrections
were considered up to order 2.5 (see Appendix F.4.1).

Dependance on Noise RMS A. 50 experiments were performed for every
choice of A for 4 detectors: this means that measurements for single detectors
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Figure 3: The behavior of the mean error on parameters identification with respect
to the ratio between noise RMS and signal mean absolute amplitude A is presented.
In the Newtonian case (left) the error on the chirp massM is studied, while in the
post-Newtonian case (right) the error on the masses is reported. In both cases,
errors increase almost linearly with A for small values.

are averaged over 50x4=200 values, while combined measures are averaged simply
over 50 values. In Figure 3, the results are presented. A is defined as the ratio
between noise RMS and signal mean absolute amplitude11.

It has been observed that the error increases almost linearly with the noise
RMS for small values. Furthermore, it is evident that combined measures give a
much more precise estimate in particular for high noises: this happens because the
noise is “averaged” an all detectors.

1.2.1 Dependence on Grid Steps

To investigate the dependance of the error on the step of the grid, the noise RMS A

was fixed equal to 1 for the Newtonian case and equal to 3 in the post-Newtonian
case. The two cases are reported in Figure 4.

Even if these results seem to legitimate the grid technique as a good one to
perform such evaluations, it has been observed (see Appendix F.4.3) that this
behavior is not valid when using smaller grid steps in the post-Newtonian case. A
signal of this behavior could be identified in the fact that combined measures do
not increase in precision going from a step of 0.25 M� to 0.1 M�. This implies that
it is not possible to reduce the error on masses evaluation by using denser grids. An
example of this behavior is reported in Figure 5. It must be remarked that, in this

11Sometimes A will be referred to as ‘noise RMS”, assuming the normalisation by the signal
mean absolute value.

10



Figure 4: The left figure shows that the errors in the Newtonian case (left) de-
crease logarithmically with diminishing grid step for a low value of noise. In post-
Newtonian case (right), instead, the error on the masses decreases almost linearly
with the grid step. Thus, it is much more difficult to achieve better precisions.

case, errors on masses are pretty low. This happens only because the selected range
is [30 M�, 33 M�]: masses having ratio close to 1 (as in this case), are always pretty
well estimated (see Appendix F.2), but the considerations on the non-decreasing
trend are still valid. Therefore, in order to achieve better measurements (especially
for “unbalanced” couples of masses), the methods presented in Sections 2 and 3
have been developed.

Figure 5: The mean errors on the masses (left) and onM and ν (right) are reported
as a function of the grid step. Smaller values (in order to use denser grids) are
used. It is clear that precision does not significantly increase using smaller steps.
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2 Grid (M− ν) : a New Approach

The grid of masses approach, outlined in Appendix C and fully exploited in Ap-
pendices D and F, has proved to be extremely powerful for the analysis of chirp
signals. However, as explained in detail in F.4.3, the strongest limitation is that the
error on the estimate of the source masses does not seem to undergo a significant
reduction decreasing the grid step (see Figure 76).

While, at first glance, this behavior might appear indicative of an error, it
should be remarked that the Post-Newtonian approximation, being a correction
of the Newtonian approach, firstly aims at seeking the combination which best
reproduces the chirp mass of the injected signal. Secondly, coupling the equation
for the chirp mass M with the estimate of the symmetric mass ratio ν, the values
of the two masses are calculated. Therefore, grid pairs having a different chirp
mass and symmetric mass ratio (defined later on in 1) from the initial binary
system produce a low SNR. As a consequence, they will not be classified as the
best couple, no matter how close they are to the original masses in the (m1-m2)
plane. In a certain sense, all the previous analysis has been carried out in a non-
optimal basis, in which there is not convergence to the true values of the masses,
even if the step becomes smaller.
According to [1], the Post-Newtonian terms (as for power radiated in GWs, signal
amplitude etc.) can be written as an expansion in the dimensionless variable x,
depending from the source orbital frequency. Looking at the complete expressions
(reported in Appendix E.1), it is evident that both x and the orbital phase φ(t)
are explicitly dependent from the symmetric mass ratio, defined as:

ν ≡ m1m2

(m1 +m2)2
, (1)

This remark suggests that the Post-Newtonian approximation does not depend
on the two separate masses, but rather on their combinations, like the total mass
or the symmetric mass ratio. Since the ultimate purpose of the analysis is the
estimate of the single masses constituting a binary gravitating system, there will
be need only for two coupled formulae in the unknowns m1 and m2. Looking at the
previous statements (and considering that the Post-Newtonian approach slightly
corrects the Newtonian behavior), a system can be defined in the simplest way by
its chirp mass M and its symmetric mass ratio ν. As a consequence, this “natural
basis” is better represented in the (M-ν) plane, where the following analysis will
be performed. In the subsequent work, it will be clear that in these coordinates
the high-SNR region is confined in a spot-like area centered approximately on
the true values. Besides, the SNR decreases almost monotonically considering an
outgoing radial path centered on the right masses; so, the algorithm appears to be
more “convergent” than the previously described grid of masses. This Section’s
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purpose is to give a first estimate of the involved quantities, delegating a more
refined analysis to Section 3.

2.1 Discretisation Limit

Analogously to the results obtained in F.1, the following discussion aims at eval-
uating the errors coming from the discreteness of the grid, thus establishing the
intrinsic limit of the procedure. Even though the subsequent results might seem
comparable or just slightly improved with respect to the grid of masses case, some
advancements should be taken into account: firstly, the computational time re-
quired decreases significantly achieving the same outcomes; secondly, the algorithm
is more “robust” with respect to masses estimation. As for the second statement,
while in the grid of masses case the initial range considered may well influence the
results, excluding potential points having suitable values of the chirp mass, the
new approach, exploiting the analysis directly in the (M− ν) plane, circumvents
this issue. Moreover, the current method manifests a better and faster convergence
than the (m1-m2) one, since the more distant the new grid points are from the
(Msr-νsr) source couple, the lesser the filter they produce matches with the actual
incoming signal.
In order to produce meaningful results, the analysis will be carried out fixing one
of the two parameter steps and letting the other vary. From the following graphs,
it will be understood that both the steps need to be decreased simultaneously if
a more refined analysis is desired. All these results are obtained averaging over
36 different simulations, where the chirp mass and the symmetric mass ratio are
generated randomly in [20 M�, 25 M�] and [0.20, 0.25], respectively.

Figure 6: Relative error on the estimation of the masses as a function of the chirp
mass step in the absence of noise. Left: ∆ν = 0.005. Right: ∆ν = 0.005.
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Figure 7: Relative error on the estimation of the masses as a function of the
symmetric mass ratio step in the absence of noise. Left: ∆M = 0.025 M�. Right:
∆M = 0.0025 M�.

As previously anticipated, these plots show that the grid spacing needs to be
scaled in both the axis in order to claim a sensible result. This appears evident
looking at Figures 6 and 7 , where the precision on the estimate of the masses
saturates to a constant after a certain step, no matter how much the step on
the chirp mass or on the symmetric mass ratio is decreased. In this case the
spacing in one of the two dimensions dominates the error on the final outcome,
leading to a higher uncertainty on the gauging of the masses12. The comparison
between the two cases in Figure 713 provides further confirmation, informing that
analysing with a smaller chirp mass step does not produce any benefit14, as long
as the spacing in the symmetric mass ratio dimension is too high (and vice-versa).
Finally, some meaningful plots are presented. In this picture, it should be recalled
that the z-axis is shown in arbitrary units.

12Just think about the propagation of errors...
13Notice that in the rightmost figure smaller steps have not been considered, being too com-

putationally demanding. However, being the analysis performed in an unphysical A=0, it is not
particularly necessary to furnish any further details.

14However, it must be stressed that the reached limit is quite good, as far as the errors coming
from the discretisation of the grid is concerned.
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Figure 8: Identification of the couple having the correct chirp mass and symmetric
mass ratio in the new (M-ν) grid, in the absence of noise. ∆M = 0.025 M� and
∆ν = 0.001.

Figure 9: Figure 8 converted in the (m1-m2) plane.

These figures illustrate why the new algorithm is more “convergent”: there
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are no bright curve or distant but equally bright regions. The true masses always
reside in the most shining area in both of the coordinates, and the z -values decrease
(though not monotonically) moving on an outgoing radial path. In conclusion, the
final error will be smaller than the one obtained in the (m1-m2) grid approach,
once having carefully chosen the grid parameters.

2.2 Signal Embedded in White Noise

Having established the limit due to the discretization of parameters, the focus shall
be shifted to the analysis of a signal buried in Gaussian white noise. The final
results of this section shall be compared with the grid of masses case (Appendix
F) and will bring further insight on the“convergence” of the method. The plots
below will follow the same line of reasoning outlined in the previous paragraph, so
there will be no need for additional explanation.

Figure 10: Relative error on the estimate of the masses as a function of the chirp
mass step, with A = 3. Left: ∆ν = 0.005. Right: ∆ν = 0.002.
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Figure 11: Relative error on the estimate of the masses as a function of the symmet-
ric mass ratio step, with A = 3. Left: ∆M = 0.025 M�. Right: ∆M = 0.0025 M�.

Figure 12: Identification of the
couple having the correct chirp
mass and symmetric mass ratio
in the new (M-ν) grid. ∆M =
0.025 M�, ∆ν = 0.001 and A=3.

Figure 13: Figure 12 converted in
the (m1-m2) plane. A=3.

It is also interesting to study the behaviour of the error on the masses as a
function of the noise r.m.s A, keeping the steps fixed:
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Figure 14: Precision on the masses as a function of noise r.m.s, averaged on 36
random simulations. ∆M = 0.01 M�, ∆ν = 0.001.

It might be argued that these results do not constitute an improvement, since,
sometimes, the error estimated with this procedure turns out to be higher than
the corresponding one found in the grid of masses picture. However, it should
be recalled that, in the old method, the analysis was carried out in an initially
chosen range, which could possibly eliminate some suitable couples of masses.
In this case, instead, the algorithm has been developed in the (M-ν) plane; so,
all the pairs having proper values of the chirp mass and of the symmetric mass
ratio are taken into account15. Therefore, the current method is not linked to the
specific domain of the parameters involved. Moreover, it has been decided to carry
out these simulations considering high mass-ratio pairs, for which the errors have
been previously estimated to be higher than the ones obtained looking for similar
masses (as discussed in Section F.2). In this way, it is possible to furnish an upper
evaluation of the uncertainty that needs to be associated to the final measurement.
In conclusion, an independent-from-the-domain error can be assigned, leading to
a more “robust” result. Finally, the outcome of the (M-ν) grid will be refined
applying the techniques in Section 3, which will provide the ultimate achievement
of the entire procedure.

15Of course, the concept of ”proper values” is closely related to the spacing of the new grid.
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2.3 Time of detection

The estimation of the time of arrival represents one of the principal issues in the
detection of a chirp signal. Therefore, when developing a new method (such as
the (M-ν) analysis), it should always be checked whether the time of arrival is
correctly found or not. In this approach, in line with all the expectations, the
standard deviation of the difference between the time of detection and the time of
arrival (i.e, the delay) behaves in the following way:

Figure 15: Standard deviation of delays as a function of noise r.m.s, averaged on
36 random simulations. ∆M = 0.01 M�, ∆ν = 0.001.

Only the correct detections have been plotted16. In particular, when A = 10,
the false detection rate amounts to a significant 13%; so, it would have been mean-
ingless to graph higher noise r.m.s.
Comparing Figures 60 and 15, there appears not to have been a significant improve-
ment. However, it must be recalled that this section deals with a first approximate
estimate of the involved physical quantities, delegating a more accurate approach
to Section 3.

16See D.2 for a definition of correct detections and false detection rate.
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2.4 Chunk method

In order to perform more precise simulations, it could be useful to implement the
chunk method 17 (discussed clearly in C.1), adapted to deal with the (M - ν)
coordinates. However, the approach and the operations remain exactly the same
even in the new grid; so, there will be no further description of the procedure. It
must be noticed that, as already specified, this method brings, on average, a slight
improvement on the masses, but at great cost: the executions is several times
slower. Therefore, since this part of the work aims at giving just a first estimate,
the chunk method has never been taken into account in the previous results. On
the other hand, it might be interesting to provide some plots, like Figures 16, 17,
18 and 19.

Figure 16: Left: relative error on the masses as a function of chirp mass step.
Right: relative error of chirp mass and symmetric mass ratio as a function of
chirp mass step. Average on 36 random simulations, ∆ν = 0.005 and A=0.

17The filter is divided in various pieces (i.e. chunks), each one filtering the data independently.
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Figure 17: Left: relative error on the masses as a function of chirp mass step.
Right: relative error of chirp mass and symmetric mass ratio as a function of
chirp mass step. Average on 36 random simulations, ∆ν = 0.002 and A=0.

Figure 18: Left: relative error on the masses as a function of chirp mass step.
Right: relative error of chirp mass and symmetric mass ratio as a function of
chirp mass step. Average on 36 random simulations, ∆ν = 0.005 and A=3.
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Figure 19: Left: relative error on the masses as a function of chirp mass step.
Right: relative error of chirp mass and symmetric mass ratio as a function of
chirp mass step. Average on 36 random simulations, ∆ν = 0.002 and A=3.

Figures 16 and 17 show an advancement on the estimate of the intrinsic limit of
the procedure when dealing with higher values of the chirp mass step. Although
this achievement turns out to be useful when trying to give a rough estimate of the
discretisation limit (see paragraph 2.1), the chunk approach gives almost the same
results for small grid spacing. However, it must be noticed that, in the limit A =
0, the absence of noise makes only suitable points assume a high value of SNR;
so, as for a refined grid, there is no room for ambiguity. Therefore, the focus
shall be moved to the case A = 3. While the case ∆ν = 0.005 does not display
any improvement when performing the chunk analysis, Figure 19 shows modestly
lower errors both on the masses and on the descriptive quantites (chirp mass
and symmetric mass ratio) involved. This confirms what stated at the beginning
of Section 2: a ”too large” step in one dimensions prevents the procedure from
furnishing better results, since it dominates the final errors. For this reason, the
chunk method will be effective only defining the grid properly, as done in Figure
19. In conclusion, according to the previous discussion, the chunk method reveals
to be helpful; however, in the majority of cases, it’s not worth the hassle.
Starting from the results here stated, a more refined analysis will be the purpose
of the following section.

22



3 A Deeper Analisys: ”Rand CMR”

In this section, the ”Random Chirp Mass-Ratio” method will be presented, which
allows to sensibly reduce errors on parameters estimation. In the grid methods
described in the previous sections, three main issues occur when one wants to get
a refined estimate of the parameters of the signal:

1. Matched filtering is applied to several grid points with very low SNR (this
can be clearly seen from Figures 1 and 8).

2. The error on estimated parameters strongly depends on the grid step: this
characteristic is intrinsic of the grid method.

3. The ”grid of masses” technique works perfectly only if the masses to detect
are exactly a grid point, which is an unphysical situation. A step toward the
resolution of this problem was taken by developing the approach presented
in Section 2.

The underlying ideas to solve this problem are the following:

1. Focus: only interesting areas of parameters spaces are deeply analyzed (this
means that a previous raw analysis to identify these areas is needed).

2. Random: using random numbers, it is possible to eliminate the dependence
of the error from the step of the grid.

The developed technique consists in the generation of random numbers (the choice
of the used distribution will be soon discussed) around a central value. Then,
matched filtering is applied with filters using parameters corresponding to all this
points, in order to identify the one with the highest SNR. It is important to remark
that this method needs a previous grid analysis, even if not highly accurate. The
advantage of this technique can be easily understood recalling Figure 8: it is
meaningful to analyze very dense points only on the yellow spot-like area, that
contains all the points with high SNRs. Due to the considerations outlined in the
previous sections, the points are selected firstly in the M− ν plane and are later
translated in terms of the two masses.

3.1 Random Distributions

Random points can be selected using different distributions: the choice of the best
one for different purposes will be the topic of this paragraph. Two different cases
have been studied, which are the most intuitive ones:
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Figure 20: Left: 2 ∗ 104 random uniform points in the M − ν plane. Right:
corresponding points in the two masses plane.Widths: 0.25 M� for M, 0.005 for
ν. Red point: estimate furnished by Section 2.

Uniform Distribution Random points are generated around a previously esti-
mated value in the M− ν plane using a flat distribution. The width should be
adjusted taking into account the confidence on the previous estimate (see para-
graph 3.4). An example is reported in Figure 20.

Normal distribution If the 2-D function describing SNR was exactly monotonous
in all directions, it would be more meaningful to use a uniform distribution cen-
tered on the previously estimated value. An example of this case is presented in
Figure 21.

Updating Central Value Algorithm An algorithm was build in order to try to
approximate the best value using a step-by-step procedure: a normal distribution
is used, but its central value is updated every time that a better value if SNR
is identified. The idea behind this procedure is to construct a basic optimization
algorithm that gradually converges to the highest value of the SNR.

3.2 Comparison of Results

In order to decide the best distribution to use to estimate parameters, the com-
parison outlined in this paragraph was performed18. A dataset consisting of 100
simulations was generated. M and ν on these simulations were estimated using
the grid technique and they presented a mean relative error of 0.004 on the chirp
mass and 0.010 on the symmetric mass ratio. Then, the above-described procedure

18Refer to code Error Eval CM.m
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Figure 21: Left: 2 ∗ 104 Gaussian distributed points in the M− ν plane. Right:
corresponding points in the two masses plane. σM = 0.25, σν = 0.005. Red point:
estimate furnished by Section 2.

was applied to this dataset. The average error on estimated masses is reported in
Figure 22 for all the three cases before mentioned.

Figure 22: Comparison of average error on masses for different methods.

It can be seen that the uniform distribution gives the most accurate estimation
of the parameters: this happens because the normal distribution strongly relies
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on the previous estimation, which is not always precise. The updating algorithm,
instead, even if more refined, produces results even worse than the simple normal
case.
This result may appear not intuitive, but a simple explanation of the failure of
the updating algorithm can be given: it relies on monotony of the SNR function,
which is only globally respected (higher values are concentrated in the yellow spot-
like area), but not locally (inside the spot there not monotony). The conclusion
that can be drawn is that this algorithm can be used as an efficient way to quickly
individuate the area in the parameter space that produces high values of SNR, but
it cannot be used to perform a fine estimation of parameters. Thus, it could be
used as a smarter replacement of the grid method for the initial estimate, but the
final refined search should be still done using the uniform distribution, which has
a less important dependence on the starting point.
Since the aim of this chapter was to find a method to perform a refined analysis of
the parameters, it has been shown that only the uniform distribution fulfills this
requirements. Therefore, only this one will be used in the following analysis.

3.3 Precision as a Function of the Iteration

Intuitively, it can be guessed that the precision of the measure will increase when
increasing the number of points. This behavior is generally observed, as in reported
in the followed graphs, obtained from 30 experiments with a previous estimation
of parameters having a mean relative error of 0.004 on the chirp mass and 0.01 on
the symmetric mass ratio, as in the previous case.

Figure 23: Relative error on chirp
mass and on symmetric mass ra-
tio as a function of tried points
using the uniform distribution.

Figure 24: Relative error on
masses as a function of tried
points using the uniform distribu-
tion.

26



It can be seen that after 2.5 ∗ 104 iterations, the convergence becomes very
slow. However, it is important to underline that the precision on these measure is
already very high.

3.4 Precision as a Function of the Previous Estimate

It is very interesting to study how the mean relative error depends on the previous
estimate of the parameters, once the number of iterations is fixed. It is important
to remark that the precision of the previous estimation fixes the width of the
analyzed region in parameters space, and consequently the density of the points.
The width of the distribution was always chosen in order to be equal to two times
the mean error coming from the previous estimate. Datasets of 30 experiments
each having the following couples of mean error on parameter where studied. They
are presented in order of increasing precision in Table 1.

Rel. Error M ν m1 m2

Couple 1 0.0103 0.019 0.0358 0.0331
Couple 2 0.0079 0.015 0.0288 0.0266
Couple 3 0.0062 0.011 0.0211 0.0194
Couple 4 0.0035 0.008 0.0153 0.0140

Table 1: Relative error on chirp mass and on symmetric mass ratio from different
sets of measures after using the standard grid method.

The precision on estimated parameters after the application of this technique
using 5 ∗ 104 iterations is presented in Figures 25 and 26. The precision increase
is also reported in Figures 27 and 28.
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Figure 25: Relative error on chirp
mass and on symmetric mass ra-
tio as a function of previous pre-
cision using the uniform distribu-
tion with 5 ∗ 104 points.

Figure 26: Relative error on
masses as a function of previous
precision using the uniform distri-
bution with 5 ∗ 104 points.

Figure 27: Improvement of rel-
ative error on chirp mass and
on symmetric mass ratio with re-
spect to the previous estimation.

Figure 28: Improvement of rela-
tive error on masses with respect
to the previous estimation.

It can be seen that errors are significantly reduced on measures that were not
accurate at the beginning, but they do not reach the same precision. This happens
because the density of the points is different: higher ranges must be selected when
dealing with less accurate estimations. It is important to highlight that in the
latter case, the mean relative error on the masses was reduced below 1.4% even
for single detector measures (below 1% for combined measures): this result should
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give an idea of the power of this method, even considering that probably it could
be even reduced using higher computational power, if the trend in Figures 24 and
26 are respected.
In cases with a lower number of iterations, it was also verified that the same
precision can be achieved even if starting from different values of the initial mean
error on the parameters. Indeed, the starting mean error depends only on the
parameters (i.e. the grid steps) chosen for the first analysis, but all the simulated
situations are exactly equivalent in terms of noise (A=3 in all cases).
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4 Real Noise

In real interferometers, data is not white (see [2] and [3]): different frequency
bands show different behavior of noise, and there are several non-stationary and
non-gaussian disturbances that may occur. The aim of this paragraph is to show
that it is possible to “whiten” noise, in order to recover the situation used for
the simulations performed in the previous sections. In particular, data chunks19

from the LIGO interferometers containing the“GW150914” event (see [4]) will be
studied, since the embedded signal has a very high SNR (it is very easy to detect).
Examples of these chunks (lasting 32 seconds) are reported in Figure 29.

Figure 29: Data measured from LIGO Hanford (right) and Livingston (left) inter-
ferometers.

The estimated waveform is reported in Figure 30, along with the corresponding
one including simply Post-Newtonian corrections, but not the merger and the
ringdown parts (for more details, see Appendix A.2.3). It should be noticed that
in this case the noise amplitude is 2-3 orders of magnitude larger than the signal.
It will be shown that also this issue is solved using the procedure outlined in the
following section.

4.1 Spectral Whitening

The spectral whitening procedure (readapted from [5]) is both powerful and intu-
itive: the way it was implemented20 can be summed up as in the following steps:

19take
20Refer to code Det Real DATA.mlx
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Figure 30: The templates describing the “GW150914” event are reported. The left
figure shows the template including also the “merger” and the “ringdown” parts,
while the right one is the corresponding truncated waveform up to post-Newtonian
correction of order 2.5. Masses of 29 M� and 36 M� (errors are not reported) were
evaluated from the LIGO-Virgo collaboration (see [4]). These are the values used
for the generation of the left waveform.

1. Spectral Analysis: The power spectrum of the data is in a range sufficiently
small to approximate the noise as stationary.

2. Smoothing: The square root of the power spectrum is smoothed, in order
to identify the general trend. A more detailed description of the smoothing
process is reported further on.

3. Effective Whitening: The square root of the power spectrum of data is
divided by its smoothed version. In this way, an almost flat spectrum should
be obtained.

4. Return to Time Domain: The real part of inverse Fourier Transform of
the smoothed spectrum should be taken, in order to get back to time domain.

The power spectrum of data processed with this algorithm become almost flat.
A particular emphasis should be given to the two technical procedures described
hereafter:

Windowing The Fourier Transform operation is a key factor in this algorithm.
Since data and signals have limited lengths, it is important to apply win-
dowing, in order to mitigate finite-size effects. A valid choice of the used
window is the ”Flat-Top Cosine-Edge”, which is characterized by flatness of
the central half, reduced side lobs, and good peak gain (see [6]).
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Figure 31: Original and smoothed power spectra of data measured from LIGO
Hanford interferometer. Smoothing factors (numbers which determine the accu-
racy of the smoothing) of 0.01 (left) and 0.3 (right) are used in MATLAB moving
average algorithms. A flat-top cosine-edge window is used

Smoothing Power spectrum of data is smoothed using MATLAB built-in func-
tions relying on moving average algorithms. Smoothing can be done to dif-
ferent accuracies: it is important to select the best tradeoff in order to obtain
a white power spectrum, but not to distort the signal too much. Smooth-
ing accuracy is determined by a number called smoothing factor. Examples
of the smoothing process with different accuracies is reported in Figure 31:
The smoothed spectrum is the one from LIGO Hanford data in Figure 29
(left). Using a greater accuracy allows to get a whiter spectrum, but it may
alter very much the characteristic of the signal and invalidate the matched
filtering procedure. Thus, it is important to choose the smoothing factor
coherently with the characteristics of the signals to detect. The whitened
spectrum in both cases is reported in Figure 32. It can be seen that the first
case returns a flatter spectrum, as one would expect.

An important remark that should be made is the following: spectral whitening
affects also the signal embedded in the noise, which will be distorted. Thus, the
filter used for matched filtering should be distorted appropriately: its spectrum
must be divided for the smoothed spectrum of data evaluated at the second point of
the procedure. Then, this distorted version has to be taken back to time domain, in
order to perform matched filtering. More efficient algorithms performing spectral
whitening and matched filtering in Fourier space all at once might be developed,
but it was not the purpose of this work.
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Figure 32: The power spectrum of whitened data using smoothing factors of 0.01
(left) and 0.3 (right) is reported. A flat-top cosine-edge window is used

Especially when highly whitened noises (for example Figures 31 and 32 left),
it is evident that to deal with whitened data is equivalent to deal with simulated
white noise (as done in all other sections.). The only difference is that the sought
signal is distorted, as previously explained. The outputs of matched filtering using
the GW150914 waveforms (Figure 30) are reported in Figure 4.1. The signal is
detected in both cases, but with a much higher SNR (17.71) using the refined
waveform with respect to the simple post-Newtonian case (10.05).

Figure 33: Outputs of matched filtering using the GW150914 waveforms from
Figure 30 are presented. The signal is detected with a SNR of 17.71 using the
complete waveform ad a SNR of 10.05 using only the post-Newtonian waveform.
Thus, the importance of the accuracy of the waveforms is evident: the significance
of the first detection is much higher.
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It must be stressed that matched filtering can be performed on whitened data
exactly as in the case of simulated white noise. Furthermore, the ratio between
the whitened signal mean absolute amplitude and the whitened noise RMS (cor-
responding to A in previous sections) is always in a range between 2 and 10 for
different waveforms, windows and values of smoothing accuracy.
These considerations legitimate all the analysis outlined in the other paragraphs
and show that the results obtained can be linearly extended to the treatment
signals embedded in real interferometers noise.
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5 Conclusions

Many results were obtained and reported in the previous sections. The most im-
portant ones are highlighted here, along with the key steps that addressed the
whole work. In the end, some possible future prospects are introduced.
The main goal of this paper is to present techniques to regularly apply matched
filtering to data containing gravitational chirps. In particular, one typically uses
filters built with different parameters in order to finally estimate the couple of
masses which better resembles the signal embedded in noise. Thus, the aim justi-
fies the initial intuitive choice of using the “Grid of Masses” technique. In fact,
it seems reasonable to let the two masses regularly vary in order to find the couple
whose corresponding template mostly resembles the signal. It has been reported
that this procedure works significantly well, but it does not allow to obtain fine
estimates of the parent masses: the mean relative error, using a single detector,
usually fluctuates around 3% for masses in a range between 10 M�and 40 M�.
Consequently, it was discovered that a more accurate analysis can be carried out
translating the masses in terms of the new variables Chirp Mass M and Sym-
metric Mass Ratio ν. By letting the tested filters’ parameter vary in this new
space, it was possible to achieve interesting results, taking advantage of a more ro-
bust procedure. The better solidity can be easily checked by verifying the presence
of a clusterization of higher values of the Signal to Noise Ratio in this new space
of parameters, which is absent in the m1-m2 case. In this situation, finding a clus-
terization hints that a step toward a “diagonalization” of the problem was taken.
Furthermore, it is important to stress that this parameters provide a physically
more accurate description: the two masses are the two most intuitive parameters
one can think of, but the actual waveforms are theoretically modeled as depending
by M and ν. An important remark about this point is that these considerations
are valid when working with waveforms shaped including exclusively the first post-
Newtonian corrections. Waveforms modeling also the merger and the ringdown
phases of the coalescence will depend on many more parameters, but the underly-
ing ideas can be generalized to this case too.
An original contribution was also brought from the development of the “Chunks
Technique”. Although this method is computationally demanding, it is mean-
ingful to develop techniques which allow to better refine parameters estimation in
a field such as GW detections, where the measurable events are not very frequent.
Indeed, the procedure is designed only to fine-tune already pre-estimated values,
but not for a systematical use. Further on, a different approach was investigated
with the “rand CMR” method. The shift from a regular search to a randomized
and more focused one allowed to deeper investigate the areas of interest, returning
very precise estimates. In particular, a significant result was achieved from the
evaluation of the two masses up to a mean relative error around 1.35% (below 1%
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for measures combined from different simulated detectors).
In addition, the section involving the analysis of signals in real interferometers’
noise assumes a key role: it would be pointless to perform analysis in white noise
(as conspicuously done) without an adequate whitening procedure for measured
data. Thus, the depicted proof that real data can be whitened in order to re-
produce an experimental situation equivalent to the simulated one is conceptually
fundamental.
Last but not least, it might be worth indicating that an important technical up-
grade was represented by the use of MATLAB built-in functions to perform con-
volution, which is the key operation in matched filtering. Even if intuitively it
might seem advantageous to perform convolution in Fourier’s domain, MATLAB’s
optimized algorithms allow to obtain quicker and more precise results by working
directly in time domain. Matched filtering is the core of all presented techniques
and the operation of convolution is the most iterated one over the whole work,
thus, it is necessary to find the most efficient way to perform it.

5.1 Future Prospects

A few potential outlooks for further works are suggested in this paragraph. There
are two possible direct continuations for the presented workflow:

• The first one could be to perform signal injection in real interferometers’
noise. The observed behaviors should be respected in principle due to the
reported considerations about the spectral whitening technique. However,
new problems may arise due to disturbances at particular frequencies.

• The second possible follow-on might be to perform analysis using more re-
fined waveforms. In this case, a larger number of parameters would be
involved, thus, every step pointing to an increasing diagonalization of the
problem would be particularly significant.

Furthermore, it is important to remark that monotony of the SNR has been
achieved only globally, but the local behavior still presents local maxima. In
addition, some mild geometrical patterns can be observed in the SNR trend (see,
for example, Figures 8 and 12). These clues indicate that diagonalization may not
have been completely achieved (even if a significant level was reached). Therefore,
it might be possible to find parameters accomplishing this aim.
In the end, as already mentioned in Section 3, it might be worth developing a
smarter replacement of the ”Grid of Masses” technique. A first idea might be given
from the ”Updating Central Value” algorithm. In fact, optimization procedures
(such as the primitive developed one) might be used to quickly evaluate regions in
the parameters space, in order to focus the most refined analysis on the interesting
points.
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A Gravitational Waves

According to the predictions of the General Theory of Relativity, the variation of
mass-energy distribution in space-time produces gravitational waves in a process
similar to electromagnetic waves generation due to accelerated charges. While EM
waves propagate as perturbations of the EM field, gravitational waves are ”metric
waves”, in the sense that they alter the metric tensor gµν (which describes space-
time properties) at their passage.
Although any non-spherical time-changing mass-energy distribution can produce
gravitational waves, those generated by the acceleration of non-relativistic astro-
nomical objects (such as terrestrial objects or planets) are too weak to be de-
tectable by any conceivable technology due to the smallness of the coupling con-
stant G of gravitational force. Anyway, some astronomical phenomena can produce
gravitational waves that are detectable using the current cutting-edge technology.
These include violent astrophysical events such as the coalescence of a black-hole
(or neutron star) binary system, rapidly rotating neutron stars, the gravitational
collapse of massive stars, and various energetic processes that might have hap-
pened in the early Universe.
Gravitational waves analysis allows to extract important features related to the
various sources. Therefore, it is used to complement electromagnetic astronomy
to bring new information about our Universe. For this reason, it is fair to say that
these last years have represented the dawn of ”multi-messenger” astronomy, which
is based on the matching of EM and gravitational observations.

A.1 Gravitational Waves Detection

The key to gravitational waves detection is to measure the ”strain” h of space-
time geometry. The most precise method for measuring small deformations is
provided by laser interferometry. Gravitational waves interferometers follow the
same principle underlying Michelson and Morley’s device: a coherent laser beam
is split by a beam splitter and sent in two orthogonal directions. These beams
are reflected by two mirrors and eventually they are recombined to produce an
interference pattern. A change δL of the length L of every arm of the interferometer
produces a change in the interference pattern. The output is recorded in terms of
the strain h = δL/L, which is an adimensional quantity. During the first (Sept.
12th, 2015 to Jan. 19th, 2016) and second observing run (Nov. 30th, 2016 to Aug.
25th, 2017), measured strains ranged between 10−21 and 10−24 [7].

Compact Binary Mergers Observations All presented results are reported
from the catalogue [7]. Gravitational waves measurements are carried out using
interferometers with km-length arms as detectors. At the moment, the three most
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sensitive active detectors, operated by the LIGO-Virgo collaboration, are situated
in Livingston (USA, state of Louisiana), Hanford (USA, state of Washington),
and Cascina (Italy, province of Pisa). The sensitive frequency band ranges from
10 Hz to a few kHz: detectable signals in this domain include the coalescence of bi-
nary neutron stars systems or stellar-mass black-hole binaries, galactic supernovae,
rapidly spinning neutron stars. During the first and second observation runs, 10
binary black-holes and one binary neutron star coalescences were measured using
the above-described detectors.

A.2 Gravitational Chirps

Gravitational waves emitted by coalescing binary systems of compact objects con-
stitute the simplest case to be theoretically studied and experimentally detected.
In particular, current detectors are sensible to neutron stars and stellar-mass black
holes coalescences. These events produce the characteristic ”chirp” signals: their
amplitude increase with frequency, resembling sound-waves from birds chirping.
This paragraph aims to shortly derive the signal emitted by a compact coalescing
binary system (for a more complete discussion, see [1]).

A.2.1 Rigidly-Rotating Binary System

We start by considering a system composed of two compact objects circularly or-
biting around their centre of mass. By assuming that their orbit is much larger
than their curvature radius, it is possible to use the weak field and the slow mo-
tion approximations. Thus, motion laws can be derived from Newtonian physics.
Furthermore, space-time metric tensor can be written as the flat space-time metric
ηµν perturbed by a small strain hµν (with |hµν | << 1):

gµν = ηµν + hµν . (2)

Note that we use Einstein’s convention for tensorial indices. Emitted gravitational
waves can be computed using the quadrupole formula:

hTTij (t, x̄) =
2G

rc4
d2

dt2
QTT
ij

(
t− r

c

)
, (3)

where QTT is the quadrupole momentum of the mass-energy distribution and
r = |x̄|. The apices TT indicate that the whole calculation is performed in the
Transverse-Traceless gauge. By computing the quadrupole moment, one gets:

qij(t) =
1

c2

∫
V

T 00(t, x̄)xixjd3x =
µL2

0

2
Aij(t) + const. (4)
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where µ is the reduced mass of the system, L0 is the orbital radius, and

Aij(t) =

cos(2ωt) sin(2ωt) 0
sin(2ωt) −cos(2ωt) 0

0 0 0

 ,

where ω is the orbital frequency. This result should be projected in the TT gauge,
but this transformation only changes the constant term. By plugging the TT
projection of 4 into 3, one gets the emitted signal:

hTTij (t, x̄) = −4G2

rc4
µM

L0

ATTij

(
t− r

c

)
. (5)

Note that the characteristic frequency of the signal is equal to the double of the
orbital frequency νorb = ω

2π
.

A.2.2 Inspiraling Binary System

The study of an inspiraling system in its first phases (far from coalescence) can be
done using the adiabatic approximation, supposing that the energy does not vary
much during every orbit. Intuitively, referring to Formula 5, the orbital radius L0

and the orbital frequency ω will vary in time during the inspiraling phase. The
adiabatic approximation leads to neglect the variation of these parameter over a
single orbit: significant changes are appreciable only after many orbital periods. It
is useful to recall the definition of gravitational luminosity LGW , that characterizes
energy loss due to gravitational waves:

LGW =
G

5c5
〈

3∑
r,s=1

...
Qrs

(
t− r

c

)
...
Qrs

(
t− r

c

)
〉, (6)

where the 〈·〉 symbol indicates the Brill-Hartle mean over many orbital periods.
Plugging the reduced quadrupole momentum Qrs(t) (easily obtained from Equa-
tion 4) into Equation 6, one finds:

LGW =
32G4µ2M3

5c5
〈 1

L5
0

〉. (7)

The orbital energy of the system can be obtained from the laws of Newtonian
physics and depends on L0(t):

Eorb(t) = −1

2

GMµ

L0(t)
. (8)

Supposing that the energy lost by the system is all converted into emitted gravita-
tional waves, the law of conservation of energy linking the two quantities becomes:
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dEorb
dt

+ LGW = 0. (9)

Plugging the expressions 7 and 8 into 9, it is possible to evaluate the behavior of
L0 in time starting from an initial value LIN0 :

L0 = LIN0

(
1− t

tc

) 1
4

, tc =
5c5

256G3

(LIN0 )4

µM2
. (10)

When the time t approaches the critical time tc, the merger between the two objects
begins: in this regime, the approximations made are no longer valid. According
to the expression 10, by means of the second Kepler’s law, the behavior of the
gravitational frequency (twice the orbital frequency) can be written as

νGW (t) = 2νorb =
1

π

√
GM

L3
0(t)

= νINGW

[
1− t

tc

]− 3
8

. (11)

A characteristic plot of the gravitational frequency for this kind of signals is shown
below:

Figure 34: Behavior of the frequency for a chirp signal emitted by two coalescing
black-holes using the Newtonian model.

From equation 11, it is possible to write the following expression, which will
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be used later on:
1

L0

=
(πνGW )

2
3

(GM)
1
3

. (12)

It is also possible to write the expression of the strain as:

hTTij (t, x̄) = −h0(t) · ATTij
(
t− r

c

)
. (13)

Let’s focus on the expression of the strain amplitude h0(t), the other term only
giving the oscillating contribution. The strain amplitude is usually expressed in
terms of the orbital frequency νGW and can be obtained simply by substituting
equation 12 into the expression for static systems 5:

h0(t) =
4π

2
3G

5
3

rc4
M

5
3ν

2
3
GW (t) (14)

From this formula, it is clear that the amplitude increases with frequency. The
chirp mass M is a particular combination of the reduced mass µ and the total
mass M defined as:

M≡ µ
3
5M

2
5 =

(m1m2)
3
5

M
1
5

(15)

It is important to notice that the strain amplitude depends only on this particular
combination of the two masses: this implies that, analyzing this kind of signals,
it is never possible to reconstruct the masses of the two objects that generated
the signal, but only their chirp mass. The following image represents a plot of the
strain amplitude:
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Figure 35: Template describing a chirp signal emitted by two coalescing black-holes
of 30 M�using the Newtonian model.

A.2.3 Signal Analysis

As already mentioned before, the gravitational signal derived from the above cal-
culation does not depend separately on the two masses of the compact objects, but
only on their chirp mass. So, the analysis does not furnish the actual masses of the
sources. It is fair to say that there is a degeneracy: the signal depends only ap-
parently on the two masses, but it actually relies on a single parameter: the chirp
massM. To split this degeneracy and obtain information on the single masses, it
is necessary to include post-Newtonian corrections to the previous expressions. It
is not significant how to obtain these corrections analytically, but it is necessary to
point out that one should implement post-Newtonian corrections in the modeling
of the problem to extract interesting results. An example of a waveform including
post-Newtonian corrections is reported below:
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Figure 36: Template describing a chirp signal emitted by two coalescing black-
holes of 30 M�using the post-Newtonian model up to second order corrections.
The difference with the previous case is not evident, but comes out during data
analysis.

Furthermore, it is important to remark that all the above calculation is done
using three approximations:

1. Slow-Motion approximation

2. Weak-Field approximation

3. Adiabatic approximation

When the two objects come close, none of the three is valid anymore. In these
cases, Einstein’s equations are not linear anymore and there are no analytical
solutions. For these reasons, it is necessary to compute the actual waveforms
using Numerical Relativity. The analysis of real signals is done using these much
more sophisticated waveforms, which accurately describe also the phases of merger
(the highest peaks of the signal) and ringdown (the last part) of the coalescence.
In the following plot, it is reported the real waveform used to detect the event
”GW150914”, which has been used in the codes to perform real data analysis:
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Figure 37: Best evaluated template for the event ”GW150914” detected by LIGO
interferometers. The main difference with the previous cases lies in the last parts,
which here include the merger and the ringdown phases.
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B Matched Filtering

In real experiments, any measurement is accompanied by an uncertainty, which
reflects our understanding of the underlying phenomena. When it comes to the
analysis of gravitational chirps, it might seem nearly impossible to provide a result
within a reasonable confidence interval. In fact, gravitational signals’ amplitudes
are even smaller than 10−21, while the detectors’ noise amounts to 10−18 circa.
However, there exists a technique, called matched filtering, employed to study
waveforms deeply buried in noise (like in this case), allowing for the extraction of
sensible information.
The following discussion deals with the theoretical basis underlying the above-
mentioned method and its implementation in MATLAB scripts.

B.1 Theoretical Remarks

Let’s consider raw measured data of the form:

r(t) = h(t) + n(t),

where h(t) represents the signal and n(t) stands for the noise [5]. According to the
matched filtering technique, the optimal filter f(t) that maximizes the Signal to
Noise Ratio (SNR) needs to be found. By performing the operation of convolution
between r(t) and the filter f(t), it can be written that

c(t) = r(t) ∗ f(t) = h(t) ∗ f(t) + n(t) ∗ f(t) = y(t) + w(t),

where y(t) and w(t) are defined as a result of the convolution. Then, using the
Convolution Theorem, the SNR can be expressed as:

SNR =
|y(τ)|2

E[|n(τ)|2]
=
|
∫ +∞
−∞ H(f) · F (f)ej2πfτdf |2∫ +∞
−∞ W (f) · |F (f)|2df

(16)

where H(f), F (f) and W (f) are the Fourier transform of h(t), f(t) and w(t),
respectively. The value of τ , instead, is chosen as the one that maximizes the SNR.
Through computation, it is possible to show that the optimal filter is obtained
conjugating and time-reversing the original signal h(t). Before proceeding, it is
useful to point out that:

• the signal h(t) is real, so it can be just time-reversed to find f(t);

• in a real scenario, data and signals are discretized, so this analysis has to
be carefully substituted with a discrete version. However, since the meaning
and the results are not affected, it has been preferred to carry on a simpler
continuous calculation for simplicity.
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B.2 MATLAB Implementation

The results of the matched filtering procedure have been extensively used in MAT-
LAB scripts as a means to detect and examine gravitational waveforms. In the
following paragraphs, the Fourier domain and the time domain approaches are
described in detail.

B.2.1 Fourier Domain Approach

In this first method, the calculation of SNR is performed in the Fourier domain.
As previously explained, a convolution in time domain behaves like a product in
the frequency domain. The logical thread is thus the following 21:

1. Divide the input vector data (containing the signal embedded in noise) in
chunks long as much as the injected signal;

2. Apply the Fourier Transform to each chunk and multiply by the Fourier
Transform of the filter;

3. Compute the Inverse Fourier Transform and save the output in a vector
out_f;

4. Repeat 1, 2, 3 for each chunk.

However, the steps outlined cannot account for adequate accuracy, since it will
rarely happen that the real signal is located exactly at the very beginning of a data
chunk. Therefore, a precision parameter prec is accepted as input. While in the
previous case the process was carried out once for each chunk, prec allows for the
analysis of each chunk prec times, moving the starting point by Nsamp_sig/prec
after any iteration. Overlaps can be avoided saving only the appropriate outcome.
This procedure is useful and fast as long as the precision parameter is not too
high, i.e. 100. Otherwise, the time domain approach provides better results and
performances.

B.2.2 Time Domain Approach

Being based on the MATLAB built-in function conv, this procedure is highly
optimized and fast. Therefore, the user should switch to this method whenever
the parameter prec of the previous case becomes too high. Some lines of the
relative code 22 are here reported.

21Refer to apply MF3.m.
22Refer to apply MF conv.m. See also conv apply MF3.m.
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%reversed signal

filter_t=signal(end:-1:1);

...

%Convolution between data and Impulse Response

out = conv(data, filter_t, "valid");

The option "valid" returns an output having the length of data minus the
length of signal, including only the part of the convolution computed without
the zero-padded edges. In this way, it is avoided to look for signals which end
outside the data. This option will be also useful to determine correctly the time of
detection of a Gravitational Wave, bypassing the rescaling of the time vector. For
clarity’s sake, some plots showing datas and filtering are presented below. These
results are valid under the hypothesis of Gaussian white noise, whose amplitude is
still comparable with the signal (a factor of 1.5 higher than the signal’s maximum).

Figure 38: Blue: example of data obtained by a detector in white noise. Red:
highlighted signal embedded in noise.
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Figure 39: Output of optimal matched filter when applied to Figure 38. The peak
corresponds to the time of detection of the waveform.
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C Grid of Masses Technique

As already stated at the beginning of the work, chirp signals’ parameters can be
deduced in several ways. This section outlines a well-known and efficient method,
based on the actual construction of a grid of masses, i. e. a lattice in the plane
M1-M2. More specifically, the grating should be built having at least a bare idea of
the sought masses. As an example, a neutron star could never be detected within
a range going from 10 M� to 40 M�, while a more appropriate interval might be
[0.2 M�; 2 M�]. Then, the grid must be constituted by equally spaced values of the
masses in the chosen domain. The distance between two neighbors, the so called
step, is a crucial variable, highly influencing the result of the procedure.
For simplicity, only square meshes will be worked out: in this case, for the analysis
to be effective, it is sufficient to consider only half of the grid, due to symmetry
considerations. The case of of a general rectangular grid has been implemented in
codes, but it is not convenient to perform analysis. Once the structure has been
built, each grid point (labelled by two masses) will be used to generate a chirp
signal. This waveform, in turn, will act as a filter on the injected signal, which
plays the role of the propagating wave coming from a given astrophysical two-body
source. By now, it should be clear that the underlying theoretical justification is
related to the matched filtering technique, discussed in detail in Section B. On
these basis, a detection will be claimed for the point which generate a filter such
that the SNR (Equation 16) peaks at its maximum value. Thus, the general aim of
the procedure is to find the couple of masses that best reproduces the experimental
data.
The following results, however, are derived in a Newtonian landscape, according
to which the entire process of gravitational waves emission is solely determined by
a particular combination of the masses of the two orbiting bodies, the chirp mass
M (Equation 15). Therefore, individual masses have no meaning at all in this
picture, as long as the estimated chirp mass is coherent with the real one.

C.1 MATLAB Implementation

The relative MATLAB function23 implements a grid of masses, allowing the user
to insert a vector data to be filtered and to choose between the Newtonian and
the Post-Newtonian landscape (examined in detail in Section F). Once taking into
account the proper signal generation, however, the core remains the same: signals
built from each grid pair filter the input vector data, returning an array containing
the SNR and the relative couple of masses. This output allows for the estimate

23Refer to apply conv grid.m. See also apply par grid.m for a useful parallel implementa-
tion, as discussed in Section I.
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of the pair which maximizes SNR, which must be performed in the main script.
Taking a close look to the code, as for the Newtonian case:

%double cycle over masses

for i = start1:step1:end1

for j = start2:step2:end2

...

%generating filter

ch=Newt_Chirp(i,j, signal_parameters{:});

%applying filter

out = apply_MF_conv(ch, data, dt);

...

%calculating SNR

SNR(:, ii) = [ max(abs(out)), i, j];

...

end

end

As already mentioned, in the Post-Newtonian approach Newt_Chirp must be re-
placed by chirp_signal. Other codes24 provide even instruments for further
analysis, based on what will be called from now on chunk method. The main
idea behind this approach can be outlined as follows:

1. Having previously applied the grid of masses, the maximum of the SNR is
stored in the variable maximum and a parameter tresh is defined25;

2. All the grid points whose relative SNR is higher than tresh*maximum are
selected for a deeper analysis.

3. Each chosen point generates a filter, which is in turn divided in NumCh chunks.
The initial data is filtered with all those different pieces and the single outputs
finally add up to the final SNR, properly rescaled so that each chunk has the
same statistical weight.

In this way, the problem of noise mimicking signal is partly avoided. In fact, the
algorithm runs with NumCh different filters; so, if the masses are sufficiently close
to the true ones, the convolution with the underlying signal will always result in
a high SNR for each of the chunks, while the fluctuations caused by noise will be
averaged to a lower value.

24Refer to chunk mm.m.
25Commonly, tresh is assigned to a value between 0.9 and 0.95. The actual meaning will be

clear in the next point.
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In the following treatment, this approach will rarely be used, since it reduces the
speed of execution without providing significant improvements.
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D Newtonian Chirp

The purpose of this section is to combine the theoretical aspects presented in A.2
with the experimental methods explained in Sections B and C, in order to esti-
mate the parameters of gravitational chirps in the Newtonian approximation. The
guideline of the following discussion is that the chirp mass is the only parameter
that shapes this kind of waveforms (Figure A.2.2) M, as one can explicitly see
from Formula 14.

D.1 Discretisation Limit

It may be worthwhile to provide a result in a totally ideal scenario, neglecting the
contribution of noise. The outcome will then set an upper limit on the maximum
achievable overall precision. The relative MATLAB code 26 establishes a discreti-
sation limit on the precision of the masses attainable by the grid technique in the
Newtonian approach. Choosing the values of the two initial masses, the script in-
jects a chirp signal in white noise as if it was generated by an astronomical source.
Then, applying a grid of masses with fixed step, the chirp mass can be estimated
and compared with its real value. The analysis is conducted dividing repetitively
the grid step, showing an interesting scaling law between the relative precision and
the step chosen.
Let’s now take a closer look at the code. Firstly, a couple of masses representing
the gravitating bodies is fixed:

m1 = 20.53526 %solar masses

m2 = 32.33224 %solar masses

It might be objected that such a high precision is undoubtedly unphysical, but it
should be borne in mind that the Newtonian algorithm pursues the best estimate
of the chirp mass, without caring about the original bodies. Choosing the two
original masses in this way ensures that the chirp mass shall have many (possibly
infinitely many) decimal digits, a useful feature in further considerations. Then,
the initial chirp is injected: the purpose of the analysis will be recovering the
original chirp mass M through the aforementioned technique.
Secondly, a square grid of masses is constructed, choosing an appropriate range:

%initial values

start1 = 0;

start2 = 0;

finish1 = 40;

26Refer to theoretical limit.mlx.
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finish2 = 40;

...

%construction of the grid

M12 = [start1:step:finish1; start2:step:finish2] ;

Setting the grid, it becomes easy to produce a waveform for each couple of masses,
which will consequently filter the original injected signal. A matrix SNR stores the
pairs and the relative SNRs. Here the main for cycle is reported:

for i = 1:length(M12(1,:))

for j = 1:i

%chirp for each couple of masses

[ch,chirp_freq]=CHIRP_fromparameters(M12(1,i),M12(2,j),TMAX_a,dt);

%output of the filter

[out, time] = conv_apply_MF3(ch’/max(ch), chTrue’/max(chTrue), dt);

%extract SNR, then store it in a matrix.

SNR = [SNR; max(out), M12(1,i), M12(2,j)];

end

end

After this, the script proceeds as follows:

1. It finds the maximum SNR and the corresponding masses;

2. It focuses the analysis around this point, updating the limits of the grid and
reducing the step by a factor 10;

3. It repeats the points 1, 2 and computes δM
M = |Mmeas−Mtrue

Mtrue
| for 4 times.

A plot illustrating the variation of δM
M as a function of the iteration parameter

is finally shown.
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Figure 40: Relative error as a function of the iteration. Log-scale is used for the y
axis.

Without going into detail, it can be seen that the relative error diminishes
approximately resembling a power law. The base’s value is related to the factor
by which the step is reduced at each iteration (in this case 10). In conclusion, the
discretisation limit confirms the expected behavior of the grid of masses technique:
the smaller the step, the higher the precision. Moreover, it also gives some quan-
titative results, as displayed in Figure 40. Again, it should be remarked that the
previously obtained scaling law is meaningful only in the ideal case.

D.2 Time of Detection

One of the main tasks to be accomplished while detecting a signal is providing a
precise estimate of its time of arrival. Usually, in fact, a chunk of data is given,
hopefully containing a chirp embedded in noise. Then, they should be able to
characterize both the masses of the sources and the position in time of the hidden
signal. The former goal has been carefully described previously; so, the following
discussion regards the latter one. In the relative MATLAB script27, a known chirp
signal is injected in gaussian white noise. Subsequently, filtering this waveform
with its time reversed version (i.e., the optimal filter, Section B), a proper estimate
of the delay between the arrival of the signal and its time of detection can be given.
The entire process is repeated N_exp times, always inserting the known waveform

27Refer to CMF Delay.mlx.
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randomly in a newly generated white noise configuration.
Let’s examine the code in detail. In order to be able to furnish coherent results,
the source masses are kept fixed and the simulation is repeated 1000 times (N_exp
= 1000). The initial parameters are thus set:

N_exp=1000 %Number of experiments

dt=1/4096 % sampling time. The max frequency is 2048 Hz in this case.

%Check with generated chirp

...

m1 = 24.1146 %solar masses

m2 = 28.5472 %solar masses

...

T_MAX=0.5+rand %Duration of signal in seconds

T_tot=T_MAX*(10+rand) % Duration of background noise

A_max=1 %noise rms

...

%creation of the signal

[signal, signal_freq]=CHIRP_fromparameters(m1,m2,T_MAX,dt, 0);

Then, applying the matched filtering procedure, the SNR can be calculated.
For each of the experiments, looking at the time corresponding to the maximum of
the SNR, a possible delay between the arrival of the hidden signal and its detection
can be brought to light.

%looking exactly for the right signal: optimal filter

[out,time]=apply_MF_conv(signal,data,dt); %Filtering

%getting detection sample as max of SNR

[~,S_det]=max(abs(out./std(data)));

%detection time

Det_time=time(S_det);

%storing into array of Delays

Delays(i)=(Det_time-TSTART)/dt; %in units of dt

Lastly, some plots are produced, in order to clearly understand which are the
limits of this procedure. Notice that all the results are given in terms of dt, which
stands for the sampling time. A typical signal coming from the selected masses
lasts for about 0.5s, which corresponds to 2048 dt. The histograms will be always
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normalized by the number of experiments N_exp. The noise r.m.s A_max must be
understood as a factor that, once multiplied by the chirp maximum value, gives
back the real noise root mean square amplitude.

Figure 41: Normalized histogram
of delays, expressed in sampling
time units. Noise r.m.s A max =

0.5, bin width 0.1dt.

Figure 42: Normalized histogram
of delays, expressed in sampling
time units. Noise r.m.s A max =

1, bin width 0.2dt.

Figure 43: Normalized histogram
of delays, expressed in sampling
time units. Noise r.m.s A max =

1.5, bin width 0.3dt.

Figure 44: Normalized histogram
of delays, expressed in sampling
time units. Noise r.m.s A max =

2, bin width 0.5dt.

Claiming a false detection whenever the time of detection misses the arrival
by half the duration of the signal itself, the analysis can be performed in a more
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accurate fashion, plotting only the standard deviations of the correct detections.
In fact, as expected, the mean value is almost zero in any case.

Figure 45: Standard deviation of correct detections, expressed in sampling time
units, as a function of the noise r.m.s.

As for the false detection rate, it ranges from 0.5% to 3% of the total number
of detections when A_max = 2.5, while it goes from 7% to 15% for A_max = 3. As a
result, the time of detection is in perfect agreement with the actual time of arrival
of the injected signal as long as the noise r.m.s A_max is less than twice the chirp
peak value. In the following, if not otherwise stated, it will be tacitly assumed
that this restriction holds.

D.3 Detailed Code Explanation

In this paragraph, an exhaustive description of the code simulating the detection
of a chirp signal in the newtonian case is performed, focusing on key passages.
Lines will be referred to as reported in Appendix D.5. The following explanation
recovers the structure of the paragraph 1:

1. The first lines (10-28) are dedicated to fixing the parameters of the simu-
lation. A maximum of 4 detectors can be used to perform a simulation.
The code works also with more than 4 detectors, but this limit has been
chosen in order to resemble realistic situations. The parameter A fixes the
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ratio between noise r.m.s and signal mean absolute amplitude. Then, grid
parameters are chosen: a realistic range of masses for simulating signals from
stellar-mass black holes could be [10 M�; 40 M�]. The choice of the step is
a crucial point and should be gauged carefully: its value highly influences
obtained precision and execution time. A good cost-effective compromised
could be to fix it to 0.5 M�, in order to get significant results without needing
excessive computational power. A more detailed discussion on this topic will
be carried out in section D.4. Then, all the parameters shaping the signal
are determined: the masses are randomly chosen in the grid range, while
signal duration and sampling time are fixed.

2. In lines 31 to 38, signal and noise are generated. The function Newt_Chirp

produces an array of values shaped according to Formula 14 (actually, Figure
A.2.2 is obtained using this function). Notice that the signal is normalized
to its maximum amplitude. White noise is generated using random normally
distributed numbers for a duration equal to 4 times the extent of the signal.

3. The task of injection is performed in lines 41 to 51. Injection time is chosen
in order for the signal to be placed neither at the very beginning nor outside
data, so that it could be correctly detected. Notice that the injection time is
the same for every detector: the implicit assumption is that the signal arrives
on all the detectors at the same time. The function signal_noise_plot

produces a plot of the signal injected in data in the first detector (an example
is Figure 38).

4. The parfor loop in lines 63 to 75 is the main body of the program. By
taking advantage of parallel computing (different detectors are executed in
parallel on different CPUs), the grid of masses technique is applied to data in
every detector using apply_conv_grid. This cycle produces two important
variables: M_list and SNR. Both are storage variables: the former contains
the best combinations of masses in every detector and the associated SNR,
while the latter is a multi-folded structure that holds all the measured values
of SNR over all the points of the grid. Every sheet of this variable corresponds
to a different detector.

5. Selection of best combination of masses in every detector is obtained using
the function max_SNR in line 73, which returns the couple that maximizes
SNR for every sheet of the variable SNR. Lines 78 to 81 pick the pair M1-M2
that maximizes the average SNR over the different detectors. Notice that
this combination could be different from all the ones previously found.

6. Time measurements are performed in two parfor cycles from line 94 to
134. In the first one, filtering is done on all detectors using the optimal
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combination of masses M1-M2. Results, in this case, are not stored singularly:
their value is averaged. In the second one, instead, matched filtering is
performed on every detector’s best combination. It is important to always
keep in mind that the purpose of the code is to produce a single measurement
for every detector and a measurement from the overall network.

7. In last lines (146-153), obtained results are assembled in the handy Res_Table

structure (an example is shown in Figure 2). In particular, it is a MATLAB
container of type ”Table”.

D.4 Analysis of Results

In this section, some results obtained from many iterations of the code discussed
in the previous paragraphs are presented. To obtain these results, it has been
fundamental to use computational methods and resources reported in Appendix I.
It is important to keep in mind that the aim of the code is to give an estimate
of the chirp mass of the injected signal and of the arrival time: in this section,
the precision of this estimate will be discussed. Two factors mainly contribute to
errors on chirp mass identification: the amplitude of the noise and the step of the
used grid. Reported results are obtained averaging the results of 50 runs of the
previously explained code (which means that single detector errors are estimated
from 200 measures, since 4 detectors were simulated in every run).

Dependence on Noise RMS A. In order to obtain the dependance of the error
on chirp mass identification, all the parameters were fixed to some chosen values
and only the noise r.m.s was changed. 50 experiments were performed for every
choice of A for 4 detectors: this means that measurements for single detectors
are averaged over 50x4=200 values, while combined measures are averaged simply
over 50 values. In the following graphs, the obtained results are presented. The
reader should keep in mind that A is the ratio between noise r.m.s and signal mean
absolute amplitude.
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Figure 46: The behaviour of the
error with respect to noise r.m.s
A is almost linear for reasonably
small values.

Figure 47: Standard deviation
of the delay in time detection
also increases almost linearly with
noise r.m.s A.

It is interesting to notice that using more than on detector gives a significantly
better result especially for high noises. This happens because errors on indepen-
dent measures strongly depends on the peculiar characteristics of the noise in every
detector, which could distort the signal and make it more similar to a similar one
having different parameters. Combined measures ”average” the noise on different
detectors, so, they usually give a more accurate result.

Dependance on Grid Step. In realistic situations, if the noise is stationary,
its mean value can be estimated. Thus, the main parameter that influences the
step of the grid one uses to perform the analysis. The following graphs show some
characteristic behaviors of the errors for two different situations of noise:
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Figure 48: For low noises, the result is similar to the one obtained without noise:
precision increases linearly in a logarithmic scale.

Figure 49: For high noises, the grid step does not influence much the behavior
error: better estimations cannot be performed by using denser grids.

A similar behavior has been noticed for the errors on time measurements. It is
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reported in the following graphs:

Figure 50: For low noises, time
measurements become quickly
very precise.

Figure 51: The step of the grid
does not influence much time
measurements for high noises.

D.5 Newtonian Detectors.mlx

1 %N DETECTORS OF NEWTONIAN CHIRPS

2 %This code simulates an experimental setting made of N detectors

3 %(different noise on each one) that measure the arrival of a chirp signal

4 %in the Newtonian approximation. The signal is randomly injected in data

5 %at the beginning. The aim is to correctly estimate the chirp mass of the

6 %system that generated the signal (only relevant parameter) and the

7 %arrival time.

8 clear, close all

9

10 %Number of Detectors (no more than 4)

11 N_det=4;

12

13 %Noise rms

14 %(with respect to signal mean absolute amplitude)

15 A=5;

16

17 %GRID PARAMETERS

18 %start1, step1, end1, start2, step2, end2

19 grid_par=[10, 2, 40, 10, 2, 40]; %solar masses

20

21 %Ramdomly generate signal in correct range
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22 fprintf("Signal Parameters:\n")

23 m1=grid_par(1)+rand*(grid_par(3)-grid_par(1))

24 m2=grid_par(4)+rand*(grid_par(6)-grid_par(4))

25 Chirp_Mass=chirpMass(m1, m2)

26 dt=1/4096 % sampling time, max freq = 2048 Hz

27 T_MAX=1 %seconds

28 signal_parameters={dt,T_MAX}; %inputs of signal function

29

30 %SIGNAL GENERATION

31 signal=Newt_Chirp(m1,m2, signal_parameters{:}); %creation of the signal

32 signal=signal./max(signal); %signal normalization

33

34 %WHITE NOISE GENERATION in every detector

35 T_data=T_MAX*4; % Duration of background noise

36 A=A*mean(abs(signal)); %noise rms

37 data=randn(round(T_data/dt), N_det); %this is the noise, T_tot/dt samples.

38 data=A*data; %use this line to work also with A=0

39

40 %INJECTION at random time

41 %time of signal injection, no extremal points

42 TSTART=dt+rand*(T_data-T_MAX-2*dt);

43 nSTART=ceil(TSTART/dt); % sample at which signal injection begins

44 %addition of signal to background noise

45 data(nSTART:nSTART+length(signal)-1,:)=...

46 data(nSTART:nSTART+length(signal)-1, :)+signal;

47

48 %Plot of Situation in detector 1

49 signal_noise_plot(data(:,1), signal, TSTART, dt);

50 title("Signal and Noise in One Detector")

51 ylabel("Normalized Amplitude")

52

53 %Initializing Variables

54 %number of points in the grid

55 grid_points=length(grid_par(1):grid_par(2):grid_par(3))*length(...

56 grid_par(4):grid_par(5):grid_par(6));

57 SNR=zeros(3, grid_points, N_det); %whole SNR structure

58 M_list=zeros(N_det, 3); %results in different detectors

59

60 tic;

61
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62 %DETECTION IN EVERY DETECTOR

63 parfor det=1:N_det

64

65 %useful temporary variable (due to parfor)

66 tmp=zeros(1, 3);

67

68 %applying initial grid

69 SNR(:,:, det)=apply_conv_grid(data(:,det), grid_par, 0, ...

70 signal_parameters); %Filtering

71

72 %storing best masses for every detector

73 [tmp(1), tmp(2), tmp(3)] = SNR_max(SNR(:,:, det));

74 M_list(det,:)=tmp;

75 end

76

77 %mean of SNR over different sheets

78 SNR_mean=mean(SNR, 3);

79

80 %best combination over detectors

81 [max_SNR, M1, M2] = SNR_max(SNR_mean);

82 Meas_Chirp_Mass=chirpMass(M1, M2);

83

84 %plotting grid

85 grid_plot(SNR_mean), title("SNR over Grid of Masses"), ...

86 xlabel("Mass 1 (\(\textup{M}_\odot\))",’Interpreter’,’latex’), ...

87 ylabel("Mass 2 (\(\textup{M}_\odot\))",’Interpreter’,’latex’)

88

89 %storing results for every detector

90 M_list(:, 4)=chirpMass(M_list(:,2), M_list(:,3));

91 M_list(:, 5)=abs(M_list(:, 4)-Chirp_Mass)./Chirp_Mass;

92

93 %TIME MEASUREMENTS

94 Det_time=zeros(N_det, 2); %storage variable

95 masses=M_list(:,2:3); %tmp variable for parfor

96

97 %1) best combination over detectors

98 ch=Newt_Chirp(M1, M2, signal_parameters{:});

99

100 %cycle over detectors

101 parfor det=1:N_det
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102

103 %Applying optimal template to data for every detector

104 [out,time]=apply_MF_conv(ch,data(:,det),dt); %Filtering

105

106 %getting detection sample as max of SNR

107 [~,S_det]=max(abs(out./std(data(:,det))));

108

109 %storing detection time and sample

110 Det_time(det, :)=[time(S_det),S_det];

111 end

112

113 %mean delay over all detectors

114 mean_del=mean(Det_time-[TSTART, nSTART], 1);

115

116 %2) every detector

117 %cycle over detectors

118 parfor det=1:N_det

119 %tmp variable for parfor

120 tmp_sig=signal_parameters;

121 tmp_m=masses;

122

123 %optimal template found

124 ch=Newt_Chirp(tmp_m(det, 1), tmp_m(det, 2), tmp_sig{:});

125

126 %Applying optimal template to data for every detector

127 [out,time]=apply_MF_conv(ch,data(:,det),dt); %Filtering

128

129 %getting detection sample as max of SNR

130 [~,S_det]=max(abs(out./std(data(:,det))));

131

132 %storing detection time and sample

133 Det_time(det, :)=[time(S_det),S_det];

134 end

135

136 %storing results

137 M_list(:,6:7)=Det_time-[TSTART, nSTART]; %units of dt

138

139 if(N_det>1)

140 M_list(N_det+1,:)=[max_SNR, M1, M2, Meas_Chirp_Mass, ...

141 abs(Meas_Chirp_Mass-Chirp_Mass)./Chirp_Mass, mean_del(1), mean_del(2)];
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142 end

143

144 %printing results as a table

145 fprintf("Measurements in Every Detector:")

146 Res_Table = array2table(M_list,’VariableNames’,{’SNR’,’Mass 1’,’Mass 2’,...

147 ’Chirp Mass’, ’Rel. Error’, ’Delay (s)’, ’Delay (smpl)’});

148 Detectors={’Virgo’, ’LIGO 1’, ’LIGO 2’, ’Kagra’};

149 Detectors=Detectors(1:N_det);

150 if (N_det>1)

151 Detectors=[Detectors, "Best Comb."];

152 end

153 Res_Table.Properties.RowNames=Detectors

154

155 %Execution Time

156 ex_time=toc;

157 fprintf("Execution Time: " + datestr(seconds(toc),’HH:MM:SS:FFF’) + "\n");
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E Post-Newtonian Corrections

The purpose of this section is to present some relevant formulae in the Post-
Newtonian approximation, reported from [1].

E.1 Useful Formulae

First, the dimensionless variable x is defined as a function of the source orbital
frequency ωs:

x ≡

(
G(m1 +m2)ωs

c3

)2/3

. (17)

However, x can be written also making its dependence on the symmetric mass
ratio ν explicit:
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(18)
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The orbital phase can be expressed in a similar way:

φ(t) =− 1
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(19)

It can be shown that the dimensionless time variable Θ

Θ ≡ νc3

5G(m1 +m2)
(tc − t), (20)

where tc is the time at which the coalescence takes place and m1 and m2 represent
the two masses of the binary system.

In Formulae and , C ' 0.577 stands for the Euler-Mascheroni constant.

E.2 The Inverse Change of Coordinates

In this paragraph, the inverse change of coordinates from the new variables chirp
mass M and symmetric mass ratio ν to from the two masses m1 and m2 is made
explicit. Since the ultimate aim is to estimate the masses of the two astronomical
objects generating the signal, it is necessary to use this change to recover the two
masses, once M and ν have been evaluated. It is useful to use the Newtonian
variables total mass M = m1 + m2 and reduced mass µ = m1m2

M
. So, from the

definitions of M and ν, on can write:
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M = µ
3
5M

2
5 ν =

µ

M
. (21)

This relations can be easily inverted, in order to get:

M =Mν−
3
5 µ =Mν

2
5 . (22)

Now, one should invert the definitions of M and µ in order to get m1 and m2. By
substituting m2 = M −m1 into the definition of µ, on gets the equation for m1:

µ =
m1(M −m1)

M
−→ m2

1 −m1M + µM = 0. (23)

So, one gets two solutions for m1. This happens because of the symmetry between
m1 and m2, which can be exchanged without affect the physics of the system. So,
it is possible to write simply:

m1,2 =
M

2

(
1±

√
1− 4µ

M

)
. (24)

In the end, the change can be written as:

m1,2 =
M
2ν

3
5

(
1±
√

1− 4ν
)
. (25)

It can be seen that a limit to the value of ν is set: it cannot exceed the value of
0.25.
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F Post-Newtonian Chirp

All the results obtained till now have been derived analyzing binary systems ac-
cording to the Newtonian approximation, whose crucial parameter is represented
by the chirp mass M. According to this picture, if different pairs of astronom-
ical objects had exactly the same chirp mass, they would produce an identical
gravitational waveform, being then indistinguishable. Based on the hypothesis
of slowly moving and weakly self-gravitating sources (see [1] for further develop-
ments), the Post-Newtonian approximation, in a certain way, ”breaks” this degen-
eracy, furnishing a valid attempt at the estimate of the two separate masses. The
Post-Newtonian terms, however, should be understood as a slight correction to the
underlying Newtonian treatment. Thus, as for the grid based algorithm (Section
C), the new approach’s main aim is to find the couple of masses that reproduces
both the chirp mass of the gravitating system and the values of descriptive vari-
ables depending on the masses of the bodies. Combining the measures of these
variables, one should, in principle, be able to conclude the experiment, giving an
estimation of the parameters (i.e. their masses) of the two objects separately.
Actually, as a matter of fact, the uncertainty on the masses does not seem to experi-
ence a steady reduction when scaling the grid step. While it may appear indicative
of an error, it should be recalled that, in the first place, the Post-Newtonian ap-
proximation seeks the combination of grid points that best approaches the chirp
mass, and not the one that perfectly estimates the two separate masses. There-
fore, thickening the grid, ”good” pairs can be obtained for values of the source
masses which could be even considerably distant from the expected values, as long
as the chirp mass is the same. The ensuing discussion refers to several of the most
important tasks that need to be accomplished when dealing with Post-Newtonian
chirps, and it almost follows the same outline sketched in Section D.

F.1 Discretisation Limit

As similarly done in D.1 in the Newtonian landscape, it is useful to examine the
ideal case also in the Post-Newtonian approximation, assessing the intrinsic limit
of the procedure. Indeed, when analyzing a chirp signal, not only do errors arise
from the presence of noise, but they also can be partly attributed to the discrete
nature of the grid. Therefore, the purpose of this argument is to quantify the error
associated to the grid at fixed values of the step. The script written to produce the
following results is based on the one discussed in detail in paragraph D.3, but it has
been revisited in light of the Post-Newtonian approach, as will be clearly exposed
in paragraph F.4. Furthermore, after inspecting several results (see paragraph
F.4.1), it has been decided to fix the Post Newtonian Order at 2.5, which accounts
for the best precision. Let’s now look at some plots, obtained averaging the results
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of 120 random simulations. Moreover, it must be said that the symmetric mass
ratio ν = m1m2

(m1+m2)2
will constitute an important parameter in further analysis.

Figure 52: Mean relative error on the two masses and on their average as a function
of the grid step (the three curves are exactly overlapped, as expected). The range
of analysis spans 3 M�.
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Figure 53: Mean relative error on the chirp mass and on the symmetric mass ratio
as a function of the grid step. The range of analysis spans 3 M�.
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Figure 54: Standard deviation of the distribution of delays as a function of the
grid step. The range of analysis spans 3 M�.

As it is possible to observe comparing the first two graphs, while the relative
error on the masses does not seem to experience a significant reduction (though it
always becomes smaller), the errors on the chirp mass M and the symmetric mass
ratio vary on different order of magnitude diminishing the grid step. This behavior
confirms what guessed in the introduction to Section F: in terms of priority, the
Post-Newtonian algorithm, being an approximation of the Newtonian method,
firstly seeks the couple of masses which gives the best estimate of the chirp mass,
then maximizes also the symmetric mass ratio, and only at the end provides the
masses of the two gravitating bodies by combining the previous results. Thus, if
grid pairs have a different chirp mass from the expected one, they will not generate
a sufficiently high SNR, no matter how ”near” they are to the true couple.
The last figure is not surprising: in the absence of noise, the matched filtering
technique, combined with a sufficiently dense grid of masses, reveals perfectly
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the time of arrival of the signal. For this reason, even in the Post-Newtonian
approximation, the major concern will always be the estimate of the source masses.
These considerations will lead to a new approach, extensively described in Section
2, where the grid axis no longer stand for the two masses, but they represent the
chirp mass M and the symmetric mass ratio ν, those being the ”right” variables
to analyze the problem.

F.2 Dependence of Error on Masses Values

In an independent analysis28, it has been observed that the average relative error
on the masses is not uniform on the whole grid, as it can be easily understood
from the following graph reporting an evaluation of the percentage a a function of
the two masses. The obtained results are evaluated from 30 independent measures
for every couple of masses. The masses where singularly analyzed with a grid step
0.25 M� in absence of noise:

Figure 55: Similar masses are much better estimated than off-diagonal ones.

The reader can immediately notice that smaller masses have higher errors: this
happens because signals are longer and weaker, so, it is easier for the parameters
not to be correctly evaluated. However, if one restricts the analysis to a range
between 20 M� to 40 M� for both masses, an interesting trend can be noticed: the
error increases when moving away from the diagonal. This means that masses

28refer to code Error Test.mlx
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with similar values are estimated much better than ”unbalanced” ones. Thus, to
perform precise error evaluations (as the ones carried out F.4.3), it is important
to select masses with similar ratio.
Furthermore, this dependence hints that the analysis would be more meaningful
in different variables, as explained in the section 2. One of the main goals will be
to reduce the error on masses with different values, since symmetrical couples are
already pretty well evaluated.

F.3 Time of Detection

Analogously to what previously examined in Section D, the estimate of the time
of arrival of a signal remains one of the main issues, even in the Post-Newtonian
picture. Thus, the next pages attempt to describe some important accomplish-
ments, relying on the basis already established before. Firstly, the optimal filter
configuration will be studied, resulting in a distribution of delays centered around
the origin. Afterwards, an interesting comparison between the Newtonian and the
Post-Newtonian approaches will be performed, as far as the time of detection of a
signal is concerned

F.3.1 Optimal Filter

As explained in great detail in paragraph D.2, when a given waveform is filtered
with its time reversed version (i.e., the optimal filter), the SNR peaks at its
maximum value, shrinking the difference between the arrival of the signal and its
revelation to zero. Needless to say, this behavior is due to the fact that, under
those circumstances, the algorithm looks for a chirp identical to the incoming one.
Obviously, the associated MATLAB script29 executes exactly the same operations
as the one outlined in D.2, once having carefully substituted all the Newtonian-
based chirps with the corresponding Post-Newtonian signals. Therefore, there will
be no further discussion of the code itself, and the focus shall be shifted to the
outcomes. Relevant plots are thus displayed below, setting N_exp = 1000 as the
default number of experiments. In contrast D.2, A must be understood as a factor
that, once multiplied by the chirp mean absolute value, gives back the real noise
root mean square amplitude.

29Refer to CMF Delay PN.mlx.
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Figure 56: Normalised histogram
of delays, expressed in sampling
time units. Noise r.m.s A= 0.5,
bin width 0.1dt.

Figure 57: Normalised histogram
of delays, expressed in sampling
time units. Noise r.m.s A = 1,
bin width 0.2dt.

Figure 58: Normalised histogram
of delays, expressed in sampling
time units. Noise r.m.s A = 2,
bin width 0.3dt.

Figure 59: Normalised histogram
of delays, expressed in sampling
time units. Noise r.m.s A = 3,
bin width 0.5dt.
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Figure 60: Standard deviation of correct detections, expressed in sampling time
units, as a function of the noise r.m.s.

The relative script shows that, for A = 10, the false detection rate (i.e. rate
of measures that are much farther from the real value than the presented ones)
oscillates around 7%, which increases to 20% circa for A = 12. For the sake of
completeness, it must be said that Figure 60 has been plotted showing only the
correct detections.

F.3.2 Grid of Masses

The aim of this section is to illustrate how well the time of arrival of an injected
Post-Newtonian chirp is computed using both Newtonian and Post-Newtonian
filters. In fact, since the Post-Newtonian approximation gives rise to signals which
better match the revealed gravitational waves, it is necessary to take into account
the errors made when filtering the observed waveforms with Newtonian chirps.
Let’s take a close look at the relative MATLAB code30, in order to provide both
qualitative and quantitative results.
Firstly, various Post-Newtonian chirps are generated and embedded in a white
noise background, with fixed mean amplitude A = 2. The range of masses explored
and the grid step are gathered in the variable grid_parameters.

...

30Refer to compare.mlx.
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grid_parameters=[20, 1, 25, 20, 1, 25];

%accounts for further enlargements

N_enl=1;

%number of signals

N_dim = 100;

Masses = rand(N_dim, 2)*5 + 20;

...

%Post-Newtonian order

PN_order=2.5;

T_MAX = 0.5;

signal = zeros(N_dim, round(2*T_MAX/dt));

for row = 1:N_dim

%creation of the signal

signal_test = chirp_signal(Masses(row,1), Masses(row,2), signal_parameters{:});

b = length(signal_test)

signal(row,1:b) = signal(row, 1:b) + signal_test;

signal(row, :) = signal(row,:)/mean(abs(signal(row,:)));

end

...

%outer loop

for iter = 1:row

A = 2;

% Duration of background noise

T_data=T_MAX*(10+rand);

data=randn(1, round(T_data/dt));

data=A*data’

...

%addition of signal to background noise

a = signal(:,iter);

l = length(a)

data(nSTART:nSTART+l-1-off)=data(nSTART:nSTART+l-1-off)+signal(1:l-off, iter);

%inner loop

for

...

...

end
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...

end

The core of the program is represented by the inner loop, which exploits the grid
of masses technique for Newtonian (f_model = 1) and PostNewtonian (f_model
= 2) filters in order to compute the delays between the detection and the entrance
of the incoming waveforms. Here it is almost fully reported:

for f_model= 1:2

%APPLYING GRID OF FILTERS: get SNR for every filter

if(f_model == 1)

SNR=apply_conv_grid(data, grid_parameters, f_model-1, signal_parametersN);

else

SNR=apply_conv_grid(data, grid_parameters, f_model-1, signal_parameters);

end

%getting best values of SNR

[M1, M2, max_SNR] = best_points(SNR);

...

%precision measurement are different basing on model:

if(f_model==1)

...

chN = CHIRP_fromparameters(M1, M2, T_MAX, dt);

[outN, timeN] = apply_MF_conv(chN, data, dt);

[~, S_detN] = max(abs(outN));

Det_timeN = timeN(S_detN);

DelayN(iter, N_enl) = (Det_timeN - TSTART)/dt;

elseif(f_model==2)

...

chPN = chirp_signal(M1,M2, signal_parameters{:});

[outPN,timePN]=apply_MF_conv(chPN,data,dt);

[~,S_detPN]=max(abs(outPN));

Det_timePN=timePN(S_detPN);

DelayPN(iter, N_enl)=(Det_timePN-TSTART)./dt;

end

end

The values of DelayN and DelayPN are then put in a histogram format:
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TotalN=histogram(DelayN(:, N_enl), ’Normalization’, ’probability’);

...

TotalPN=histogram(DelayPN(:, N_enl), ’Normalization’, ’probability’);

The final output is summarized in the two bar charts below. As it can immediately
be seen, the Newtonian grid of masses approach misses the true arrival of the signal
of several hundreds of dts, which amount to one fifth of the signal time extent circa.
In contrast, Post-Newtonian filters turn out to be much more accurate, leading to
a virtually null average delay, with deviations of the order of some tens of dts.
The plots show 100 simulations, repeated for different values of the grid step.

Figure 61: Normalised histogram
of delays (Newtonian case), ex-
pressed in sampling time units.
Grid step: 1 M�.

Figure 62: Normalised histogram
of delays (Post-Newtonian case),
expressed in sampling time units.
Grid step: 1 M�.
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Figure 63: Normalised histogram
of delays (Newtonian case), ex-
pressed in sampling time units.
Grid step: 0.5 M�.

Figure 64: Normalised histogram
of delays (Post-Newtonian case),
expressed in sampling time units.
Grid step: 0.5 M�.

Figure 65: Normalised histogram
of delays (Newtonian case), ex-
pressed in sampling time units.
Grid step: 0.25 M�.

Figure 66: Normalised histogram
of delays (Post-Newtonian case),
expressed in sampling time units.
Grid step: 0.25 M�.

F.4 Post-Newtonian Chirp Detection

The purpose of this paragraph is to present in detail the results obtained running
many simulations of detections. Since the code31 used works exactly as the already
presented Newtonian _Detectors .mlx (see paragraph D), it has been decided not

31refer to code PN Simple Detectors.mlx
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to fully explain it. As the reader will notice, the workflow is exactly the same:
a randomly chosen signal is revealed by a network of detectors. The important
difference with the Newtonian case is in parameters estimation: as discussed in
paragraph A.2.2, in the previous case, the only relevant parameter was the chirp
mass M. The introduction of post-Newtonian correction splits the degeneracy:
even if the curves M=const will present very similar values of SNR, the refined
signals provide a separate estimate of the two masses.
It is important to underline that these correction are small if compared to the
main contribute, that is given by the newtonian approximation. So, the most
relevant parameter in estimation will always be the chirp mass, but the addiction
of corrections allows to get also a measure of the two masses.
The analysis of the precision of the measures in the post-Newtonian case is rather
more interesting and detailed than the one carried out in the Newtonian case
(section D.4). It is important to remind that, using these refined signals, it is
possible to obtain measures of more parameters than in the Newtonian case, such
as the two masses separately and the symmetric mass ratio (which depends on
them). All results reported in this section are obtained from averages over 60
runs of the explained code (which means that single detector error estimations are
averaged over 200 measures, since 4 detectors were simulated in every run).

F.4.1 Post-Newtonian Order and A.

The first important thing to do was to fix some parameters in order to carry out
comparable analysis in different situation. It was chosen to fix the step of the used
grid to 0.25 M�, to determine some ”good” values for the noise r.m.s A (defined
with respect to signal mean absolute amplitude) and to decide the optimal order
for post-Newtonian corrections. Obtained results of the relative error on the two
masses, on chirp mass and on symmetric mass ratio are reported in the following
graphs, together with time measurements.
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Figure 67: The introduction
of Post-Newtonian Correction al-
lows masses identification. The
most accurate order is 2.5.

Figure 68: As in the Newtonian
case, errors increase almost lin-
early with noise r.m.s A.

Also in this case, it is important to see that combined measures are always
better than single measures, since the noise is ”averaged”. Especially in the case
of high noises, errors on single detector measures become very high, while those on
combined measures are moderate. Similar results are obtained for time measures:

Figure 69: Normalised histogram
of delays (Newtonian case), ex-
pressed in sampling time units.
Grid step: 0.25 M�.

Figure 70: Normalised histogram
of delays (Post-Newtonian case),
expressed in sampling time units.
Grid step: 0.25 M�.

The reader may notice that time measures were more precise with post-Newtonian
corrections of order 0 (that do not allow masses identification) or 1.5. Nonetheless,
it was evaluated that the best compromise to measure both masses and time was
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to select the order 2.5. even if orders 1.5 or 3.5 would still provide a fair estimation
of all relevant parameters. Measurements of chirp mass and symmetric mass ratio,
that are the real parameters that determine the shape of the signal reflect above-
discussed results. This is an expected behavior, since they are highly correlated
to measures of masses.

Figure 71: Normalised histogram
of delays (Newtonian case), ex-
pressed in sampling time units.
Grid step: 0.25 M�.

Figure 72: Normalised histogram
of delays (Post-Newtonian case),
expressed in sampling time units.
Grid step: 0.25 M�.

F.4.2 Dependence on Grid Steps

To investigate the dependance of the error on the step of the grid, it was decided to
fix A=3. In order to work with intense noise, but still in the region where errors are
moderate. It can be seen from the following graphs that relative errors decrease
almost linearly with the grid step. The cautious reader will notice that combined
measures do not increase in precision going from a step of 0.25 M� to one of 0.1 M�:
this shows the beginning of a peculiar behavior discussed in the following chapter.
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Figure 73: Errors decrease almost linearly with the step. Combined measures give
a much more precise evaluation.

A similar behaviour is found for time measures and for chirp mass and sym-
metric mass ratio measures:
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Figure 74: Time measures highly
depend on the noise: combined
measures are much more accu-
rate.

Figure 75: Chirp mass and sym-
metric mass ratio behave simi-
larly to the two masses, since
measures are highly correlated.

F.4.3 Smaller Steps

Since masses identification is the main goal of these detections, it is fundamental
to give an estimation as accurate as possible. In order to do so, it was decided
to study what happens when one performs analogous analysis with smaller step
than the ones used in the previous paragraph. The results obtained are reported
in the following graphs. Due to computational limitations, these results have been
obtained only in a range going from 30 M� to 33 M� (the choice of this range is
explained in section F.2). This is meaningful as far as the trend is concerned, but
it should be remarked that, in this way, the resulting errors are underestimated
by a factor slightly higher than 2.
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Figure 76: Precision does not significantly increase using smaller steps.

Figure 77: Precision does not significantly increase using smaller steps.

It is important to notice that precision on the two masses varies very much,
while errors on chirp mass and symmetric mass are rather independent of the
step: this behavior can be explained by keeping in mind that the true measured
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parameters are the latter two. Their independence from the grid step is probably
due to signal modeling. This means that it should be more meaningful to use
methods that evaluate the chirp mass and the symmetric mass ratio from data
and then to get the two masses from those measures. These considerations are the
key idea behind the method developed in section 2.

F.4.4 Chunks Technique

The dependence of the error on the step of the grid has been investigated more
in detail also using the chunks technique which has been already introduced in
paragraph C.1. The results have been obtained using the same parameters chosen
for Figure 76. The following graphs show the resulting estimate of the error and
the improvement with respect to the standard technique:

Figure 78: Time measures highly
depend on the noise: combined
measures are much more accu-
rate.

Figure 79: Chirp mass and sym-
metric mass ratio behave simi-
larly to the two masses, since
measures are highly correlated.

A positive improvement value means that the error was reduced from the pre-
vious case using this technique. However, it has to be said that the computational
cost of this method is very high, thus, it is not always cost-effective advantageous
to use it.
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G MATLAB Implementation of the (M-ν) Ap-

proach

This section deals with the MATLAB implementation of the new (M-ν) ap-
proach32. First, various signals are generated choosing randomly the chirp mass
and the symmetric mass ratio in a fixed range.

...

grid_parameters=[20, 0.5, 23, 0.24, 0.001, 0.25];

%number of injections

N_dim = 10;

%Generation of masses

MV = rand(N_dim,2);

MV(:,1) = MV(:,1)*(grid_parameters(3)-grid_parameters(1))...

+ grid_parameters(1);

MV(:,2) = MV(:,2)*(grid_parameters(6)-grid_parameters(4))...

+ grid_parameters(4);

%need conversion to generate chirps

Masses = convert(MV);

signal_parameters={fin, Dist,dt, 0, PN_order};

%creation of signals

signal = zeros(N_dim, round(2*T_MAX/dt));

for row = 1:N_dim

signal_test = chirp_signal(Masses(row,1), Masses(row,2),...

signal_parameters{:});

signal(row,1:length(signal_test)) = signal(row, 1:length(signal_test))...

+ signal_test;

signal(row, :) = signal(row,:)/mean(signal(row,:));

end

signal = signal’;

The function convert takes the matrix containing random values ofM and ν
and calculates the corresponding masses (through 15 and 1), storing them in the

32Refer to new grid.mlx.
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matrix Masses. Then, various signal are generated: having them different time
extensions, a higher-than-the-maximum time interval should be declared, in order
to put them in the same matrix. However, only the part effectively corresponding
to the signal will contain non zero values.
At this point, the core of the code is put inside a parfor loop (see Section I), which
finds the SNR of the best grid pair, establishes the precision on the estimate of
the couple of masses and extracts the delay between the time of detection and
of arrival of the chirp signal. This procedure is repeated N_dim times, one for
each injected signal. It must be noticed that signals are normalized to their mean
absolute value, so that the ensuing results can be compared with Section F. Let’s
now take a direct look at the code:

parfor iter = 1:row

%mean noise amplitude

A = 10;

% Duration of background noise

T_data=T_MAX*(15+rand);

data=randn(1, round(T_data/dt));

data=A*data’;

%Injection

TSTART=dt+rand*(T_data-5*T_MAX-5*dt);

%sample at which signal injection begins

nSTART=ceil(TSTART/dt);

%addition of signal to background noise

data(nSTART:nSTART+length(signal(:, iter))-1-off)=data(nSTART:...

nSTART+length(signal(:, iter))-1-off)+signal(1:length(signal(:, iter))-...

off, iter);

%calculus of SNR

SNR = apply_conv_grid_new(data, grid_parameters, 1, signal_parameters);

[M, V, max_SNR] =best_points(SNR);

[m1, m2] = Mq2mm_new(M1, M2);

%precision on M and v

precisionMuNu(iter, :) = [abs((max([M, V])-(max([MV(iter,1),...

MV(iter,2)])))/(max([MV(iter,1), MV(iter,2)]))),...

abs((min([M, V])-(min([MV(iter,1), MV(iter,2)])))/...

(min([MV(iter,1), MV(iter,2)])))];

%precision on masses

precisionPN(iter, :) = [abs((max([m1, m2])-(max([Masses(iter,1),...

Masses(iter,2)])))/(max([Masses(iter,1), Masses(iter,2)]))), ...

abs((min([m1, m2])-(min([Masses(iter,1), Masses(iter,2)])))/...
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(min([Masses(iter,1), Masses(iter,2)])))];

SNR_sample(:,:, iter) = SNR;

%Time of detection

chPN = chirp_signal(m1,m2, signal_parameters{:});

[outPN, timePN]=apply_MF_conv(chPN,data,dt);

[~,S_detPN]=max(abs(outPN));

Det_timePN=timePN(S_detPN);

DelayPN(iter,1)=(Det_timePN-TSTART)./dt;

end

As it is possible to notice, the injection of the signal is such that it can never lay
outside the noise pattern. Going back to the lines of code, the function Mq2mm_new

maps the (M-ν) space to the (M1-M2) plane, allowing precisionPN to associate an
error on the estimate of the two masses for each iteration. Finally, some plots and
histograms may be produced, showing the SNR in the two system of coordinates
and delays between the arrival of a signal and its detection. At the end, an averaged
relative error on the estimate of the two masses may be furnished.
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H Comparison of Distributions for the ”rand CMR”

Technique

In this appendix, a detailed comparison in the three cases presented in Section 3
is reported. The relative errors onM, ν, on the two masses, and on their average
is reported for different numbers of iterations (i.e. selected points):

Figure 80: Relative error on chirp
mass and on symmetric mass ra-
tio using the uniform distribu-
tion.

Figure 81: Relative error on
masses using the uniform distri-
bution.

Figure 82: Relative error on chirp
mass and on symmetric mass ra-
tio after trying 104 points using
the normal distribution.

Figure 83: Relative error on
masses after trying 104 points us-
ing the normal distribution.
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Figure 84: Relative error on chirp
mass and on symmetric mass ra-
tio after trying 104 points updat-
ing the central value of the normal
distribution.

Figure 85: Relative error on
masses after trying 104 points up-
dating the central value of the
normal distribution.

The discussion of the results deduced from these graphs is carried out in Section
3
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I Parallel Computing

A conspicuous fraction of presented analysis has been performed using parallel-
optimized computation. In particular, programs have been planned and developed
in order to take advantage of the MATLAB parfor function. Using this function,
it has been possible to run iterative cycles not sequentially, but in parallel. In the
following paragraphs, the role of parallel computation, its implementation and used
computational resources will be presented. As the reader will soon understand,
a fundamental requirement to perform parallel computations is to have access to
multi-core machines.

I.1 The MATLAB Function parfor

The function parfor is included in MATLAB Parallel Tool package. Its use is
exactly analogous to a standard for cycle, but the way it works is conceptually
different: while for cycles perform sequential iterations, parfor cycles do not have
a predefined order to run iterations. This happens because, when the function is
called, a ”Parallel Pool” is created over different available CPUs on the machine
being used: MATLAB automatically manages workload in order to perform dif-
ferent iterations on different CPUs.
The use of this function is not automatic (i.e. it is not sufficient to convert for cy-
cles in parfor cycles): the code has to be designed in order to make all iterations
independent and to use storage variables that collect all the results of different
iterations. This idea can be better explained using the following example: sup-
pose that the purpose of the code is to calculate the average the measured chirp
mass over different experiments with similar parameters. In order to perform ex-
periments in parallel, it is not possible to use a variable where the found value is
summed on at every iteration (i.e. C-Style: sum += new_value) and divide it at
the end by the number of iterations in order to get the mean. One should instead
save the results for every iterations in a storage vector and take the average of this
vector at the end. It should be also kept in mind that the vector is not filled in
order from the first to the last position. In order to reduce executions time, it is
also important to preallocate storage variables, even if MATLAB is an high level
programming language and would not require it.
It is important to remark that properly code design is key to take advantage of the
power of multi-CPU machines: parallelism can be implemented only once (nested
parallel loops are not allowed simply because conceptually wrong) and variables
that change value during iterations cannot be used. In presented works, paral-
lelism has been implemented at three different levels (never simultaneously, as
before mentioned) depending on the aim of the code and on the computational
resources available at the moment it was needed to run the code:
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1. Number of Experiments: During analysis of results (for example in para-
graphs D.4 and F.4), it has been necessary to simulate many detections. In
this cases, the best choice was to perform different experiments in parallel.

2. Number of Detectors: For codes consisting of a single detection, usu-
ally it was not necessary to use machines with a high number of cores.
In this cases, parallelism was implemented on different detectors that an-
alyzed the same injected chirp signal. This is the option explained in codes
Newtonian_Detectors.mlx (Section D, code D.5) and in the similar
PN_Simple_Detectors.mlx (Section F.4).

3. Grid Application: The best option for codes simulating a single detection,
having a number of available CPUs larger than 4 (number of detectors) is
to apply the grid in parallel, i. e. every filter of the grid is applied from
a different iteration of the parfor loop. This option has been implement
with some efforts (especially for the square grid case) due to some indexing
problems. When successfully done, it provided the most efficient way to
simulate detections.

As it should be clear, the general followed guideline was to implement parallelism
at the highest level that had at least as many iterations as available CPUs. This
is also the use protocol suggested by MATLAB online documentation (see [8]).

I.2 Computational Resources

It can be easily understood that, once parallelism has been successfully imple-
mented, the speed-up factor is given by the number of available CPUs. Unfortu-
nately33, it was never possible to have direct access to machines with a number of
cores higher than two.34 In order to run codes using an high degree of parallelism,
the possibility to run remote computations has been explored using the resources
presented in the next paragraphs. At this point, it should be clear that the success
of parallel optimization does not depend strongly on the power of the single CPUs
one uses, but mainly on the number of cores used at the same time.

I.2.1 INFN - Virgo Group Resources

Thanks to joint efforts from the Virgo Group, it was possible to remotely access
computational resources provided by ”Istituto Nazionale di Fisica Nucleare”. Five

33Mainly due to the COVID-19 pandemic.
34Actually, a quad-cored machine was available for a little amount of time. This possibility

lead to the idea of simulate 4 different detectors (one on every core) in order to resemble the real
network of detectors.
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machines, each one having 18 2.1-GHz cores, were made available. The use of
these machines has been a fundamental feature in order perform a significant
analysis. Such an high degree of parallelism made it possible to scale to some hours
the execution time of computations which would require many days on directly-
accessible machines. Once more, it is important to stress that these machines were
extremely suitable to perform parallel computation: despite not having extremely
powerful cores, many computations could be carried out at the same time due to
the high number of available CPUs.

I.2.2 AWS Resources

Some computations has been performed using the package MATLAB Parallel
Server, which allows to access remote instances provided by Amazon Web Ser-
vices. The main advantage of this option is flexibility: it is possible to rent hourly
instances specifically selected for the calculations to be done.
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