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Chapter 1

The basic machinery of General
Relativity

1.1 Introduction

The General Theory of Relativity is the leading theory of gravity and the interplay between
the presence and dynamics of matter and energy and spacetime [1], [2], [3], [4]. As such, it
predicts many gravitational phenomena, most of which have been confirmed in a century
of experiments. One of the last predictions of the theory that awaits experimental confir-
mation is the existence of gravitational waves. Currently, much effort is put into measuring
the effect that astrophysical sources of gravitational waves has on earthbound detectors [5],
[6] and a direct detection of gravitational waves is widely expected to be reported within
the next few years. One of the most promising sources of gravitational waves is the binary
system: two stars orbiting each other in close proximity, sending out gravitational waves
in the process. In order to filter out the wave signal from the data taken from detectors, a
good theoretical understanding and description of the waves is necessary. It is the object
of this thesis to present a novel way to describe the motion of binary systems and the
resulting gravitational waves. In order to do so, some theoretical background of the basics
of General Relativity needs to be provided first; exactly this is the topic of this chapter.
The chapter is organized as follows. In section 1.2 a brief review of the basics of General
Relativity is presented, which serves to define the relevant quantities and state the conven-
tions used in this thesis. As part of this thesis concerns a new expansion scheme to solve
for motion in a curved spacetime, sections 1.3 and 1.4 review the geodesic equations, the
normalization of their solutions, and the existence of constants of motion, all of which will
become relevant in later chapters. Sections 1.5 and 1.6 present an overview of the theory of
gravitational waves, their production, and the energy they carry. Section 1.7 concentrates
more fully on one of the sources as a primary candidate for the emission of measurable
gravitational waves, and gives an overview of the theoretical work to be presented in this
thesis. Finally, section 1.8 presents a summary.
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The basic machinery of General Relativity

1.2 Gravity as curvature

General Relativity is based on the premise that the effects of gravity can be interpreted as
curvature of spacetime. This correspondence is strongly suggested by the Weak Equivalence
Principle, the experimental observation that the effects of gravity are the same on every
free falling (i.e. under influence of gravity alone) massive object, so that gravity can be
interpreted not as a property of the objects themselves, but as a property of the underlying
space and time, i.e. spacetime. More specifically, the premise is that Newton’s First Law
holds in the presence of gravity, but that the straight lines are curved by the underlying
spacetime on which they are defined, and not by the action of some force. The Equivalence
Principle also leads to the insight that there is principally no way to distinguish accelerated
motion from local effects of gravity, as any difference in the way objects are influenced
by gravity would reveal itself in a relative acceleration between two different free-falling
massive objects.
As a result of this correspondence between gravity and the curvature of spacetime, the
theory of General Relativity and the mathematical theory of differential geometry are
intimately entwined and the two theories share a common language, i.e. that of tensors.
In addition, the Equivalence Principle calls for a description that is independent of the
coordinate system in which the laws of physics are formulated, which again leads to a
description of curved spacetime in terms of tensors. In brief, all properties of a curved
spacetime can be described in terms of the infinitesimal distance dτ between two separated
points in the spacetime, by constructing the invariant line element1

dτ 2 = −gµνdxµdxν . (1.1)

In here, the metric gµν (as well as its inverse gµν , defined by gµνg
νλ = δλµ ) is a symmetric

tensor that contains all geometric properties of the curved spacetime. This was even already
apparent with the development of Special Relativity, when Minkowski was able to show
that all of the results of Special Relativity could be understood in terms of a spacetime
described, in Cartesian coordinates, by the metric

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ≡ ηµν , (1.2)

which is known as the Minkowksi metric. Indeed, by forming the line element of Eq. (1.1)
as the invariant spacetime distance between two events separated temporally by dt and
spatially by dxi, it is easy to show that dτ can be interpreted as the time between the
two events as measured by an observer for whom the two events take place at the same

1Here and in the rest of this thesis, repeated indices are to be summed over. Further conventions used
are that a latin index refers to a spatial component of a tensor, whereas a greek index refers to a spacetime
component. Furthermore, the speed of light c and Newton’s gravitational constant G are both set to unity;
a result of this is that length, mass, and time are all measured in the same units.
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position, and special relativistic time dilation then follows directly by dividing both sides
of the line element by dt2, yielding the well-known formula

dτ

dt
=

√
1−

(
d~x

dt

)2

. (1.3)

All other basic results of Special Relativity follow similarly from the Minkowski metric.
Inspired by this success in the use of geometry as well as by the Weak Equivalence Principle,
it is natural to expect that also gravity can be described in terms of curved spacetime. The
physics comes in when the curvature of spacetime is related to the presence and dynamics
of energy and matter, which is described by the Einstein field equations

Gµν ≡ Rµν −
1

2
gµνR = −8πTµν . (1.4)

The right hand side contains the energy momentum tensor Tµν , which describes the pres-
ence and dynamics of matter density and energy density; notably, the component T 00 is
the energy density and the components T 0i correspond to the momentum density. The left
hand side defines the Einstein tensor Gµν , which is a combination of the Ricci tensor Rµν

and Riemann scalar R. These are two non-linear constructions of the metric tensor and
its first and second derivatives, and are defined by

Rµν ≡ Rλ
µλν , R ≡ gµνRµν , (1.5)

and Rλ
µνκ is the Riemann tensor, defined by

Rλ
µνκ ≡ ∂κΓ

λ
µν − ∂νΓλµκ + ΓηµνΓ

λ
κη − ΓηµκΓ

λ
νη, (1.6)

in which, finally, the Christoffel symbol Γλµν is defined by

Γλµν ≡
1

2
gλκ (∂µgκν + ∂νgµκ − ∂κgµν) . (1.7)

The form of the Einstein field equations is motivated [3] by the mathematical fact that
any measure of a curved spacetime must contain second or higher derivatives of the metric
and/or products of first and higher order derivatives (as purely first derivatives of a metric
can always be put to zero by a suitable choice of coordinates, whereas this cannot be done
for second derivatives), and by the Helmholtz theorem, which states that a general tensor
with two indices built up from second-order derivatives of the metric and/or products of
first-order derivatives, is always of the form a ·Rµν + b · gµνR for some constants a, b. The
physics (to wit: the values of the constants a, b, along with the value −8π in Eq. (1.4) )
comes in from the fact that gravity is produced by mass so that the curvature must be
the result of a nonzero Tµν , and from the requirement that for small values of energy and
momentum the Einstein field equations should return Newtonian gravity. Finally, the left
hand side of the Einstein field equations obeys the condition DαG

αβ = 0, in which Dα is
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The basic machinery of General Relativity

the covariant derivative defined in the next section, denoting that the right hand side does
so too:

DαT
αβ = 0. (1.8)

Physically, this states that energy and momentum in a curved spacetime are covariantly
conserved quantities; this means that the curvature of spacetime itself carries energy, the
amount of which is determined by the choice of coordinate system.
The field equations constitute a set of ten non-linear coupled partial differential equations
in the ten variables that make up the metric, and it is therefore not surprising that finding
analytic solutions gµν is a daunting task. However, the Einstein field equations have the
property built in that there is complete freedom in choosing a coordinate system and as
such, finding a solution can be simplified by choosing an appropriate coordinate frame (a
gauge). In the absence of the source term Tµν some exact solutions to the Einstein field
equations are known, one of them being the Minkowski metric of Eq. (1.2) and another
the Schwarzschild metric, the latter of which will play a major part in this thesis and will
be explicitly discussed in the next chapter.

1.3 The geodesic equations

Having described how the curvature of spacetime is determined by the presence and dy-
namics of matter and energy, the next topic is to see how the dynamics of matter and
energy are determined by the curvature of spacetime. As mentioned before, one premise
of General Relativity is that Newton’s First Law still holds (i.e. mass tends to move in a
straight line with a constant velocity when it is not acted upon by a force) and that the
influence of gravity comes from straight lines being defined on a curved spacetime. Hence,
motion under influence of gravity can be studied by investigating how Newton’s First Law
manifests itself in curved spacetime.
This question can be elegantly answered in the Lagrangian formulation of mechanics. In
pre-relativity physics, all Newtonian motion can be written in the Lagrangian formulation
by writing the action S as the integral of the Lagrangian L,

S =

∫
L(t, x(t), ẋ(t))dt, ẋ ≡ dx

dt
, (1.9)

and minimizing it by means of the Euler-Lagrange equations,

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0, (1.10)

the result of which will give the equation of motion of the system. For a free particle the
Lagrangian is just equal to the Newtonian kinetic energy K = 1

2
mẋ2, and minimizing the

action then gives the equation of motion

d

dt
(mẋ) = 0, (1.11)
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which states that a free particle of constant mass moves in a straight line with constant
velocity, i.e. Newton’s First Law. In General Relativity the requirement is that the action
is invariant under general coordinate transformations so as to make the resulting equations
of motion hold in all coordinate frames. An invariant version of the Newtonian Lagrangian
for a free test mass then naturally suggests itself by making use of the invariant line element
of Eq. (1.1), giving

S =

∫ (
1

2
mgµν

dxµ

dτ

dxν

dτ

)
dτ. (1.12)

This action can be minimized by the appropriate Euler-Lagrange equations,

∂L

∂xα
− d

dτ

(
∂L

∂uα

)
= 0, uα ≡ dxα

dτ
, (1.13)

having defined the four-velocity uα. The result is an invariant equation of motion in a
curved spacetime, given by

d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0, (1.14)

in which the Christoffel symbol of Eq. (1.7) makes its natural entry. The resulting equation
of motion is called the geodesic equation and it describes the way a mass m moves in a
curved spacetime, or equivalently, under influence of gravity. Indeed, the fact that the mass
m makes no appearance shows explicitly that geodesic motion in a given curved spacetime
is the same for all massive objects, as dictated by the Weak Equivalence Principle.
It is conventional to write the geodesic equation as

Duα

Dτ
= 0,

DAλ

Dτ
≡ dAλ

dτ
+ Γλµνu

µAν , (1.15)

where the covariant derivative of a tensor Aµ along the curve with tangent vector uµ has
been defined. It has the properties that it obeys the Leibniz rule of differentiation, that
the covariant derivative of a metric tensor vanishes, and that the covariant derivative of
a scalar equals its derivative in uncurved spacetime. Physically, the covariant derivative
DAµ/Dτ describes, via the first term, the infinitesimal change of a tensor Aµ due to a
change in its argument as well as due to, via the second term, a change in the spacetime
on which the tensor is defined. Exactly that last term is what can be, again by the Weak
Equivalence Principle, ascribed to gravity. Indeed, the second term in Eq. (1.15) denotes
a deviation from a straight line which is due to geometrical reasons.
In case there are external forces present, the right hand side of the geodesic equation will
not be zero and some force term fµ will be present. An example of this is the Lorentz
force, a situation that is explicitly discussed in Refs. [2], [7].

It is straightforward to show that geodesic motion implies that the resulting four-velocity
uµ is normalized, i.e. that the scalar gµνu

µuν has a constant value in time along the
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The basic machinery of General Relativity

geodesic. This follows by taking the derivative with respect to proper time, and using the
fact that a derivative of a scalar equals its covariant derivative

d

dτ
(gµνu

µuν) =
D

Dτ
(gµνu

µuν) = 2gµνu
µDu

ν

Dτ
= 0, (1.16)

where also the various properties of the covariant derivative have been used. The outcome
equals zero, as geodesic motion by definition makes the covariant derivative of the four-
velocity vanish.
In case some external four-force fµ is present, the motion will not be geodesic and the
above result seems to suggest that in that case the four-velocity is generally not normalized.
However, dividing both sides of the line-element of Eq. (1.1) by dτ 2 shows that all motion
(i.e. not just geodesic) is properly normalized, and, what’s more, that the normalization
constant is minus unity for all of these cases. This fact should therefore be considered a
condition on the form a four-force fµ can have in order to be in agreement with General
Relativity. This condition can be made explicit by setting the right hand side of the
geodesic equation Eq. (1.15) equal to fµ and using this new equation of motion in Eq.
(1.16); the result is that the four-force must obey the condition

gµνu
µf ν = 0. (1.17)

This condition states that the four components of the force fµ are not all independent:
it is always possible to write the temporal component f 0 purely in terms of the spatial
components f i and the metric gµν . This is in agreement with physical interpretation: the
temporal component u0 of the four-velocity is a measure of the gravitational respectively
special relativistic time dilation, which are determined by the position respectively the
velocity, both of which in turn are determined by the spatial components f i and the
geometry of spacetime. Therefore, it was to be expected that f 0 dictating the temporal
component u0 is fully specified by the metric tensor and the spatial components f i of the
four-force. Exactly this is stated by Eq. (1.17).

1.4 Isometries and Killing vectors

The geodesic equation Eq. (1.15) forms a set of four coupled non-linear differential equa-
tions in the four variables xµ(τ), and is usually difficult to solve analytically. The form
of the geodesic solutions, however, can be investigated by the symmetry properties of the
spacetime as these are related to constants of geodesic motion. This will now be shown.
A metric is said to be form-invariant under a coordinate transformation

xµ → x′µ ≡ xµ + ξµ(x) (1.18)

if the new metric g′µν has the same outcome for every set of values y in the new coordinates
x′µ as the original metric gµν had for the same set of values y in the old original coordinates
xµ. Physically, this means that the coordinate transform replaces the old metric by a new

14



one such that it is impossible to tell by substituting some set of values of coordinates
whether the coordinate transformation has been done at all. Mathematically, this is stated
as

g′µν(x
′ = y) = gµν(x = y). (1.19)

A coordinate transformation of this type is called an isometry of the form-invariant metric.
It should be noted that equal values y in different coordinate systems xµ, x′µ generally
correspond to different points in spacetime; Eq. (1.19) thus is a statement about the
indifference of the metric (and hence all geometric properties) in going from one point
in spacetime to some other by the transformation Eq. (1.18), i.e. it is a statement of a
symmetry of the spacetime. The name isometry is therefore aptly chosen, as it connects
points on the manifold that have the same geometric properties.
As isometries are closely related to symmetries, akin to a similar situation in theories
described by Lagrangians in which a symmetry corresponds to a conserved Noether current,
there exists a constant of motion related to each symmetry. In what follows, it will first be
derived under what criterion a vector ξµ constitutes an isometry of the spacetime, followed
by the proof that for such ξµ, indeed a constant of motion exists.
Doing a coordinate transform xµ → x′µ changes a metric into a new one by the following
transformation rule

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (1.20)

In the present case, the transformation is given infinitesimally by Eq. (1.18) which, to first
order in ξµ, transforms the right hand side to

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) ≈

(
δρµ − ∂µξρ

)
(δσν − ∂νξσ) gρσ(x)

≈ gµν(x)− gµσ(x)∂νξ
σ − gρν(x)∂µξ

ρ. (1.21)

If the coordinate transform is an isometry, Eq. (1.19) applies and the left hand side of Eq.
(1.20) equals gµν(x

′), which to first order becomes

gµν(x
′) ≈ gµν(x) + (∂αgµν) ξ

α. (1.22)

Collecting these results, the condition for ξµ to be an isometry follows to be

gµν(x)∂νξ
σ + gρν∂µξ

ρ + (∂αgµν) ξ
α = 0, (1.23)

or, using ξµ ≡ gµνξ
ν and by using a covariant notation,

Dρξσ +Dσξρ = 0, DνAµ ≡ ∂νAµ − ΓλµνAλ. (1.24)

This well-known result is called the Killing equation; its solutions ξµ are called Killing vec-
tors and, by construction, constitute a coordinate transformation Eq. (1.18) under which
the metric is form invariant.
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The basic machinery of General Relativity

As mentioned, the existence of a Killing vector ξµ corresponds to the existence of a con-
served quantity of a geodesic motion. This quantity is given by

gµνu
µξν , (1.25)

as will now be proved explicitly by taking the derivative of this scalar with respect to
proper time τ . The quantity is a scalar so a derivative can be freely replaced by a covariant
derivative, and as covariant derivatives obey the usual Leibniz rule, the derivative becomes

d

dτ
(uµξµ) =

Duµ

Dτ
ξµ + uµ

Dξµ
Dτ

. (1.26)

For geodesic motion, the first term at the left hand side is zero due to Eq. (1.15), whereas
the second term is zero by Eq. (1.24) when the vector ξµ is a Killing vector. It has then
followed that for geodesic motion xµ in a spacetime that has a Killing vector ξµ, indeed,
gµνu

µξν is a constant of motion along that geodesic.
A trivial yet important example of the use of Killing constants is the case a metric is
independent of a coordinate xα; in that case, ξµ = δαµ is an obvious solution to the Killing
equation, and hence gµαu

µ is a constant of motion. For instance, the simple case of a
Minkowski spacetime in Cartesian coordinates, Eq. (1.2), does not depend on any coor-
dinate and it follows that the four components of the four-velocity uα are all constants
of motion. Physically, this is just Newton’s First Law, which is the expected outcome
considering the fact that the Minkowski spacetime corresponds to the absence of gravity
and for geodesic motion no external forces are present.
It should be noted that in the presence of external forces, the Killing equation changes
form, as the first term in Eq. (1.26) is then generally not zero: this is a manifestation of
the fact that an external force generally breaks a symmetry. It is, however, generally still
possible to find a ξµ that obeys the new version of the Killing equations and so constants
of motion can still be found. As such, Killing vectors are hugely advantageous when in-
vestigating the equations of motion in curved spacetime, be they geodesic or not, as they
provide knowledge of the solutions even if the actual solving is difficult. They will be used
in that way in Chapter 2.

1.5 Dynamics and production of gravitational waves

The Theory of General Relativity leads to many predictions, including (but not limited
to) the perihelion precession of the planets [1], the bending of light when passing the Sun
and gravitational time dilation [8], and the expansion of the Universe [9], all of which have
been confirmed by experimental observations [10]. One of the last standing predictions
that awaits confirmation is the existence of gravitational waves : a propagating dynamical
disturbance of spacetime that can exist even in the absence of matter and energy. In this
respect, they are comparable to electromagnetic waves, which exist in the theory of electro-
dynamics even in the absence of charges or currents. In the case of gravity, this existence
comes about because the true measure of curved spacetime is the Riemann tensor, whereas
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the Einstein field equations fix only the Ricci tensor. Thus, physically non-trivial gµν can
exist even when the Ricci tensor vanishes. The rest of this section will illustrate this by
presenting the example of gravitational waves in a Minkowski spacetime; the (much more
difficult) case of gravitational waves in the spacetime of a non-rotating black hole will be
the topic of chapter 4.

In the absence of any external matter or energy Tµν = 0, one solution to the Einstein
field equations Eq. (1.4) is the Minkowski metric as it indeed has a vanishing Ricci tensor
and Riemann scalar. In addition, the Riemann tensor vanishes as well. Adding a small
perturbation hµν to the Minkowski metric,

ηµν → ηµν + hµν , (1.27)

shows that the resulting Einstein tensor Gµν can, when linearized to first order in hµν , be
made to vanish by having hµν obey the differential equation

1

2

(
ηαβ∂α∂βh̄µν − ∂ν∂κh̄κµ − ∂µ∂κh̄κν + ηµν∂ρ∂σh̄

ρσ
)

= 0, (1.28)

in which h̄µν ≡ hµν − 1
2
ηµνh

λ
λ. In contrast, the Riemann tensor resulting from Eq. (1.27)

linearized to first order in hµν will not vanish, denoting the presence of a non-trivial
gravitational field even in the absence of matter and energy.
General Relativity’s inherent freedom to choose a coordinate frame allows h̄µν to obey the
gauge condition

∂αh̄
αβ = 0. (1.29)

In this coordinate frame, which is denoted the De Donder gauge, the differential equation
for hµν takes the form of the massless Klein-Gordon equation,

1

2
ηαβ∂α∂βh̄µν =

1

2

(
−∂2

t +∇2
)
h̄µν = 0, (1.30)

from which it can be inferred that the gravitational wave propagates with the speed of
light. The De Donder gauge does not correspond to just one specific coordinate frame, but
rather to a class of them as it is still possible to choose additional gauge conditions that
do not spoil Eq. (1.29):

hii = 0, h0µ = 0 ⇒ h̄µν = hµν . (1.31)

With this additional choice of coordinate frame, called the transverse traceless gauge (TT-
gauge), it is easy to show that the gravitational wave has only two polarizations and that
it is transverse [3], [6]. Indeed, arbitrarily choosing the direction of propagation to be the
z-direction, the gravitational wave in the TT-gauge has the general form

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (1.32)
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The basic machinery of General Relativity

in which h+, h× are two arbitrary functions of the argument (t−z), which explicitly denote
the two polarizations.

So far, the presentation has only shown that gravitational waves can exist as perturba-
tions on a Minkowski spacetime, but nothing has yet been said about their production.
This will now be presented. To do so, an energy momentum tensor Tµν must be intro-
duced that will be the source of the gravitational waves. The Einstein field equations of
Eq. (1.4) will then have a non-vanishing right hand side, but as the previous derivation
only concerned the left hand side, the results leading to the equation of motion for h̄µν
still hold. The gravitational waves thus are found to obey, in the De Donder gauge, the
inhomogeneous wave equation

ηαβ∂α∂βh̄µν = −16πTµν(t, ~x). (1.33)

These constitute a set of ten uncoupled linear differential equations and are straightforward
to solve. The solution2 is given by

h̄αβ = 4

∫
d~x ′

Tαβ(t− |~x− ~x ′|, ~x ′)
|~x− ~x ′|

. (1.34)

This expression is exact, but can be greatly simplified by making a number of assumptions.
For typical astrophysical sources, Tαβ is some periodic function (or can be written as a
sum of such functions, for example by a Fourier series), i.e. Tαβ(t, ~x) ∝ aαβ(~x) cos(ωt)
for some frequency ω characteristic to the source. If that is the case and the additional
assumptions are made that, firstly, the gravitational wave has a wavelength much greater
than the dimensions of the source and, secondly, that the source is observed from some
radial distance r far away, |~x− ~x ′| can be replaced by r and the gravitational wave is well
approximated by

h̄αβ =
4

r

∫
d~x ′ Tαβ(t− r, ~x ′). (1.35)

As this expression holds in the TT-gauge, all h̄α0 vanish and the only components of the
wave equation Eq. (1.33) that need to be considered are the ones that contain integrals of
the spatial energy momentum tensors T ij. By the fact that the conservation of the energy
momentum tensor in a Minkowski spacetime reads ∂αT

αβ = 0 and by doing a partial
integration, these integrals can be written as∫

d~x T ij =
1

2

d2

dt2

∫
d~x xixjT 00, (1.36)

which allows for one last assumption: if the velocities in the source are much smaller than
that of light, the energy in the source is almost completely given by the rest mass, allowing

2The wave equation is a second-order linear differential equation and therefore has two linearly indepen-
dent solutions, only one of which is given here. The reason is that this solution describes a gravitational
wave that propagates away from the source towards infinity, whereas the second solution describes one
that travels from infinity towards the source. The latter is not produced by the source (rather: they are
absorbed), and are therefore ignored.
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to write T 00 = µ(t, ~x), in which µ is the density of the rest mass present in the source.
Finally, then, the gravitational wave hij is given by

h̄ij =
2

r
Ï ij(t− r), I ij(t) ≡

∫
d~x µ(t, ~x) xixj, (1.37)

in which the second mass moment I ij(t) of the source has been defined as a measure of
the presence and dynamics of mass in the astrophysical source. The fact that the resulting
gravitational wave depends on Ï ij(t) shows that they are produced by systems that contain
masses that are accelerated with respect to each other.

As a result of the gravitational wave of Eq. (1.32) or Eq. (1.37), the perturbed Minkowski
Eq. (1.27) metric leads to non-zero values of the Christoffel symbols in the geodesic equa-
tions Eq. (1.15), typically denoting a measurable influence of a gravitational wave by
introducing a relative acceleration between a set of test masses. Indeed, it is on this prin-
ciple that present day gravitational wave detectors are based [5], [6].

1.6 The energy and momentum of gravitational waves

The fact that a gravitational wave can produce a change in relative position between
test masses indicates that gravitational waves carry energy and momentum. This is also
suggested by the Strong Equivalence Principle which states that the effects of spacetime
curvature should be the same not only for all massive objects (as already stated by the
Weak Equivalence Principle), but for all physical phenomena, including gravity itself. This
means that gravitational waves are themselves sources of spacetime curvature, and hence,
via the Einstein field equations, that they carry energy and momentum. It should there-
fore be possible to assign an energy momentum tensor TGWµν to gravitational fields, most
notably to gravitational waves hµν .
A prescription to do so comes from the realization that the energy of a gravitational wave
must be an expression quadratic in hµν , as an expansion of the Einstein field equations to
second order in hµν will introduce extra terms in the equation of motion for the waves,
physically corresponding to the effect the waves have on their own dynamics. Some care
must be taken in defining the background metric on which the gravitational wave is im-
posed: it can not be taken to be a metric that solves the vacuum Einstein field equations
(e.g. can not be taken to be the Minkowski metric) as this by definition assumes that no
energy momentum is present, whereas the object is to find a non-zero expression for the
energy momentum tensor TGWµν . Instead, the background metric must be taken to be some
metric gBµν that is close to a metric that solves the Einstein field equations in vacuum, but
still carries some imprint of the curvature brought by the presence of the energy momentum
of the gravitational wave hµν . The expansion then is of the form

gµν = gBµν + hµν . (1.38)
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The basic machinery of General Relativity

Substituting this in the Einstein field equations for a vacuum (i.e. for a spacetime outside
of the source of the gravitational waves, and which is devoid of any energy and momentum
other than that contained in the gravitational field itself), Rµν = 0, and expanding to
second order in hµν then leads to the equation

RB
µν +R(1)

µν +R(2)
µν = 0, (1.39)

in which a superscript B, (1), (2), respectively, denotes that the tensor is calculated with
the background metric, to first order in hµν , or to second-order in hµν , respectively. The

term R
(1)
µν can be made to vanish by requiring the gravitational wave hµν to solve the

equation of motion
R(1)
µν = 0, (1.40)

and the remaining equation can be written as

RB
µν −

1

2
gBµνR

B = −8πTGWµν . (1.41)

This was written suggestively in the form of the Einstein field equation on the background
metric gBµν , curved by the presence of the energy momentum tensor of the gravitational
wave hµν . This energy momentum tensor is given by

TGWµν =
1

8π

〈
R(2)
µν −

1

2
gBµνR

(2)

〉
, (1.42)

in which the brackets mean that the expression contained within them is to be averaged
over a region of spacetime that is big compared to the typical scale of the dynamics of the
gravitational wave hµν ; physically, this averaging expunges the expression of all dynamics
of the gravitational wave that are either too small to change significantly within the region
of spacetime over which is averaged, and so much bigger than this region that they can be
replaced by their average of zero. In effect, only the dynamics remain that have the same
typical length- or timescale as the region of spacetime over which is averaged.
The Ricci tensor R

(2)
µν and corresponding Riemann scalar R(2) can straightforwardly (if te-

diously) be calculated by substituting Eq. (1.38) in the definitions Eq. (1.5) and truncating
the outcomes to second order in the gravitational wave hµν . The result is given by

R(2)
µν =

1

2
gρσ,Bgαβ,B

[
1

2
DB
µ hραD

B
ν hσβ +

(
DB
ρ hνα

) (
DB
σ hµβ −DB

β hµσ
)

+hρα
(
DB
ν D

B
µ hσβ +DB

βD
B
σ hµν −DB

βD
B
ν hµσ −DB

βD
B
µ hνσ

)
+

(
1

2
DB
α hρσ −DB

ρ hασ

)(
DB
ν hµβ +DB

µ hνβ −DB
β hµν

)]
, (1.43)

in which the superscript B on the covariant derivates denotes that they need to be cal-
culated by using the metric Eq. (1.38). If, as an additional simplification, the waves are
considered very far from their origin and are assumed to drop off with increasing distance
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from their source, they can be expected to be very small, allowing all gBµν in Eq. (1.42) to be
replaced by the metric of the background spacetime in absence of any curvature due to the
energy carried by gravitational waves. Typically, this assumption of large distance from
the source not only means that the background spacetime loses the imprint of the curva-
ture due to the energy momentum tensor TGWµν of the gravitational waves, but also that it
becomes Minkowskian (as will happen when, for example, the observer is far away from a
black hole). Under that assumption, the equation of motion Eq. (1.40) becomes simply that
of a gravitational wave in a Minkowski spacetime, Eq. (1.30), and the Minkowski-based
results of section 1.5 apply. Thus, the covariant derivatives DB

µ can be replaced by the
covariant derivatives of Minkowski spacetime, which in Cartesian coordinates just equal
∂µ; furthermore, the metric gBµν can be replaced by ηµν and, most notably, the gravitational
waves hµν can be taken to be in the TT-gauge. The expression for the energy momentum
tensor TGWµν then simplifies drastically and becomes

TGWµν =
1

32π

〈
∂µhαβ∂νh

αβ
〉
. (1.44)

The component T 00,GW corresponds to the energy density of the gravitational wave, as
found within the small region of spacetime over which is averaged. Using the notation
of the solutions Eq. (1.32), the energy density of the gravitational wave takes on the
particularly simple form

T 00,GW =
1

16π

〈
ḣ2

+ + ḣ2
×

〉
. (1.45)

This expression is the key to calculate the energy carried away from astrophysical sources
by gravitational waves and gives a handle on the long-term evolution of such sources due
to gravitational wave emission. It is important to note that, as opposed to the previous
section in which all results were based on the case of gravitational waves in a Minkowski
spacetime, this section has only made the assumption of Minkowski spacetime at the very
end when simplifying Eq. (1.42) to its final form of Eq. (1.44). Indeed, up until Eq. (1.42),
gBµν was allowed to be any vacuum solution to the Einstein field equations with additional
curvature brought in by TGWµν However, the assumption made of a Minkowski spacetime
is generally well justified by observing the source from afar, as most spacetimes become
asymptotically Minkowskian far away from matter or energy. The final expression Eq.
(1.45) is therefore expected to hold far away from the source of the gravitational wave in
any curved spacetime that is asymptotically Minkowskian. It should be noted, however,
that the expressions of the gravitational waves hµν themselves are not the same as in
a Minkowski spacetime, as they are influenced by the curvature as they propagate from
the source to the observer. Specifically, hµν will no longer be a function of the source
Tµν in the manner of Eq. (1.37), even though its general form will still be given by Eq.
(1.32) when viewed far away from the source. In chapter 4, the correct expressions for
the gravitational wave polarizations h+ and h× will be given for a general source in the
Schwarzschild spacetime of a non-spinning black hole.
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The basic machinery of General Relativity

1.7 The EMRI system & outline of the thesis

For present-day and near-future experimental observations of gravitational waves, one of
the most promising sources is the binary system: two stars orbiting each other under
influence of their gravitational field, sending out gravitational waves in the process. In this
thesis the emphasis will be on an extreme mass ratio inspiral (EMRI), a binary system in
which one of the two stars3 is non-rotating and much heavier than the companion star. The
calculational advantage of this system is that, up to excellent approximation, spacetime
can be taken to be that of the black hole and the curvature that is brought in by the
presence of the companion star can be neglected. If, in addition, the stars are far away
from each other and move with velocities much lower than that of light, the orbit of the
companion star can be calculated by simple Newtonian mechanics, and spacetime can be
taken to be Minkowskian up to good approximation. In that simplified case, the results of
the previous two sections apply, and the emitted energy per second P as measured far away
from the source can be found by calculating the second mass moment I ij(t) by Newtonian
means, calculating the resulting gravitational wave by Eq. (1.37), and the energy density
of the wave by Eq. (1.45). The resulting power P is given by the Peters-Mathews equation
[11] as

P =
32µ2M3

5a5
f(e), f(e) =

1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
, (1.46)

in which M is the mass of the black hole, µ the mass of the companion star, a is the
semi-major axis of the Newtonian orbit and e is its eccentricity; the last two parameters
will be presented in section 2.2.
However, when the two stars in the EMRI system are in close proximity, the effects of
curvature or high velocities can not be neglected and spacetime can not be taken to be
approximately Minkowskian. Instead, the background spacetime must be taken to be that
of the heavier star, which introduces two complications. Firstly, the orbit of the companion
star cannot be described by Newtonian mechanics anymore and instead the geodesic equa-
tions Eq. (1.15) must be solved, and, secondly, the gravitational waves resulting from these
orbits need to be calculated as perturbations of the non-Minkowskian spacetime, which
is a far more challenging task than the simple Minkowskian case. The conventional way
to proceed is by the Post-Newtonian method, in which both steps are done by expanding
spacetime around a Minkowski metric, adding the effects of curvature and high velocities
by a perturbation series of the form Eq. (1.27) taken to arbitrarily high order in hµν . This
method has been pursued to accurately include many higher order gravitational effects,
including the effect of the gravitational waves on their own dynamics, and comparison
with numerically calculated outcomes are excellent [6], [12]. However, the Post-Newtonian
expansion loses accuracy when considering orbits close to the black hole. This is a direct
consequence of the premise of the method, which assumes an expansion around a near-flat
spacetime whereas spacetime close to a black hole is extremely curved.

3The heavier star will usually be called a black hole in this thesis, even though it could in principle be
any spherically symmetric compact object, e.g. a neutron star or a white dwarf.
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In this thesis an alternative method to describe geodesic motion in the EMRI system
and the resulting gravitational waves will be presented, which, in contrast to the Post-
Newtonian method, will be done in a fully relativistic way, i.e. in which no compromise
on the background spacetime will be made whatsoever. Consequently, the resulting or-
bits and gravitational waves are expected to be accurate even when the two stars in the
EMRI system are in extremely close proximity to each other. The background taken will
be that of a spherically symmetric non-rotating black hole, i.e. the background spacetime
will be described by the Schwarzschild metric, to be discussed in detail in the next chapter.

The outline of the thesis is as follows. In chapter 2, the Schwarzschild spacetime will
be discussed in detail, and the geodesic motion of stars in bound orbits around black holes
will be investigated. There, a new and improved expansion scheme will be introduced that
allows for the calculation of bound orbits, taking fully into account all relativistic effects
of the Schwarzschild spacetime.
Chapter 3 presents the agreement of this expansion scheme with the purely numerically
calculated solutions to the geodesic equations, where it will be seen to be excellent for
all but the most extreme natural cases. Most importantly, the expressions found will be
explicit functions of time, as required for the calculation of gravitational waves.
In chapter 4, a formalism will be reviewed for the calculation of gravitational waves in
a Schwarzschild spacetime, resulting in two differential equations that have the two po-
larizations of the gravitational waves as their solutions. The sources of these differential
equations contain the motion of the orbiting star that produces the waves, and using the
expansion scheme of chapter 2, these sources will be written down as explicit functions of
time. The resulting differential equations are solved by a numerical algorithm, the details
of which will be explained as well.
Chapter 5 collects the results from the previous chapters for orbits and gravitational waves,
and presents the outcomes for the latter in both graphic and numerical detail by listing
the results for the average emitted power and angular momentum for a large number of
cases. It also investigates the effect the emission of gravitational waves has on the orbits.
Finally, chapter 6 presents the conclusions of the thesis, discusses the applicability of the
methods presented to other physical cases, and presents an outlook for future research.

1.8 Summary

In this chapter, the basic results of General Relativity have been reviewed and the nota-
tional conventions have been introduced. It was motivated that gravity can, by means of
the Equivalence Principle, be seen as the curvature of spacetime, and that this curvature
is the result of the presence and dynamics of matter and energy. The way the curvature
of spacetime influences the motion of test masses in the absence of external forces was
discussed by using a Lagrangian formalism, the result being the geodesic equations, and
the criterion for the existence of, and expression for, constants of motion was derived.
Furthermore, the basics of the theory of gravitational waves have been discussed, showing
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The basic machinery of General Relativity

explicitly that the Einstein field equations generally allow the existence of gravitational
waves, and for the example of a Minkowski spacetime the general form of the gravitational
waves has been derived along with an expression for the energy they carry. Finally, special
emphasis was put on the EMRI system, a binary system of two stars orbiting each other
with one of the two stars being much heavier than its companion, and it was discussed
that a proper description of such a system requires the inclusion of relativistic effects due
to curvature, a method to do so being the topic of this thesis.
Having laid down the basic theory of both geodesic motion in a curved spacetime and
the way such motion leads to gravitational waves, the next steps will be to calculate the
geodesic motion of the stars in a binary system in chapter 2, followed by a calculation of
the gravitational waves emitted from such a system in chapters 4 and 5. To emphasize, in
the following chapters no compromise will be made on the curvature of spacetime so as to
keep all relativistic effects fully accounted for.
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Chapter 2

The geodesic deviation method

2.1 Introduction

The Schwarzschild metric [13] is, without doubt, one of the most important results to come
out of relativistic gravitational theory. It accurately describes the curved spacetime around
a static spherical mass distribution, and, as was realized independently by Jebsen [14] and
Birkhoff [15], it is the only metric that does so if it is assumed that the rest of spacetime is
empty and is asymptotically Minkowskian. As many astrophysical objects, including the
Sun, the Earth, and black holes, are static and spherical up to good approximation, it is not
surprising that the Schwarzschild metric plays an important role in astrophysical research.
Most notably, gravitational waves coming from such astrophysical objects have recently
become important with the advent of sensitive gravitational wave detectors all over the
world. A lot of theoretical research has gone into understanding the gravitational waves
that originate from EMRI systems, and one of the first steps in modeling these systems is
to calculate bound geodesic motion in a Schwarzschild spacetime. A novel way to do so is
the topic of this chapter.
The chapter is organized as follows. In section 2.2 the basic results of the Schwarzschild
spacetime are reviewed and the geodesic equations are derived, showing why it is impossible
to find general geodesic orbits in the time domain. As such orbits in the time domain are
required for the calculation of gravitational waves presented in chapter 4, section 2.3 will
introduce the geodesic deviation method for calculating the orbits as an expansion series.
In this method, it will be the orbit that is seen as a perturbation series rather than the
curvature of spacetime. The first and second-order expressions of this series are derived in
sections 2.4 and 2.5, respectively, and their general properties will be studied. The chapter
ends by presenting a summary in section 2.6.
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The geodesic deviation method

2.2 Basics of the Schwarzschild spacetime

2.2.1 Geodesic equations, constants of motion, and the circular
orbit

The Schwarzschild metric is one of the very few known analytical solutions to the vacuum
Einstein field equations and was the first to be found [13], almost immediately after Einstein
published the General Theory of Relativity in 1916. It describes [16] the spacetime around
a non-spinning spherical mass distribution M , and will play a major part in this thesis.
The metric of the Schwarzschild spacetime is given in Droste coordinates (t, r, θ, ϕ) by
[17]

gµν =


−
(
1− 2M

r

)
0 0 0

0
(
1− 2M

r

)−1
0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 , (2.1)

and its line element thus follows as

dτ 2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θ dϕ2. (2.2)

The radial coordinate r has the physical interpretation of the circumference of a circular
orbit divided by 2π. The way the line element is written here, it appears it features
two singularities: at the r-values of 2M and 0, the line-element blows up to infinity.
The first of these, however, is only a consequence of the choice of coordinate system;
equivalent descriptions of the Schwarzschild spacetime are known that are perfectly smooth
at r = 2M . This can not be done for the singularity at r = 0: no coordinate transformation
exists that will make it go away. This means that the singularity at r = 0 is a true physical
singularity.
Using the line-element Eq. (2.2), the basic machinery of General Relativity reviewed in
chapter 1 can be used to obtain constants of motion and to derive the geodesic equations.
From the fact that the Schwarzschild metric is static and spherically symmetric, i.e. that
gµν does not depend on t or ϕ, section 1.4 reveals that there are four constants of motion,
two of which are zero in an appropriate choice of coordinates. The remaining ones are
conventionally labelled ε and `,

ε =

(
1− 2M

r

)
ut, ` = r2 sin2 θ uϕ. (2.3)

By considering low-velocity motion of a test mass µ far away from the central mass M ,
the physical interpretation of ε and ` becomes clear: ε becomes equal to 1/µ times the rest
energy of the moving mass µ and ` becomes equal to 1/µ times its angular momentum.
The constants of motion ε and ` can therefore be considered as the energy per unit mass
and angular momentum per unit mass of the test mass µ.
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The line-element Eq. (2.1) gives rise to the following non-zero connection coefficients

Γttr =
M

r2

(
1− 2M

r

)−1

, Γϕϕr =
1

r
, Γϕϕθ =

cos θ

sin θ
,

Γrtt =
M

r2

(
1− 2M

r

)
, Γrrr = − M

r2
(
1− 2M

r

) , Γrθθ = −r
(

1− 2M

r

)
,

Γrϕϕ = −r sin2 θ

(
1− 2M

r

)
, Γθrθ =

1

r
, Γθϕϕ = − sin θ cos θ, (2.4)

which in turn give rise to the geodesic equations for geodesic orbits in the Schwarzschild
spacetime,

d2t

dτ 2
= − 2M

r2
(
1− 2M

r

) (dr
dτ

)(
dt

dτ

)
,

d2r

dτ 2
= −M

r2

(
1− 2M

r

)(
dt

dτ

)2

+
M

r2
(
1− 2M

r

) (dr
dτ

)2

+ r

(
1− 2M

r

)(
dθ

dτ

)2

+ r

(
1− 2M

r

)
sin2 θ

(
dϕ

dτ

)2

,

d2θ

dτ 2
= −2

r

(
dr

dτ

)(
dθ

dτ

)
+ sin θ cos θ

(
dϕ

dτ

)2

,

d2ϕ

dτ 2
= −2

r

(
dr

dτ

)(
dϕ

dτ

)
− 2 cos θ

sin θ

(
dθ

dτ

)(
dϕ

dτ

)
. (2.5)

These constitute four coupled differential equations that, when solved, give the four co-
ordinates (t, r, θ, ϕ) of a general geodesic orbit as a function of proper time, τ . It is,
unfortunately, not possible to solve these equations for a general orbit. However, for a cir-
cular orbit such solutions do exist and can readily be found. A circular orbit is defined by
the statement r = R = constant and θ can be chosen to equal π/2; this choice constitutes
the appropriate choice of coordinates mentioned before. Then all derivatives of the r- and
θ coordinates vanish and thus the non-trivial geodesic equations reduce to

d2t

dτ 2
= 0,

M

R3

(
dt

dτ

)2

−
(
dϕ

dτ

)2

= 0,
d2ϕ

dτ 2
= 0. (2.6)

The first and last of these denotes that dt/dτ and dϕ/dτ are constants; by comparing
with the Killing expressions Eqs. (2.3), they can be identified as ε/(1 − 2M

R
) and `/R2,

respectively. The second of the geodesic equations then relates the two constants to each
other as

ε2 =
`2

RM

(
1− 2M

R

)2

. (2.7)

A second equation that relates the constants ε and ` follows from the normalisation of
four-velocity, gµνu

µuν = −1, which gives

1− ε2

1− 2M
R

+
`2

R2
= 0. (2.8)
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Combining this with Eq. (2.7) then uniquely expresses the Killing constants (ε, `) in terms
of the radius R and the mass M of the black hole

ε0 =
(1− 2M

R
)√

1− 3M
R

, `0 =

√
RM

1− 3M
R

, (2.9)

(in which the subscript 0 denotes that these expressions hold for the circular orbit).
The two differential equations Eq. (2.3) can now be solved and give the expressions for
t(τ) and ϕ(τ). Collecting these with the two constant expressions for r and θ then gives
the total solution for the circular orbit explicitly as functions of proper time τ as

t(τ) =

√
1

1− 3M/R
τ, r(τ) = R, θ(τ) = π/2, ϕ(τ) =

1

R3/2

√
M

1− 3M/R
τ. (2.10)

This solution will play a major part in the approximation method introduced in section
2.3.

2.2.2 Implicit solutions for general closed orbits

As already mentioned, calculating the solutions for non-circular bound orbits is not as
easy: general solutions for the geodesic equations are not known as functions of proper
time τ . It is however possible to find implicit solutions, that express t, r and ϕ in terms of
each other via elliptic integrals, or by doing numerical calculations. Starting point of either
approach is the normalisation of four-velocity, Eq. (1.16). Using the Killing constants ε
and ` of Eq. (2.3), the normalisation condition yields a non-linear differential equation for
the r-coordinate,

ε2 − 1

2
=

1

2

(
dr

dτ

)2

+
1

2

(
1− 2M

r(τ)

)(
1 +

`2

r2(τ)

)
− 1

2
. (2.11)

By defining a new constant E and two potential functions VNewton(r) and VGR(r) as follows

E ≡ µ(ε2 − 1)

2
, VNewton ≡ −

µM

r
+
µ`2

2r2
, VGR(r) ≡ −µM`2

r3
, (2.12)

where again µ denotes a test mass in geodesic orbit, this differential equation can be written
as

E =
µ

2

(
dr

dτ

)2

+ VNewton + VGR. (2.13)

By identifying the left hand side as an energy, this has almost the same form as the radial
energy equation encountered in Newtonian gravitational theory [18], if not for two differ-
ences: firstly, the derivatives are here with respect to proper time τ instead of Schwarzschild
time (whereas such a distinction does not exist in Newtonian theory), and secondly an ex-
tra term VGR makes an entrance. The connection to Newtonian theory is readily made
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by realizing that for low velocities and far away from the central mass M , firstly, the dif-
ference between proper time and Schwarzschild time becomes neglible, and, secondly, the
term VGR becomes much smaller than VNewton, showing explicitly that geodesic orbits as
predicted by Newtonian gravity are only a limiting case of the ones predicted by General
Relativity.
From Eq. (2.13), many properties of geodesic orbits can be derived. For instance, the fact
that the potential terms VNewton + VGR can, for a class of values of `, exhibit a potential
well means that an orbiting test mass with a given constant energy E can get trapped
in a bound orbit, moving between a minimum radius (the periastron) and a maximum
radius (the apastron). As a special case, there is an energy E for which the system is in a
permanent state of lowest potential energy and hence the radial velocity must be zero: this
corresponds to the circular orbit explicitly calculated before. The radius R of this orbit
with lowest potential energy can be easily calculated by minimizing VNewton + VGR, and
gives

R =
`2

2M

1 +

√
1− 12

(
M

`

)2
 , (2.14)

(which could have also been concluded from the explicit solution, Eq. (2.10) ). Finally,
from this expression it also follows that there is a smallest circular orbit: R is smallest
when the square root vanishes, which is the case for ` =

√
12M ; substituting this back in

the remaining expression then gives this smallest radius to be R = 6M , a radius known as
the Innermost Stable Circular Orbit (ISCO).
Many more properties of geodesic orbits can be derived from Eq. (2.11) or Eq. (2.13) when
either is combined with the Killing relations Eq. (2.3); an excellent study of these is given
in the standard work by Chandrasekhar, Ref. [19]. For instance, the chain rule, Eq. (2.3)
and Eq. (2.11) or Eq. (2.13) give a differential equation for ϕ as a function of r as

dϕ

dr
= ± `

r2

(
ε2 −

(
1− 2M

r

)(
1 +

`2

r2

))− 1
2

= ± `

r2

√
2

µ
(E − VNewton − VGR)−

1
2 , (2.15)

where the overall sign depends on whether the geodesic has an increasing r coordinate
with increasing ϕ (e.g. during the time a test mass moves from periastron to apastron) or
decreasing r coordinate with increasing ϕ (e.g. during the time a test mass moves from
apastron to periastron). This differential equation yields the shape of the geodesic orbit,
as it relates the radial distance to the black hole to angle traversed by the test mass.
It follows from this equation that the orbits precess, by which it is meant that the angular
distance between two successive periastra is not 2π as it is in the Newtonian theory. This
follows by doing the explicit integration of Eq. (2.15) from one periastron to the next
(taking due care of the correct overall sign) and noting that the integral would have yielded
exactly 2π if the relativistic term VGR had not been there. Including this term yields a
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bigger outcome, the excess defining the famous periastron shift δϕ. In the limit of low
velocities and weak gravitational fields, the periastron shift comes out as [4]

δϕ = 6π

(
M

`

)2

, (2.16)

per orbital revolution; an exact integral expression for the periastron shift will be presented
momentarily. As is well-known, this result was already derived by Einstein himself (albeit
in a different way, as he did not have the knowledge of the full Schwarzschild solution)
and constituted the first quantitative experimental verification of General Relativity as it
accurately describes the well-measured periastron shift of the planet Mercury [1].

2.2.3 Another parametrisation of bound orbits

The shape of the bound orbits can be further investigated by expressing it in terms of two
new orbital parameters (a, e) rather than the parameters (ε, `) used up till now. This is
done by relating the orbital functions r and ϕ to each other in yet another way. By using
Eq. (2.3), Eq. (2.11) can be written in a form that does just that,

`2

(
d

dϕ

1

r

)2

= ε2 −
(

1− 2M

r

)(
1 +

`2

r2

)
,

=
µ

2
(E − VNewton − VGR) . (2.17)

In Newtonian gravity, the term VGR would not be present, and this equation would be
solved by

r =
a

1 + e cos y
, (2.18)

in which the variable y is just the angular coordinate ϕ with a possible constant phase ϕ0,
and the parameters (a, e) are related to (ε, `) given by

ε2 =
M

a

(
e2 − 1

)
+ 1, `2 = aM. (2.19)

In that approximation, e represents the eccentricity of the elliptic orbit, and (1 − e2)a is
the length of the semi-major axis1. Periastra are reached when y is an even multiple of
π, whereas apastra are reached when y is an odd multiple of π. In the relativistic case,
however, the term VGR cannot be dropped and this means that the proposed solution Eq.
(2.18) only solves the full shape equation Eq. (2.17) in case the new variable y is related
nontrivially to the angular coordinate ϕ. Indeed, Eq. (2.17) with the term VGR kept in
place implies that the two variables are related by the nontrivial differential equation(

dy

dϕ

)2

= 1− 2M

a
(3 + e cos y) , (2.20)

1In the rest of this thesis, they will be referred to as such even when considering relativistic cases.
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and the (a, e) are related to (ε, `) via

ε2 =

(
a
M
− 2− 2e

) (
a
M
− 2 + 2e

)
a
M

(
a
M
− 3− e2

) , `2 =
a2

a
M
− 3− e2

. (2.21)

For large a�M the second term of Eq. (2.20) is negligeable and the solution is found to
be y = ϕ−ϕ0, which, when substituted in Eq. (2.18), returns the relation between r and ϕ
as is found for non-relativistically bound orbits. Physically, this means that far away from
the mass M , orbits are accurately described by Newtonian gravity, as expected. However,
in case a is of the same order of magnitude as M , the solution of Eq. (2.20) no longer yields
a linear relationship between the parameter y and the orbital angle ϕ, and as a result Eq.
(2.18) shows that successive periastra are no longer reached when ϕ is a multiple of 2π.
This, again, constitutes the periastron shift δϕ mentioned before.
An integral expression for this periastron shift can now be derived by integrating the inverse
of Eq. (2.20) from one periastron (y = 0) to the next (y = 2π). The result is

∆ϕ = 2π + δϕ =

∫ 2π

0

dy
1√

1− 2M
a

(3 + e cos y)
, (2.22)

where δϕ is the advance of the periastron compared to the previous one. Finally, via
dτ/dy = (dϕ/dτ)−1(dϕ/dy), Eq. (2.3) and Eq. (2.20), the proper time lapse between two
successive periastra can also be written in integral form,

∆τ =
a2

`

∫ 2π

0

dy
1

(1 + e cos y)2 (1− 2M
a

(1 + e cos y)
)√

1− 2M
a

(3 + e cos y)
. (2.23)

It follows that for circular orbits, e = 0, both δϕ and ∆τ are completely fixed by a choice
of the radius R of the orbit, making them dependent orbital characteristics. In contrast,
for eccentric orbits, e 6= 0, the two orbital characteristics are completely independent,
determined by the two independent parameters (a, e), or, equivalently, (ε, `). This obser-
vation will be important later on, when discussing the accuracy of the first-order geodesic
deviation method.

2.2.4 The necessity for orbital functions as functions of proper
time

Eq. (2.15) and, equivalently, Eq. (2.17), happen to be solvable analytically in terms of
elliptic functions, but the solution then still needs to be inverted to yield r = r(ϕ), the
result of which then needs to be substituted in Eq. (2.3) in order to find t and ϕ as functions
of proper time τ . All of these steps are conventionally done numerically, as there is little
hope to find analytical expressions. This is unfortunate; some subsequent applications of
geodesic orbits explicitly require the orbits to be known as functions of time. This includes
the application that will be discussed in chapter 4, in which the gravitational waves will
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be calculated of a system of a test mass orbiting a black hole. It is therefore necessary to
find a way to calculate orbits in the time-domain.
Methods to do so exist in the form of the Post-Newtonian expansions discussed in section
1.7, in which the orbits are first considered in a near-Minkowskian spacetime, perturbatively
adding corrections due to non-zero curvature and velocities close to that of light. In
contrast, in the geodesic deviation method to be presented in detail below, it will be the
geodesics that are written as an expansion series; the curvature of the background spacetime
will be taken into full account. The advantage of such a method is that no compromise
is made on relativistic effects anywhere in the spacetime: strongly relativistic effects are
built in from the outset and results are expected to suffer little from loss of accuracy when
considered close to the black hole or when velocities are high. The geodesic deviation
method is the topic of the next section.

2.3 The geodesic deviation method

The premise of the geodesic deviation method is to start with a simple geodesic x̄µ that is
known in analytical form in the time-domain and to subsequently add corrections so as to
turn it into a more general orbit:

xµ = x̄µ + σnµ +
1

2
σ2
(
kµ − Γ̄µλνn

λnν
)

+ . . . , (2.24)

in which σ is some expansion parameter related to the corrections nµ and kµ by the
covariant definitions

nµ =
∂xµ

∂σ

∣∣∣∣∣
σ=0

, kµ =
∂nµ

∂σ

∣∣∣∣∣
σ=0

+ Γ̄µλνn
λnν , (2.25)

and Γ̄µλν is the connection along the zeroth order geodesic x̄µ(τ). The parameter σ is defined
to be the physical distance between the perturbed orbit and the original geodesic at τ = 0
as

dσ2 = gµνdx
µdxν

∣∣∣
τ=0

. (2.26)

The corrections nµ, kµ are found by demanding the total solution Eq. (2.24) of simple
geodesic plus corrections be a geodesic itself, or, in other words, that the true geodesic and
its approximation are part of a congruence xµ[τ, σ] of neighboring geodesics [20]. Thus,
by substituting the expansions Eq. (2.24) in the geodesic equation Eq. (1.15), the geodesic
deviation equations are found to be manifestly covariant differential equations for nµ and
kµ [3], [21]

D2nµ

Dτ 2
− R̄λνκ

µūµūλnν = 0, (2.27)

D2kµ

Dτ 2
− R̄λνκ

µūµūλkν = DρR̄λνκ
µ
(
ūκūλnνnρ − ūν ūρnκnλ

)
+ 4R̄λνκ

µūλnν
Dnκ

Dτ
,

(2.28)
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in which ūµ is the four-velocity of the starting point geodesic, ū ≡ dx̄µ/dτ , and R̄λνκ
µ

is the Riemann tensor calculated from the spacetime metric ḡµν ≡ gµν(x̄
µ) along this

geodesic. The geodesic deviation equation Eq. (2.27) can be seen as the definition of the
Riemann tensor, and it assigns to it a physical interpretation: the Riemann tensor is a
measure of the curvature of spacetime which can be investigated by observing the change
in the relative distance between two neighboring geodesics2. In contrast, in the geodesic
deviation method the logic is reversed: here, the curvature of spacetime is taken as given,
and instead it is one of the geodesics that is calculated assuming the other one to be known.

By defining
mµ ≡ kµ − Γ̄µλνn

λnν , (2.29)

and writing out the Riemann tensors, the geodesic deviation equations can be written in
a non-manifestly covariant (but more tractable) form

d2nµ

dτ 2
+ 2ūλΓ̄ µ

λν

dnν

dτ
+ ūκūλ∂νΓ̄

µ
κλ n

ν = 0, (2.30)

d2mµ

dτ 2
+ 2ūλΓ̄ µ

λν

dmν

dτ
+ ūκūλ∂νΓ̄

µ
κλ m

ν = Sµ[n], (2.31)

in which the source Sµ[n] of the second-order geodesic deviation equation depends on the
first-order solution and is given as

Sµ[n] ≡ −2Γ̄ µ
λν

dnλ

dτ

dnν

dτ
− 4∂κΓ̄

µ
λν ū

λnκ
dnν

dτ
− ∂σ∂κΓ̄ µ

λν ū
λūνnσnκ. (2.32)

An important feature to note is that the left hand sides of the geodesic deviation equa-
tions Eqs. (2.30), (2.31) for nµ,mµ, are identical: the only difference between the first and
second-order deviation equation is the presence of a source term Sµ[n] in the latter. This
pattern continues when taking the method to third or higher orders, as the geodesic devia-
tion equation for each order will have the exact same left hand side and will only differ from
the previous order in the presence of extra source terms that depend on the solutions of
the lower order deviation equations. However, even though deriving the geodesic deviation
equations of the third and higher orders is straightforward, this will not be pursued in this
thesis.

The geodesic deviation method can be applied to a number of spacetimes and by us-
ing a number of simple geodesics as starting point of the expansion [21], [24], [7], [25], [26].
In the rest of this chapter, the focus will be on the case of a Schwarzschild spacetime with
a circular orbit of radius R as the zeroth order contribution x̄µ(τ), but the methodolog-
ical observations hold quite generally. The reason to use a circular orbit as the starting
point of the expansion is that, as will be explicitly demonstrated in chapter 5, all bound
geodesic orbits tend to circularize under the emission of gravitational waves, and hence that
all eccentric orbits will ultimately be well-described by small deviations from the circular
case.

2From an experimental point of view: measure the relative motion of two test masses in free fall.
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2.4 The first-order deviations

2.4.1 Calculating the first-order deviations

The presentation will now be specialized to the description of bound geodesic motion in a
Schwarzschild spacetime, starting from a circular orbit. For this case, the connections of
Eq. (2.4) apply with the radial coordinate r set to a constant R, and the four-velocities are
given by the derivatives of the circular solution Eq. (2.10). As the coordinate θ was set to
π/2 in the coordinate system in which all motion is planar, the problem can be reduced
from a four-dimensional to a three-dimensional one. For motions in the equatorial plane,
then, Eq. (2.30) takes the form

d2

dτ2
α d
dτ

0

β d
dτ

d2

dτ2
− κ −γ d

dτ

0 η d
dτ

d2

dτ2




nt

nr

nϕ

 = 0, (2.33)

in which

α =
2M

R2
(
1− 2M

R

) 1√
1− 3M

R

, β =
2M

R2

1− 2M
R√

1− 3M
R

, γ = 2

√
M

R

1− 2M
R√

1− 3M
R

,

η =
2

R2

√
M

R

1√
1− 3M

R

, κ =
3M

R3

1− 2M
R

1− 3M
R

. (2.34)

This is a set of three coupled linear second-order differential equations that needs to be
solved. For systems with constant coefficients (as is the case here), a method to do so
exists in linear algebra [27], but only applies to systems of differential equations that are
of first order. The current system is not first order, but can be made so by defining

ṅµ ≡ ñµ, (2.35)

and rewriting the system of three coupled second-order differential equations into a system
of six first-order differential equations. Defining a vector ~x as

~x ≡


ñt

ñr

ñϕ

nt

nr

nϕ

 , (2.36)
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the system Eq. (2.33) can be written equivalently as

~̇x = Λ~x, Λ ≡


0 −α 0 0 0 0
−β 0 γ 0 κ 0
0 −η 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , (2.37)

which is now a system of six coupled first-order differential equations. Linear algebra [27]
then states that the general solution to this set is given by

~x =
∑
i

~vie
λiτ , (2.38)

in which λi are the eigenvalues of the matrix Λ and ~vi the corresponding eigenvectors.
Finding the eigenvalues is a standard exercise: setting the determinant of the matrix
(Λ−λi16) to zero gives the characteristic equation that has the eigenvalues as its solutions:

λ4
(
−λ2 + κ+ αβ − γη

)
= 0. (2.39)

It follows that there are four zero modes, λ = 0, and two generally non-zero values, λ± =
±
√
κ+ αβ − γη. The latter will be considered first. Anticipating that these correspond to

periodic solutions nµper(τ) to the system (indeed, these are required, as hyperbolic solutions
would destroy the assumption of the geodesic deviation method that the deviations nµ

are small), the exponentials in Eq. (2.38) will be written in imaginary form by writing
λ± = ±iω, with ω the eigenfrequency of the oscillations as

ω =
√
ηγ − αβ − κ =

√
M

R3

1− 6M
R

1− 3M
R

. (2.40)

This indicates that the solution indeed corresponds to periodic solutions when R > 6M ,
and will correspond to hyperbolic solutions when R < 6M . This is in agreement with
section 2.2.2, where it was remarked that any orbit that lies (partially) within the ISCO at
6M will not be bounded and will spiral into the black hole. Although the geodesic deviation
equation can be solved for such cases too, the following will concentrate on bound orbits,
i.e. the assumption is made that R > 6M .
The eigenvector corresponding to the eigenvalue λ± is found to be

~v ∝ 1

η


±iωα
ω2

±iωη
α
∓iω
η

 . (2.41)
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Returning to the form of the solution Eq. (2.38) and taking only the last three components,
the expressions for nµper(τ) follow as a sum of complex exponentials

nµper(τ) = ~nµ+e
iωτ + ~nµ−e

−iωτ , ~nµ± ∝
1

η

 α
∓iω
η

 , (2.42)

which can be turned into real oscillatory functions by choosing the two proportionality con-
stants appropriately. Additionally, the constants will be chosen such that t(0) = 0, ϕ(0) = 0
and that the radial function starts at an extremal value (i.e. the orbits will have a perias-
tron or apastron at τ = 0). The periodic solutions are then found to be

ntper(τ) = −α
ω
nrc sin(ωτ), nrper(τ) = nrc cos(ωτ), nϕper(τ) = − η

ω
nrc sin(ωτ), (2.43)

for any value of the constant nrc.
As for the zero-valued solutions of Eq. (2.39), these correspond to secular solutions nµsec
described by the linear functions

nµsec = vµτ + ∆µ
n, (2.44)

with
vr = 0, κ∆r

n = βvt − γvϕ. (2.45)

The value vr = 0 is a choice, made to accommodate the physical requirement that the
motion described is bounded: a non-zero value for vr would have been unacceptable as it
would correspond to an orbit that in- or decreases linearly in time. This would not only
describe orbits that are unbounded (contrary to the object of the calculation), but it is
also contrary to the requirement that the deviations nµ remain small. However, non-zero
values for vt and vϕ do not cause such problems and are perfectly allowed. In fact, such
solutions are required for at least two reasons. Firstly, as will be explained in section 2.5.1,
the source terms in the higher-order geodesic deviation equations generate Poincaré reso-
nances which have to be removed by such secular terms. Secondly, the periodic solutions
suffer from the problem that the angle and proper time lapse between periastra can not be
matched correctly for eccentric orbits, as will be explained at the end of this section; this
mismatch accumulates and grows without bound in due course of time, unless corrected
by the secular contributions Eq. (2.44).
A choice of values for the parameters ∆t

n and ∆ϕ
n only change the origin of t and ϕ and are

therefore arbitrary. In view of the initial conditions to have t(0) = 0 and ϕ(0) = 0, these
are taken to be ∆t

n = ∆ϕ
n = 0. As ∆r

n then is the only remaining relevant component, from
here on it will for simplicity be written as ∆r

n = ∆n.

The sum of the periodic solutions and secular solutions forms the most general solution
to the system Eq. (2.33). However, they still need to obey the normalization condition of
four-velocity, Eq. (1.16). To first order this condition takes the form

ḡµν ū
µDn

ν

Dτ
= 0 (2.46)
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It follows immediately that the periodic contribution to the solution automatically obeys
this condition, and that the secular contribution only does so under the constraint

ε0v
t − `0v

ϕ = 0, (2.47)

in which ε0 and `0 are the energy per unit mass and angular momentum per unit mass of
the circular orbit, i.e. they are given by Eq. (2.9). Taking into account Eq. (2.45), the
expressions for vt and vϕ can be decoupled and are

vt =
ακ

αβ − ηγ
∆n, vϕ =

ηκ

αβ − ηγ
∆n. (2.48)

It then follows that application of the normalization condition for σ, Eq. (2.26), implies

nr(0) = nrper(0) + nrsec(0) = nrc + ∆n =

√
1− 2M

R
. (2.49)

Combining all results, the solutions for the first-order perturbed geodesics describing bound
motion become

t(τ) =

 1√
1− 3M

R

 τ − α

ω
σnrc sin(ωτ) +

(
ακ

αβ − γη
σ∆n

)
τ,

r(τ) = R + σnrc cos(ωτ) + σ∆n,

ϕ(τ) =

√M

R3

1√
1− 3M

R

 τ − η

ω
σnrc sin(ωτ) +

(
ηκ

αβ − γη
σ∆n

)
τ. (2.50)

To summarize, these expressions by construction solve the geodesic equations to first order
in σ, the geodesic deviation equations to first order in σ, and have a four-velocity that
is properly normalized to first order in σ. They contain three constants that can freely
be assigned values: the circular radius R, the normalization parameter σ, and the secular
constant ∆n.

2.4.2 The epicycle expansion

A number of observations can now be made. Firstly, the form of the solution Eq. (2.50) has
a graphical interpretation very akin to the ancient Ptolemean system of epicycles, which
was proposed to explain the apparent motion of the planets as seen from Earth [28]. For
this reason, the expansion Eq. (2.50) (and its higher order extensions calculated later on)
will be referred to as the epicycle expansion; the deviations themselves will be referred to
as the epicycles. Secondly, it can be noted that the epicycle frequency ω differs from the
frequency of the zeroth order circle by a factorthat depends on the ratio M/R, the result
of which naturally accounts for the well-known periastron shift as discussed in section 2.2.
Finally, it can be seen from the radial expansion r(τ) that the dimensionless constants
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σ∆n/R and σnrc/R assume the role of the expansion parameters in the radial coordinate.
They are related via Eq. (2.49), and have the following physical interpretations: the former
is a measure of the correction that is made to the radius of the perfectly circular orbit on
which the epicycle is placed, whereas the latter is a measure of the ratio of the sizes of the
circular orbit and the epicycle.

The parameters ∆n and σ will now be related to observable quantities. This can be
done by noting that the radial distances of the periastra rpa and apastra raa of the orbit
occur at proper times τn such that ωτn = nπ. It thus follows that

rpa = R + σ (∆n + nrc) , raa = R + σ (∆n − nrc) . (2.51)

Inverting these equations yields

σnrc =
1

2
(rpa − raa) , σ∆n =

1

2
(rpa + raa)−R. (2.52)

In view of Eq. (2.49), σ takes the value

σ =
rpa −R√

1− 2M
R

. (2.53)

From Eqs. (2.52) it follows immediately that the expansion parameters σ∆n/R and σnrc/R
are directly related to the eccentricity of the epicycle expansion, making it effectively an
expansion in the eccentricity. This is, of course, in agreement with the premise of the
geodesic deviation method, as it assumed that the bound geodesic does not deviate too
much from a perfectly circular orbit. It can also be seen from Eq. (2.53) that the size of
the expansion parameter is determined not only by (via the numerator) the eccentricity
of the orbit but also by (via the denominator) the radius R of the zeroth order circle. It
can therefore be expected that the accuracy of the epicycle expansion will also have some
dependence on the distance to the black hole and indeed this is found to be the case in the
explicit examples in section 3.3. Based on the form of the denominator, however, this de-
pendence is expected to be small for orbits for which R > 6M and will be most significant
only for orbits closest to the ISCO. It therefore does not contradict the statement that the
accuracy of the epicycle expansion suffers little from close proximity to the black hole.

To end this section, the energy and angular momentum per unit of mass for the epicycle
expansion Eqs. (2.50) can be calculated by a substitution in Eq. (2.3) and truncating the
results to first order in σ:

` = `0 + σ`n , ε = ε0 + σεn , (2.54)

in which `0 and ε0 are the angular momentum per unit mass and energy per unit mass for
the circular orbit, as given by Eq. (2.9), and the first-order corrections are given by

`n =

(
1

2

√
R

M

ω2R2√
1− 3M

R

)
∆n , εn =

(
1

2

ω2R√
1− 3M

R

)
∆n. (2.55)
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It is important to note that the fact that the energy per unit mass and angular momentum
per unit mass come out as constants to first order in σ, is evidence that the expressions Eq.
(2.50) are indeed solutions to the geodesic equations to this order, as required by Killing’s
theorem as explained in section 1.4. Had they not been (by, e.g., a principal error in the
method) a residual time dependence would have been likely to emerge in the expressions
for εn and `n.

2.4.3 The inclusion of the secular constants

The first-order solutions consist of periodic terms and secular terms, the latter of which
are parametrized by the constant ∆n. Earlier work [21], [24] on the system Eqs. (2.30),
(2.31) (as well as on the analogous system for the Kerr metric, [25] ) dismissed these secular
contributions as they were not thought to have any physical importance. At first glance
this does indeed seem to be the case: any geodesic orbit in the Schwarzschild spacetime
can always (up to orientation) be parametrized by only two constants (e.g. (a, e), or (`, ε)),
whereas the introduction of the secular constant ∆n indicates that, alongside the constants
R and σ, the epicycle-approximated orbit can be parametrized by three, making the secular
constant ∆n appear superfluous. This issue will be addressed in section 2.5.5.
A second reason the literature did not include the secular constant is that it appears in
the radial first-order epicycle expansion Eq. (2.50) as a correction to the radius R of the
zeroth order circle, and it seems as if it might therefore just as well be absorbed in this
radius from the outset. This, however, is not true, as the expression Eq. (2.40) for the
epicycle frequency ω depends only on the radius R and not on the secular constant, so
that the choice not to include the constant in the radius allows to fix the radius and
epicycle frequency independently. This can also be concluded from the expressions for the
energy per unit mass and angular momentum per unit mass of the first-order expansion,
Eq. (2.55), as this equation shows explicitly that the values of (ε, `) are unchanged from
the circular values ε0, `0 if the secular contributions vanish: ∆n = vt = vϕ = 0. However,
in general changes of these values are required when describing non-circular orbits, as in
that case ε and ` should be independent parameters whereas, as remarked at the end of
section 2.2.3, circular orbits have dependent values of ε and `.
This observation has a physical interpretation as well: the two parameters ε and ` determine
the angle as well as the time lapse between successive periastra, as shown explicitly in
Eqs. (2.22) and (2.23). Therefore, in general, one has to choose a non-zero value for the
secular contributions ∆n, in order to have the first-order epicycle expansion have the right
periastron shift and proper time lapse when describing non-circular motion. Omission of
the secular constant will therefore yield an epicycle orbit that does not reach the successive
periastra angles at the right proper time. This results in a lag or overshoot compared to
the true orbit, and this error will accumulate in time.
It is for this reason that the secular solutions to Eq. (2.30) are not dismissed. Indeed, only
after including the secular contributions do the solutions accurately approximate closed
geodesics, with deviations from purely numerically calculated geodesics being typically a
few percent and usually much less, as will be demonstrated in the examples in chapter 3.
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2.5 The second-order deviations

2.5.1 The Poincaré resonance and the Poincaré-Lindtsted method

In the previous section, the epicycle expansion has been calculated up to first order and it
has been argued that the secular constant is necessary to make the expansion as accurate
as possible. The price that has to be paid for this increased accuracy is the appearance
of Poincaré resonances when going to second or higher order: the higher-order solutions
turn out to be singular. This comes about because the secular contributions ∆n at first
order lead to oscillatory terms in the right hand side of Eq. (2.31) that have a frequency
ω of the same value as the eigenvalue of the differential matrix in the left hand side3. To
make this more precise, the source terms Sµ[n] at the right hand side of Eq. (2.31) will be
of the form

Sµ[n] = Aµc cos 2ωτ + Aµs sin 2ωτ +Bµ
c cosωτ +Bµ

s sinωτ + Cµ, (2.56)

in which the terms ∝ Bµ
c,s have frequencies that have the same value as the eigenvalues

of the differential matrix that is the left hand side of Eq. (2.31). These two frequencies
resonate with each other, producing infinite solutions. Had the secular contributions been
omitted, the terms ∝ Bµ

c,s would have vanished and the only oscillatory terms that would
appear in Sµ[n] would have had frequencies that are non-unity integer multiples of the
frequency ω so no resonances occur.
The resolution of this kind of singular behaviour in the perturbative treatment of non-
linear oscillators was realized long ago by Lindtsted and Poincaré [29], [30] (for a modern
presentation, see e.g. [31]). Briefly, the dependence of the frequency on the amplitude
of an anharmonic oscillator is not properly taken into account by the naive perturbative
treatment. An improved perturbation theory can be developed in which both the amplitude
and the frequencies of the perturbative solutions are made to depend on the expansion
parameter σ, so as to cancel singular behaviour of the final solutions. Thus, the claim is
that the Poincaré resonances can be dealt with by recognizing that the frequency of the
solutions need to be seen as an expansion series itself,

ω → ω̄ ≡ ω + σω1 +
1

2
σ2ω2 + . . . , (2.57)

in which the correction terms ω1, ω2, . . . can be chosen such that the Poincaré resonances
vanish. This is possible because a derivative of an oscillatory first-order term nµ will in-
troduce an overall factor of ω̄ in that term rather than ω, effectively introducing higher
order contributions. These then can be seen as contributions to the second-order deviation

3The reason that the frequency of the offending source terms is the same as the eigenvalue of the
second-order differential matrix, is that the first and second-order geodesic deviation equations have the
same left hand side, i.e the same differential matrix. Thus, a frequency ω introduced by the differential
matrix of a deviation equation at one order introduces (an integer multiple of) this frequency in the source
terms of the higher order deviation equations.
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equation, and as a result, the source Sµ[n] will now be supplemented with extra terms that
are proportional to ω1. By choosing ω1 appropriately, these extra terms in the source can
be used to cancel the offending ones ∝ Bµ

c in Sµ[n], thus removing the Poincaré resonance.
This procedure is known as the Poincaré-Lindtsted method.

The Poincaré-Lindtsted method will be put in mathematical form now, by deriving the
geodesic deviation equations anew. This is necessary, as the method changes the form
of the geodesic deviation equations due to the expansion Eq. (2.57). Starting point is as
in section 2.3, i.e. starting from a simple geodesic x̄µ plus its deviations nµ and mµ and
demanding their sum to be geodesic as well. Collecting Eqs. (2.30), (2.31), it follows that
the geodesic equation is given by

Duµ

Dτ
= σ

[
d2nµ

dτ 2
+ 2ūλΓ̄µλν

dnν

dτ
+ ūλūκ∂νΓ̄

µ
κλn

ν

]
x̄

+
1

2
σ2

[
d2mµ

dτ 2
+ 2ūλΓ̄µλν

dmν

dτ
+ ūλūκ∂νΓ̄

µ
κλm

ν − Sµ[n]

]
x̄

+ ... = 0

(2.58)

To account for the perturbation series in the frequency, a new time variable λ is defined as

ωλ = ω̄τ ≡
(
ω + σω1 +

1

2
σ2ω2 + ...

)
τ. (2.59)

The expansion then takes the equivalent form

σ

[
d2nµ

dλ2
+ 2ūλΓ̄µλν

dnν

dλ
+ ūκūλ∂νΓ̄

µ
κλn

ν

]
x̄

+
1

2
σ2

[
d2mµ

dλ2
+ 2ūλΓ̄µλν

dmν

dλ
+ ūκūλ∂νΓ̄

µ
κλm

ν − Σµ[n]

]
x̄

+ ... = 0, (2.60)

where the inhomogeneous source term for mµ is changed to

Σµ[n] = −2Γ̄µλν
dnλ

dλ

dnν

dλ
− 4∂κΓ̄

µ
λν ū

λnκ
dnν

dλ
− ∂σ∂κΓ̄µλν ū

λūνnσnκ

− 4ω1

ω

d2nµ

dλ2
− 4ω1

ω
Γ̄µλν ū

λdn
ν

dλ
, (2.61)

or, put more simply,

Σµ[n] = Sµ[n]− 4ω1

ω

d2nµ

dλ2
− 4ω1

ω
Γ̄ µ
λν u

λdn
ν

dλ
, (2.62)

where Sµ[n] is given by Eq. (2.32) with τ replaced by λ.
The sum between each set of square brackets of Eq. (2.60) needs to vanish separately,

41



The geodesic deviation method

so that each of the sums constitutes a new differential equation for the first, second, and
higher order deviations nµ, mµ, . . . , that replace the ones Eqs. (2.30), (2.31) derived before.
The key differences are, firstly, that derivatives are with respect to λ rather than τ , and
secondly, as promised, that the source Σ[n] of the second-order deviation equation consists
of extra terms compared to the original source Sµ[n] and that these terms are proportional
to ω1. As advocated, it is now possible to choose ω1 and its higher-order generalizations
so as to cancel the dangerous contributions in Sµ[n] that produce the Poincaré resonances.
In what follows, this procedure will be demonstrated explicitly.

2.5.2 Recalculating the first-order deviations

One consequence of the Poincaré-Lindtsted method is that the addition of higher orders
will change the expressions for the lower orders as well (as opposed to more conventional
perturbation theories, in which lower order contributions are unchanged when higher order
contributions are added): this manifests itself in the fact that adding of higher orders will
change the frequency ω̄ at all previous orders as well. With every higher order added,
therefore, it is necessary to recalculate the lower order contributions.
In the present case, it is easy to see how the first-order contributions are changed. The
equation for the first-order deviations is the linear homogeneous equation that can be read
off from the first line of Eq. (2.60) by setting it to zero:

d2nµ

dλ2
+ 2ūλΓ̄µλν

dnν

dλ
+ ūκūλ∂νΓ̄

µ
κλn

ν = 0. (2.63)

This is of exactly the same mathematical form as Eq. (2.30), the only difference being that
τ has been replaced by λ. Hence, the solution will be of the same form as before, with τ
replaced by λ, i.e.

nt(λ) = −α
ω
nrc sinωλ+

ακλ

αβ − γη
∆n,

nr(λ) = nrc cosωλ+ ∆n,

nϕ(λ) = − η
ω
nrc sinωλ+

ηκλ

αβ − γη
∆n, (2.64)

with ωλ = ω̄τ , showing that the epicycle frequency has been changed by terms of order σ
and higher. It is also straightforward to check that the solution still normalizes the four-
velocity, i.e. that it solves Eq. (2.46). It does so not just to first order in σ but exactly,
as

ḡµν ū
µDn

ν

Dτ
=

(
ḡµν

Dnν

Dλ

)
dλ

dτ
, (2.65)

where the expression between brackets vanishes for Eq. (2.64). This can be checked by
a direct substitution, but also follows directly when it is recognized that the first-order
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solutions obtained in this section are exactly those of section 2.4 with τ → λ, and as the
latter were made to solve Eq. (2.46), the former will make the expression between brackets
in Eq. (2.65) vanish.

Having obtained the first-order contributions anew, they can be used to calculate the
source terms Σµ[n] for the second-order contributions, by substituting Eq. (2.64) in the
source terms Eq. (2.61) of the second-order geodesic deviation equations. This provides
expressions for Σµ of the form

Σt = at sin(2ωλ) + bt sin(ωλ),

Σr = ar cos(2ωλ) + br cos(ωλ) + cr,

Σϕ = aϕ sin(2ωλ) + bϕ sin(ωλ). (2.66)

The coefficients (aµ, bµ, cµ) are complicated expressions in terms of R and the first-order
deviation parameters (nrc,∆n), and are given in Appendix A. In what follows, the resulting
second-order deviation equations Eq. (2.60) will be solved, and the Poincaré resonance will
be removed.

2.5.3 Calculating the second-order deviations

The second-order deviation equations can be read off from Eq. (2.60) by setting the second
line equal to zero:

d2mµ

dλ2
+ 2ūλΓ̄µλν

dmν

dλ
+ ūκūλ∂νΓ̄

µ
κλm

ν = Σµ[n], (2.67)

with the sources given by Eq. (2.66). A natural Ansatz for the most general solution
(respecting, as before, the boundary conditions t(0) = 0, ϕ(0) = 0 and the requirement
that r(τ) should not grow unboundedly in time) is

mt = mt
2 sin(2ωλ) +mt

1 sin(ωλ) + wtλ,

mr = mr
2 cos(2ωλ) +mr

1 cos(ωλ) + ∆m,

mϕ = mϕ
2 sin(2ωλ) +mϕ

1 sin(ωλ) + wϕλ, (2.68)

in which mµ
1,2, ∆m, and wµ are, at this point, arbitrary constants, to be solved for below.

After a substitution in Eq. (2.67), Eq. 2.68 indeed solves the system if the coefficients mµ
1,2

obey the algebraic matrix equations −4ω2 −2ωα 0
2ωβ −(4ω2 + κ) −2ωγ

0 −2ωη −4ω2

 mt
2

mr
2

mϕ
2

 =

 at

ar

aϕ

 , (2.69)
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and  −ω2 −ωα 0
ωβ −(ω2 + κ) −ωγ
0 −ωη −ω2

 mt
1

mr
1

mϕ
1

 =

 bt

br

bϕ

 , (2.70)

in which the greek constant coefficients of Eq. (2.34) have been reintroduced, and the
secular contributions wt, wϕ,∆m obey

βwt − γwϕ − κ∆m = cr. (2.71)

The subtlety in solving these matrix equations is, that the determinant of the matrix
of coefficients of the mµ

1 vanishes as a result of Eq. (2.40) and hence the matrix cannot
generally be inverted to yield a finite solution: this is the source of the Poincaré resonance.
The system Eq. (2.70) can be solved only for a specific set of values bµ(ω1); for this to
happen, the frequency shift ω1 has to be chosen properly. The condition is the following:
the left hand side of Eq. (2.70) can be made to vanish when it is left-multiplied by the zero
mode

m0µ = (β, ω,−γ) ; (2.72)

therefore the condition that the system is solvable is when the right hand side also vanishes
when left-multipied by m0µ, i.e the condition on ω1 is

βbt + ωbr − γbϕ = 0. (2.73)

The coefficients bµ are of the form

bµ = nrc

(
F µ ∆n

R
−Gµ ω1

ω

)
, (2.74)

with (F µ, Gµ) as given in appendix A, determined only by M and R. Substituting this
form in the condition then gives the value ω1 that makes the system Eq. (2.70) solvable:

ω1 =
βF t + ωF r − γFϕ

βGt + ωGr − γGϕ

∆n

R
ω. (2.75)

It should be noted, that the frequency shift ω1 is proportional to the secular constant ∆n

and hence vanishes whenever ∆n = 0. This implies that in the absence of secular terms
∆n at first order there is no need for the Poincaré-Lindtsted method. This is in full accord
with the discussion of section 2.5.1, where it was already noted that the absence of secular
terms at first order would mean that no Poincaré resonances would occur in the first place.
Having chosen ω1 as such, Eq. (2.70) can be inverted to yield

mt
1 = − ηbt − αbϕ

ω2(ω2 + κ)
γ +

βbt − γbϕ

(2ω2 + κ)(ω2 + κ)
α,

mr
1 =

βbt − γbϕ

ω(2ω2 + κ)
,

mϕ
1 = − ηbt − αbϕ

ω2(ω2 + κ)
β +

βbt − γbϕ

(2ω2 + κ)(ω2 + κ)
η. (2.76)
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In contrast, Eqs. (2.69) for mµ
2 can be inverted straightforwardly, with the result

mt
2 =

α

12ω4

(
βat + 2ωar − γaϕ

)
− at

4ω2
,

mr
2 = − 1

6ω3

(
βat + 2ωar − γaϕ

)
,

mϕ
2 =

η

12ω4

(
βat + 2ωar − γaϕ

)
− aϕ

4ω2
. (2.77)

The Poincaré resonance has thus been removed, and a non-singular solution to Eq. (2.67)
has been found. It still needs to have its resulting four-velocity normalized, and this will
now be done.
Substituting the expansion Eq. (2.24) in the normalization condition Eq. (1.16) and trun-
cating the outcome to second order in σ shows that solutions up to second order must
satisfy the condition

σ

(
ḡµν ū

µDn
ν

Dτ

)
+
σ2

2

(
ḡµν ū

µDk
ν

Dτ
+ ḡµν

Dnµ

Dτ

Dnν

Dτ
+ ūκūλḡρκR̄

ρ
µλνn

µnλ
)

= 0, (2.78)

where kµ = mµ+ Γ̄ µ
λν n

λnν . It was already seen in section 2.5.2 that the first term vanishes
identically if the solution Eq. (2.64) for nµ(λ) is substituted. Upon using Eq. (2.27) the
term of second order in σ in Eq. (2.78) vanishes if

ḡµν ū
µDk

ν

Dτ
+

1

2

d2n2

dτ 2
=

d

dτ

(
ḡµνu

µkν +
1

2

dn2

dτ

)
= 0, (2.79)

where n2 = ḡµνn
µnν . At this point, replacing τ by λ would only introduce third order

terms in σ, which will be discarded when truncating the epicycle expansion at second
order; hence τ can be freely replaced by λ. After substitution of the explicit expressions
for uµ, nµ and kµ, Eq. (2.79) then reduces to

ε0
dmt

dλ
− `0

dmϕ

dλ
= 2ω

(
ε0m

t
2 − `0m

ϕ
2

)
cos 2ωλ+ ω

(
ε0m

t
1 − `0m

ϕ
1

)
cosωλ+ ε0w

t − `0w
ϕ

= − ω
2(nrc)

2

1− 2M
R

cos 2ωλ− 2ω2∆nn
r
c

1− 2M
R

cosωλ− 3

4

ω2(∆n)2

1− 3M
R

. (2.80)

The two relations that follow for mµ
1,2 by comparing the terms proportional to cosωλ and

cos 2ωλ are identities, implied by Eqs. (2.76) and (2.77); however, for the constant terms
there is the constraint

ε0w
t − `0w

ϕ = −3

4

ω2(∆n)2

1− 3M
R

. (2.81)
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Together with the relation Eq. (2.71) this can be used to express wt and wϕ in terms of
∆m and the lower-order parameters as

wt = −3

4

ω2(∆n)2(
1− 3M

R

)3/2
− 1

2

R (cr + κ∆m)(
1− 2M

R

)√
1− 3M

R

,

wϕ = − 3

4R

√
M

R

ω2(∆n)2(
1− 3M

R

)3/2
− 1

2

√
R

M

(cr + κ∆m)√
1− 3M

R

, (2.82)

with cr as given in Eq. (A.13). This concludes the calculation of the second-order geodesic
perturbations.

2.5.4 Collecting the results: the epicycle expansion to second
order

Adding the zeroth-order contributions of Eq. (2.10), first-order contributions of Eq. (2.64)
and second-order contributions derived in section 2.5.3 gives the total epicycle expansion
up to second order. These are collected here for convenience, and are given by

t(τ) = U t
0τ + U t

1 sin(ω̄τ) + U t
2 sin(2ω̄τ),

r(τ) = U r
0 + U r

1 cos(ω̄τ) + U r
2 cos(2ω̄τ),

ϕ(τ) = Uϕ
0 τ + Uϕ

1 sin(ω̄τ) + Uϕ
2 sin(2ω̄τ), (2.83)

where to this order ω̄ = ω + σω1, and

U t
0 =

1√
1− 3M

R

+
σακω̄∆n

ω(αβ − γη)
+
σ2ω̄wt

2ω
, U t

1 = −σαn
r
c

ω
+

1

2
σ2mt

1, U t
2 =

1

2
σ2mt

2,

U r
0 = R + σ∆n +

1

2
σ2∆m, U r

1 = σnrc +
1

2
σ2mr

1, U r
2 =

1

2
σ2mr

2,

Uϕ
0 =

1

R

√
M

R

1√
1− 3M

R

+
σηκω̄∆n

ω(αβ − γη)
+
σ2ω̄wϕ

2ω
, Uϕ

1 = −σηn
r
c

ω
+

1

2
σ2mϕ

1 , U
ϕ
2 =

1

2
σ2mϕ

2 .

(2.84)
To summarize, these expressions by construction solve the geodesic equations to second
order in σ, the geodesic deviation equations to second order in σ, and have their four-
velocities properly normalized to second order in σ. There are now four constants that can
freely be assigned values: the circular radius R, the normalization constant σ, and the first
and second-order secular constants ∆n and ∆m. By using straightforward algebra, the Uµ

i
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and the epicycle frequency ω̄ can be expressed solely in terms of these four parameters and
the mass M of the black hole. The result is stated in Appendix A.

Finally, to end this section, the energy per unit mass ε and angular momentum per unit
mass ` can be found by using the expressions Eq. (2.3) after substitution of Eq. (2.83) and
evaluating the outcome to second order in σ. The results are:

` = `0 + σ`n +
1

2
σ2`m , ε = ε0 + σεn +

1

2
σ2εm , (2.85)

in which ε0 and `0 are given by their previous expressions Eq. (2.9), εn and `n by Eq.
(2.55), and `m and εm are given by

`m =

3

2

√
M

R3/2

1 + M
R(

1− 3M
R

)3/2
− 3ω√

1− 6M
R

 (nrc)
2

+

(
1

2

√
M

R

1− 6M
R(

1− 3M
R

)3/2

)
∆m −

(
1

4

√
M

R3/2

1− 12M
R(

1− 3M
R

)5/2

)
∆2
n ,

εm = −

(
M

2R3

1− 9M
R

+ 6M2

R2(
1− 3M

R

)3/2 (
1− 2M

R

)
)

(nrc)
2

+

(
M

2R2

1− 6M
R(

1− 3M
R

)3/2

)
∆m −

(
M

4R3

4− 39M
R

+ 54M2

R2(
1− 3M

R

)5/2

)
∆2
n . (2.86)

As in the first-order case, these expressions evaluate to constants to this order in σ, as
is required by Killing’s theorem for geodesic motion. Again, this is evidence that the
expressions Eq. (2.83) are indeed solutions to the geodesic equations to second order in σ
and that there is no principal error in the method.

2.5.5 The constants of integration

Having obtained the expressions for bound geodesic motion around a Schwarzschild black
hole to zeroth, first and second order, it can be seen that every next order has a constant of
integration more than the previous one. This is a general pattern: with every extra order σi

introduced in the epicycle expansion, one new secular constant ∆i makes its appearance.
This is easily understood: with every order, the same system of coupled homogeneous
differential equations Eq. (2.33) needs to be solved, and as the system is linear, the most
general solution for this extra order contribution will contain six constants of integration.
By the choice to have the resulting orbit start at t = 0, ϕ = 0 and at a periastron, ur = 0,
three of the constants of integration are immediately accounted for. Of the three remaining
ones, one is used to set a constant in the secular solution for the radial coordinate to zero
to prevent an unbounded linear in- or decrease of the radial coordinate, whereas a second is
used to make sure that the total four-velocity of the resulting orbit is properly normalized.
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Eventually, thus, only one constant of integration remains, manifesting itself in the form
of a secular constant ∆i. Together with the zeroth order epicycle parameters R and σ, the
epicycle expansion up to i-th order in σ will contain i + 2 constants of integration, i of
which in the form of secular constants.
It thus follows that there can be arbitrarily many constants of integration, depending on
the order to which the epicycle expansion is taken. This appears to be in contrast with the
fact that, up to orientation, a geodesic orbit in the Schwarzschild spacetime can always be
parametrized by only two constants, for which can be taken, e.g., the two Killing constants
of motion energy per unit mass ε and angular momentum per unit mass `. However,
there is no contradiction: it merely indicates that the constants of integration are related,
and that all but two are superfluous in the sense that they are not strictly necessary to
describe a given orbit. Indeed, regardless of the number of constants of integration, the
epicycle expansion up to any order produces, ultimately, only two constants of motion
(ε, `). For example: even though the first-order epicycle expansion has three constants of
integration, any choice of their values leads, via Eq. (2.55), to only two fixed values for ε
and `. Likewise, the second-order epicycle expansion has four constants of integration but
any choice of their values leads, via Eq. (2.86), to only two fixed values for ε and `.
However superfluous, the extra constants can be used as an advantage, as the use of the
secular constants makes the approximation already accurate at low orders. Indeed, an
example of this was already discussed in section 2.4.3, in which it was demonstrated that
the inclusion of the secular constant ∆n allows the epicycle expansion to have the right
periastra properties already at first order, whereas this is not possible if ∆n is omitted.
Also, from the fact that all constants of integration have been taken into account, it
follows that the solutions presented are the most general solutions of the geodesic deviation
equations to describe bound orbits in a Schwarzschild spacetime, up to the order calculated.
By dismissing the secular constants ∆i, the results stated in the literature only form a
small subset of the most general solutions given here. It is therefore possible to choose
the constants (∆n, ∆m) such that the general solutions reduce to the ones stated in the
literature. This is explicitly demonstrated in Appendix B.

2.6 Summary

In this chapter, the method of geodesic deviations has been introduced as a way to ap-
proximate geodesic motion in any spacetime. As such the method is a useful tool in many
practical situations, and is particularly suited to describe geodesic orbits in an EMRI sys-
tem. The method assumes that geodesic motion can be approximated by calculating the
perturbations to a simple geodesic solution, for which differential equations have been de-
rived to second order.
The method has been applied to the description of bound geodesic motion of a test mass
around a Schwarzschild black hole, yielding an expansion series which resembles the ancient
Ptolemy system and is consequently referred to as the epicycle expansion. It was found
that the most general solution consists of oscillatory terms and secular contributions, the
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latter of which are necessary to describe eccentric orbits accurately as their omission will
result in a cumulative angular lag or overshoot of the resulting orbit as compared to the
exact one. The secular contributions of the first-order solution were also shown to lead to
Poincaré resonances in the higher orders. These were removed by means of the Poincaré-
Lindtsted method, by taking into account that the frequency of the oscillatory part of
the solution is itself an expansion series. In this way fully analytical expressions for the
epicycle expansion up to second order have been presented, as well as expressions for the
energy per unit mass and angular momentum per unit mass carried by the system.
In the next chapter, the epicycle expansion will be put to the test by quantitatively com-
paring the resulting orbits to the ones that are found when the geodesic equations are
solved by purely numerical means.
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Chapter 3

Results: bound geodesic motion

3.1 Introduction

In the previous chapter a covariant perturbation theory for orbits of test masses in curved
spacetime has been constructed, based on the method of geodesic deviations. It has been
applied in particular to motion in a Schwarzschild background geometry, and explicit ex-
pressions for bound orbits to second order have been obtained. Using these expressions for
the orbits, it can now be investigated how well the resulting epicycle orbits compare with
the ones that are obtained when the geodesic equations Eq. (2.5) are solved purely numer-
ically. As advocated, the main advantage of the geodesic deviation method is the fact that
the curvature of the spacetime is taken into full account, and hence it is expected that the
epicycle approximated orbits will remain accurate even when considered very close to the
black hole. In order to test this, this chapter will consider a series of explicit examples
of various eccentricities and of decreasing semi-major axes, all the way to the innermost
stable circular orbit (ISCO). The comparison to the purely numerically calculated orbits
will be done for the epicycle expressions up to first order, and up to second order.
The chapter is organized as follows. Section 3.2 discusses how the epicycle expansion can
be used most effectively by choosing the appropriate boundary conditions, and presents
algebraic equations that ensure that the resulting orbits will have the correct physical char-
acteristics at periastron. In section 3.3, a large number of examples will be worked out in
detail and the resulting bound orbits will be compared to their purely numerical counter-
parts, showing explicitly the excellent approximation the epicycle expansion provides for
orbits of limited eccentricity. The accuracy of the method is expected to decrease with
increasing eccentricity, and this is investigated in section 3.4. Section 3.5 reflects on the
results, and discusses a way to increase the accuracy even more still. Finally, section 3.6
lists the results of this chapter as a summary.
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3.2 Boundary conditions

3.2.1 Using the constants of integration

In chapter 2 it was shown that, when describing bound geodesic motion around a Schwarz-
schild black hole, the most general solution to the geodesic deviation equations consists of
periodic contributions and secular contributions, and that there is a total of i+2 constants
of integration that can freely be assigned values. These constants of integration allow
for as many boundary conditions to constrain the resulting orbit, and the question then
presents itself how these should be chosen so as to yield the epicycle expansion that best
approximates a given bound geodesic orbit. There are at least two ways to make use of
the integration constants. One way is to first fix their values and to subsequently calculate
the energy per unit mass and angular momentum per unit mass of the resulting orbit to
see with which geodesic orbit it best agrees. In this program, any addition of an extra
order to the expansion leads to a slightly different value of the two constants of motion,
and hence will make the expansion approximate a different geodesic. Alternatively, it can
be chosen to have the epicycle expansion describe a fixed geodesic, and to seek constants
of integration that will make the epicycle expansion best approximate this orbit. In this
program, any addition of an extra order to the expansion will make the accuracy better.
It is in this second way that the epicycle expansion will be employed in this thesis. In
practice, this amounts to fixing the values for the i + 2 constants of integration by ap-
propriate boundary conditions, which are taken to be the physical characteristics of the
geodesic orbit that is to be approximated. This will now be discussed.

3.2.2 Conditions on the first-order expansion

In the case of the first-order orbits, Eq. (2.50), there are three constants that need to be
assigned values: (σ, R, ∆n), which means that these functions can be subjected to three
boundary conditions. The following will be used: the orbit must have a periastron shift
δϕ, have two successive periastra a proper time ∆τ apart, and yield a radial periastron
distance rpa. The first two of these make sure that the approximated orbit will have an
angular evolution that stays synchronized with the actual orbit in that their periastra agree
in angular distance and in proper time; the latter of these makes sure that the periastra
take place at the correct radial distance from the black hole. This choice of boundary
conditions also ensures that there will be no cumulative discrepancy between the epicycle-
approximated orbits and the exact ones.
From the radial expansion in Eq. (2.50) it can be seen that the periastra take place at
times τ = 2πn/ω, n an even integer number; from the angular expansion in Eq. (2.50), the
angular distance between successive periastra follows immediately. The three boundary
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conditions then mathematically translate to the algebraic conditions

δϕ = 2π

 1

ω

√
M

R3

1√
1− 3M

R

+
1

ω

ηκ

αβ − γη
σ∆n − 1

 ,

∆τ =
2π

ω
,

rpa = R + σ (nrc + ∆n) . (3.1)

Thus, by supplying a desired periastra shift δϕ, proper time lapse ∆τ between succes-
sive periastra, and radial distance rpa, these algebraic conditions can be solved for a set
of epicycle parameters (R, σ, ∆n) that yields an epicycle orbit with exactly the desired
periastra characteristics.

Some observations can now be made. Firstly, to emphasize a previously made point again,
it should be noted that Eq. (3.1) shows that it is impossible to independently fix the values
δϕ and ∆τ if the secular parameter ∆n was chosen as zero, justifying once more that the
secular contributions are necessary to accurately describe eccentric bound geodesics.
Secondly, it should be noted that no prior knowledge of the exact orbit is required other
than the values of the energy per unit mass and angular momentum per unit mass, as
these alone suffice to fix the values of the right hand sides of the conditions in Eq. (3.1).
Indeed, the fact that all such physical characteristics can, by the methods of sections 2.2.2
and 2.2.3, be calculated from only two parameters (ε, `) or (a, e), emphasizes explicitly the
statement that the secular constants are related. Thus, it follows once again that there is
no contradiction in having an arbitrary number of secular constants to describe a geodesic
orbit in the Schwarzschild spacetime.
Finally, there is generally more than one set of parameters (R, σ,∆n) that solves the system
Eq. (3.1). This can be made explicit by combining the second of the conditions with the
explicit expression for the epicycle frequency, Eq. (2.40), as it yields a quartic equation in
the radius R and so allows for up to four different values for the radius; the remaining two
conditions subsequently fix the values for σ and ∆n uniquely.

The question then presents itself which of the solution sets most accurately describes the
exact bound orbit. The answer is provided by two observations. The first is, that the most
accurate expansion is likely the one that converges the most quickly, i.e. is the expansion
that has the smallest ratio of terms that are first order in σ and terms that are zeroth-order
in σ. There is some ambiguity in this observation, as there is an expansion for the radial
coordinate, one for the angular coordinate, and one for the temporal coordinate, and there
is no guarantee that the fastest convergence in one also implies the fastest convergence in
the others. Here, the choice will be made to let a fast convergence of the radial coordi-
nate take priority; this is motivated by the observation that the Peters-Mathews equation
Eq. (1.46) predicts a strong dependence of the emitted power on the radial accuracy of the
orbit. Of course, the Peters-Mathew equation holds only for a Minkowski spacetime, but
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a similar strong dependence is expected in the current case of a Schwarzschild spacetime
by a simple dimensional analysis (and, indeed, this will be found to be the case in section
5.2.2).
The second observation that leads to a criterion for the most accurate approximation,
is the fact that the secular contributions and oscillatory contributions to the radial ex-
pansion represent different physical characteristics of the resulting orbit. Indeed, as was
already remarked in section 2.4.3, the secular contribution σ∆n serves as a correction to
the zeroth-order radius R, whereas the oscillatory contribution corresponds to the epicycle
that is placed on top of the resulting circular orbit. It is then natural to assume that the
most accurate radial expansion is the one that starts out with the most accurate circle on
which the epicycles are placed, i.e. the expansion that has a zeroth-order circular orbit R
that needs the smallest correction σ∆n.
Thus, collecting results, the solution set (R, σ,∆n) that is expected to yield the most ac-
curate radial epicycle expansion is the set that for which the following inequality holds
best: ∣∣∣∣σ∆n

R

∣∣∣∣� 1. (3.2)

In choosing between the different solution sets (R, σ,∆n), it is this criterion that will be
used in the worked examples of section 3.3.

3.2.3 Conditions on the second-order expansion

Moving on to the second order, the orbital functions Eq. (2.83) can be subjected to the same
three boundary conditions as before, but this time an extra constant ∆m appears that needs
to be assigned a value. This means that a fourth boundary condition can be imposed, which
will be chosen to fix the radial apastron distance raa. The four boundary conditions are
formulated as algebraic conditions by observing that the periastra and apastra correspond
to the extreme values of r(τ) in Eq. (2.83) and that these occur at times ω̄τn = nπ, n an
integer number. From ϕ(τ) then follows the periastron shift, while r(τ) yields the radial
distances of the periastra and apastra. The four boundary conditions thus translate to the
following algebraic conditions:

∆τ =
2π

ω + σω1

, δϕ = 2π

(
Uϕ

0

ω + σω1

− 1

)
,

rpa = U r
0 + U r

1 + U r
2 , raa = U r

0 − U r
1 + U r

2 . (3.3)

Solving these conditions yields values for the parameters (R, σ, ∆n,∆m) that ensure that
the resulting epicycle expansion has the desired periastra characteristics and the desired
radial apastron distance.
However, as in the first-order case, there is generally more than one set of values that
solves the boundary conditions Eq. (3.3). The question then presents itself which of these
orbits most accurately describes the exact geodesic, and again the answer is provided by
the observation that the most accurate expansion is likely the one that converges the most
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quickly, i.e. is the expansion that has the smallest ratio of terms that are of successive
order in σ. As in the first-order case, a fast radial convergence is prioritized, and again
this is done in the way that physically corresponds to choosing the epicycle expansion that
has the most accurate circular orbit on which the epicycles are placed.
Thus, from Eq. (2.84) it follows that the solution set (R, σ,∆n,∆m) that is expected to
yield the most accurate radial expansion is the one that has the fastest convergence of the
coefficient U r

0 , which is the one for which the following two inequalities hold best:∣∣∣∣σ∆n

R

∣∣∣∣� 1 ,

∣∣∣∣ 1
2
σ2∆m

σ∆n

∣∣∣∣� 1 . (3.4)

Obviously, in contrast to the first-order criterion Eq. (3.2), there are now two ratios that
are to be considered, because there are now two correction terms to the zeroth-order contri-
bution R to radius of the perfectly circular orbit. A second difference with the first-order
criterion is that, now, also the coefficient U r

1 of the periodic contribution to the radial
expansion contains a correction term. It therefore appears as if a criterion for the most
accurate radial expansion could also be formulated by demanding that the coefficient U r

1

converges fastest, which is the case when the ratio
∣∣1

2
σ2mr

1/σn
r
c

∣∣ is small. This, however,
is not true due to the way the boundary conditions Eq. (3.3) were chosen; by subtracting
the expressions for rpa and raa, it follows immediately that the coefficient U r

1 is completely
fixed and hence has the same value for any of the solution sets to Eq. (3.3). A fast con-
vergence for the coefficient U r

1 can therefore not be used a discriminatory factor between
the different solution sets.
In choosing between the different solution sets (R, σ,∆n,∆m), it will be the criterion Eq.
(3.4) that will be used in the worked examples of the next section. Indeed, in all cases con-
sidered in this thesis, this criterion trustfully leads to the second-order epicycle expansion
with the highest radial accuracy.

3.3 Explicit examples

3.3.1 A worked example: e = 0.1, a = 10M

The epicycle expansion will now be worked out in full detail for one specific bound orbit.
For this explicit example, an orbit will be considered that is parametrized by, in the
parameters presented in section 2.2.3, an eccentricity e of 0.1 and value of a of 10M . The
mass M of the black hole is given in some unspecified units, so that in the same units the
periastron distance rpa, apastron distance raa, periastron shift δϕ, and proper time lapse
∆τ between successive periastra are given by

rpa = 9.09091M, raa = 11.1111M, δϕ = 3.6561, ∆τ = 266.105M, (3.5)

having used the integrals stated in section 2.2.3. This orbit corresponds to an energy per
unit mass and angular momentum per unit mass given by

ε = 0.956568, ` = 3.78235M. (3.6)
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It should be noted that the fact that this orbit has a periastron shift greater than the New-
tonian angular distance between periastra of 2π, is evidence of the very strong relativistic
effect this close to the central mass. This orbit will now be constructed up to first and up
to second order in epicycle perturbation theory.
In the case of the first-order orbits, Eq. (2.50), there are three constants that need to be
assigned values: (R, σ,∆n). This means that these functions can be subjected to three
boundary conditions to fix the orbit and for these the ones discussed in section 3.2.2 will
be used: the orbit must have a periastron shift δϕ, have two successive periastra a proper
time ∆τ apart, and yield a radial periastron distance rpa. These three conditions mathe-
matically translate to the algebraic conditions of Eq. (3.1), and by the criteria discussed in
section 3.2.2, the following solution set (R, σ,∆n) and the associated value of nrc is selected:

σ = −1.15699M, R = 10.1274M, ∆n = 0.05047, nrc = 0.845359. (3.7)

This gives the following expressions for the orbital functions t(τ), r(τ), ϕ(τ):

t(τ) = 1.19347 τ + 1.1998M sin(ωτ),

r(τ) = 10.0690M − 0.978072M cos(ωτ),

ϕ(τ) = 0.0373
τ

M
+ 0.3025 sin(ωτ), (3.8)

in which the epicycle frequency is given by

ω = 0.0236
1

M
. (3.9)

Using the expressions for the εn and `n from Eq. (2.55), the energy per unit mass and the
angular momentum per unit mass of this epicycle orbit are

ε = 0.95642, ` = 3.78710M, (3.10)

which are at most a few tenths of a percent different from the exact values in Eq. (3.6).
Moving on to the second-order epicycle expansion, there are now four constants of integra-
tion (R, σ,∆n,∆m) that need to be assigned values by imposing boundary conditions, and
for these the ones discussed in section 3.2.3 will be used: the orbit must have a periastron
shift δϕ, have two successive periastra a proper time ∆τ apart, yield a radial periastron
distance rpa, and an apastron distance raa. These conditions translate mathematically to
the algebraic conditions of Eq. (3.3), and by using the criteria discussed in section 3.2.3,
the following solution set (R, σ,∆n,∆m) and associated value nrc is chosen as

σ = −0.97114M, R = 10.0046M, ∆n = −0.12613, ∆m = 0.0228
1

M
, nrc = 1.0206,

(3.11)
which give rise to the expressions for the orbital functions

t(τ) = 1.19346 τ + 1.23903M sin((ω + σω1)τ) + 0.061333M sin(2(ω + σω1)τ),

r(τ) = 10.1378M − 1.0101M cos((ω + σω1)τ)− 0.036836M cos(2(ω + σω1)τ),

ϕ(τ) = 0.0037351
τ

M
+ 0.312458 sin((ω + σω1)τ) + 0.0174545 sin(2(ω + σω1)τ),

(3.12)
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in which the frequencies are given by

ω = 0.02389
1

M
, σω1 = −0.00028

1

M
, ω + σω1 = 0.0236

1

M
. (3.13)

From Eq. (2.86), the energy per unit mass and angular momentum per unit mass for this
approximation to the orbit then follow as

ε = 0.95667, ` = 3.78263M, (3.14)

which are at most a few thousandths of a percent different from the exact values in Eq. (3.6).

Having found the epicycle expressions to first and second order, they can be compared
to orbital functions r(τ) and ϕ(τ) as calculated by solving the geodesic equations Eq. (2.5)
by purely numerical means. The results are presented in Figure 3.1. In the left panel, the
radial function r(τ) up to first and second order is given divided by its purely numerical
counterpart, as a function of proper time. As can be seen, the relative difference between
the first-order approximation and its numerical counterpart is at most about 1.1%; intro-
ducing the second-order epicycle improves the relative difference to less than 0.05%. The
right panel shows the absolute difference between the angular coordinate ϕ in the epicycle
approximation (both to first and second-order) and in the numerical one. As can be seen,
the first-order epicycle deviates from the purely numerical one by at most 0.029 radians
during any period, whereas the second order deviates from the numerical one by at most
0.004 radians. Thus, it has now been seen that, for the orbit with eccentricity 0.1 and
semi-major axis 10M , both the first- and second-order epicycle expansions are excellent
approximations of the numerical orbital functions r(τ) and ϕ(τ).
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Figure 3.1: Left: The radial coordinate r(τ) in epicycle approximation up to first (solid curve) and
second (dashed curve) order, divided by the numerical one, as a function of proper time τ . Right: The
angular coordinate ϕ(τ) in radians in epicycle approximation up to first (solid curve) and second (dashed
curve) order, minus the numerical one, as a function of the proper time τ .

3.3.2 Further examples: e = 0.1, various values for a

In the manner of the explicit example above, the accuracy of a whole series of orbits can
be investigated, all of eccentricity e = 0.1 but decreasing value of a, so as to test the
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claim that the epicycle approximations suffer very little from close proximity to the black
hole. The physical characteristics of the orbits considered and the values of the epicycle
parameters are listed in tables C.1, C.2 in appendix C, and the comparison with the purely
numerically calculated orbits is presented in table 3.1 below. It lists the maximum relative
difference between the epicycle-approximated orbital function r(τ) and its numerical coun-
terpart, and the maximum absolute difference between the epicycle-approximated orbital
function ϕ(τ) and its numerical counterpart. For the first-order epicycle approximation,
it can be seen that the relative difference for the radial orbital function is typically of the
order of 2% or less, and the absolute difference for the angular orbital function is of the
order of a hundredth of a radian. For the second-order epicycle approximation, it can be
seen that the relative difference of the radial orbital function is typically of the order of a
hundredth of a percent, and the absolute difference of the angular function is of the order
of a hundredth of a radian and usually much less still.
These results fully support the claim that the geodesic deviation method effortlessly ap-
proximates bound geodesic orbits, even those in close proximity to the black hole. Indeed,
even the most extreme case considered of a = 6.6M (which corresponds to an orbit that ex-
actly grazes the ISCO at rpa = 6M , and has a periastron shift of 15.019, i.e. the shift alone
is more than two times the angular distance of 2π between successive periastra as predicted
by Newtonian gravity) is still excellently approximated by the epicycle expansions, with the
relative difference between the second-order radial function and its numerical counterpart
being less than a quarter percent, and the absolute difference between the second-order
angular function and its numerical counterpart less than 0.02 radians.
The table also demonstrates explicitly that the radial accuracies are virtually indepen-
dent of distance to the black hole: over the course of the decreasing semi-major axis, the
maximum relative radial difference increases only very slightly, and it is only at the orbits
closest to the ISCO that the increase of relative radial difference becomes more significant.
These observations fully agree with the discussion of section 2.4.2, where it was already
predicted that the dependence of the accuracy on the distance would be very small and
would only become more significant for the orbits closest to the ISCO.
As concerns the angular accuracy, the table demonstrates that the maximum absolute dif-
ference between the first-order epicycle approximation of the angular coordinate and its
numerical counterpart is virtually independent from the distance to the black hole (save
again from the orbits closest to the ISCO). In contrast, the accuracy of the second-order
angular approximation does depend strongly on the distance to the black hole, as the max-
imum absolute difference increases by an order of magnitude.
These observations are not surprising, due to the way the boundary conditions were cho-
sen. At first order, the boundary conditions were chosen to ensure the resulting orbit
has the desired temporal, radial, and angular properties at periastron, giving rise to fixed
accuracies for the radial and angular coordinates. At second order an extra boundary con-
dition was chosen to further constrain one of the coordinates in between periastra as well.
Here, the remaining boundary condition was used to fix the radial position of the apastron,
greatly increasing the accuracy of the radial coordinate in between periastra, but offering
no guarantee that the angular coordinate benefits from this choice as well.
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e = 0.1 first-order epicycles second-order epicycles
a/M max. rel. diff. r max. abs. diff. ϕ max. rel. diff. r max. abs. diff. ϕ

20 1.05 % 0.018 rad 0.06 % 0.0015 rad
15 1.03 % 0.020 rad 0.06 % 0.0018 rad
10 1.08 % 0.029 rad 0.05 % 0.0040 rad
9.0 1.09 % 0.024 rad 0.05 % 0.0070 rad
8.5 1.04 % 0.042 rad 0.04 % 0.012 rad
8.0 1.21 % 0.058 rad 0.04 % 0.026 rad
7.5 1.47 % 0.028 rad 0.08 % 0.053 rad
7.0 1.52 % 0.040 rad 0.12 % 0.012 rad
6.6 2.20 % 0.022 rad 0.24 % 0.020 rad

Table 3.1: Accuracy of epicycle approximation for bound orbits of eccentricity e = 0.1 around a black
hole of mass M and various values of a, as listed in the first column. The second column presents the
maximum relative differences between the first-order epicycle radial orbital function r(τ) and its numerical
counterpart; the third column presents the maximum absolute difference between the first-order epicycle
angular orbital function ϕ(τ) and its numerical counterpart. The fourth and fifth columns present the
same information for the second-order epicycle orbital functions. The smallest value of the semi-major
axis a is chosen such, that the periastron of the resulting orbit exactly grazes the ISCO.

3.3.3 Further examples: various values for e and a

In the previous examples, the epicycle expansion was used to approximate an orbit of one
fixed small eccentricity, and presented accurate results. As expected, the method suffers
little from close proximity to the black hole: agreement with numerical outcomes were seen
to be excellent for all values of a. In the following examples, the method will be used to
approximate some more orbits for decreasing values of a, and this time for some different
fixed values of the eccentricity: e = 0.075, e = 0.15 and e = 0.2. In this way, it can be
investigated whether the conclusions of the e = 0.1 case presented in the previous section
also hold for different eccentricities.
Appendix C lists the physical characteristics and the values of the epicycle parameters
of these orbits in table C.3 and table C.4 for e = 0.075, in table C.5 and table C.6 for
e = 0.15, and in table C.7 and table C.8 for e = 0.2. The results for the accuracy are
presented in table 3.2 for e = 0.075, in table 3.3 for e = 0.15, and in table 3.4 for e = 0.2.
These latter tables list the maximum relative difference between the epicycle approxima-
tion for the orbital function r(τ) and its numerical counterpart, and the maximum absolute
difference between the epicycle approximated orbital function ϕ(τ) and its numerical coun-
terpart.
In all cases, the same observations hold as in the examples of orbits of eccentricity e = 0.1:
the accuracy of the radial first-order and second-order approximations, as well as the ac-
curacy of the first-order angular approximation, have only a very small dependence on the
distance to the black hole, whereas the angular second-order approximation becomes an
order of magnitude less accurate as the semi-major axis decreases. The explanation for
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these observations is the same as in the e = 0.1 case, and was already given in section
3.3.2.

e = 0.075 first-order epicycles second-order epicycles
a/M max. rel. diff. r max. abs. diff. ϕ max. rel. diff. r max. abs. diff. ϕ

20 0.589 % 0.00975 rad 0.0241 % 0.00061 rad
15 0.596 % 0.01106 rad 0.0228 % 0.00076 rad
10 0.606 % 0.01565 rad 0.0190 % 0.00168 rad
9.0 0.611 % 0.01882 rad 0.0170 % 0.00293 rad
8.5 0.617 % 0.02203 rad 0.0157 % 0.00487 rad
8.0 0.661 % 0.03029 rad 0.0138 % 0.00253 rad
7.5 0.802 % 0.01412 rad 0.0253 % 0.02559 rad
7.0 0.859 % 0.02370 rad 0.0385 % 0.00927 rad
6.45 1.573 % 0.06022 rad 0.1291 % 0.01090 rad

Table 3.2: Accuracy of epicycle approximation for bound orbits of eccentricity e = 0.075 around a black
hole of mass M and various values of a, as listed in the first column. The second column presents the
maximum relative differences between the first-order epicycle radial orbital function r(τ) and its numerical
counterpart; the third column presents the maximum absolute difference between the first-order epicycle
angular orbital function ϕ(τ) and its numerical counterpart. The fourth and fifth columns present the
same information for the second-order epicycle orbital functions. The smallest value of the semi-major
axis a is chosen such, that the periastron of the resulting orbit exactly grazes the ISCO.

e = 0.15 first-order epicycles second-order epicycles
a/M max. rel. diff. r max. abs. diff. ϕ max. rel. diff. r max. abs. diff. ϕ

20 2.373 % 0.04074 rad 0.2174 % 0.00431 rad
15 2.395 % 0.04650 rad 0.2111 % 0.00622 rad
12 2.414 % 0.05477 rad 0.2043 % 0.00847 rad
10 2.432 % 0.06827 rad 0.1974 % 0.01381 rad
9.0 2.467 % 0.08467 rad 0.1928 % 0.02348 rad
8.5 2.538 % 0.10191 rad 0.1888 % 0.03705 rad
8.0 2.860 % 0.14154 rad 0.1723 % 0.07486 rad
7.5 3.432 % 0.07101 rad 0.4520 % 0.14277 rad
6.9 3.650 % 0.09195 rad 0.7188 % 0.07175 rad

Table 3.3: Accuracy of epicycle approximation for bound orbits of eccentricity e = 0.15 around a black
hole of mass M and various values of a, as listed in the first column. The second column presents the
maximum relative differences between the first-order epicycle radial orbital function r(τ) and its numerical
counterpart; the third column presents the maximum absolute difference between the first-order epicycle
angular orbital function ϕ(τ) and its numerical counterpart. The fourth and fifth columns present the
same information for the second-order epicycle orbital functions. The smallest value of the semi-major
axis a is chosen such, that the periastron of the resulting orbit exactly grazes the ISCO.
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e = 0.2 first-order epicycles second-order epicycles
a/M max. rel. diff. r max. abs. diff. ϕ max. rel. diff. r max. abs. diff. ϕ

20 4.27 % 0.075 rad 0.550 % 0.012 rad
15 4.30 % 0.085 rad 0.541 % 0.015 rad
12 4.33 % 0.101 rad 0.534 % 0.020 rad
10 4.38 % 0.127 rad 0.530 % 0.033 rad
9.0 4.47 % 0.159 rad 0.528 % 0.055 rad
8.5 4.64 % 0.192 rad 0.518 % 0.083 rad
8.0 5.31 % 0.262 rad 0.467 % 0.149 rad
7.5 6.22 % 0.137 rad 0.226 % 0.317 rad
7.2 5.80 % 0.090 rad 1.88 % 0.217 rad

Table 3.4: Accuracy of epicycle approximation for bound orbits of eccentricity e = 0.2 around a black
hole of mass M and various values of a, as listed in the first column. The second column presents the
maximum relative differences between the first-order epicycle radial orbital function r(τ) and its numerical
counterpart; the third column presents the maximum absolute difference between the first-order epicycle
angular orbital function ϕ(τ) and its numerical counterpart. The fourth and fifth columns present the
same information for the second-order epicycle orbital functions. The smallest value of the semi-major
axis a is chosen such, that the periastron of the resulting orbit exactly grazes the ISCO.

3.4 The relationship between accuracy and eccentric-

ity

The results of the examples in the previous sections show that the accuracy of the epicycle
approximation decreases with increasing eccentricity, supporting the observation made in
2.4.2 that the expansion parameter of the approximation is a measure of the eccentricity
of the orbits considered. The pattern can be studied in more detail by taking the second-
order epicycle approximation of the radial function of a series of bound orbits with fixed
semi-major axis a and increasing values of the eccentricity e, and comparing each with
its purely numerically calculated counterpart. It is then found that, for all values of the
semi-major axis considered, the maximum relative difference of the radial function closely
follows a power law of the eccentricity e, i.e.

(max. rel. diff. r) ∝ eb, (3.15)

where the exponent b has a value of about 3.4. A typical example of this is presented in
Figure 3.3 for a semi-major axis of a = 10M . The value of the exponent means that a
doubling of the eccentricity leads to a decrease in accuracy of the radial approximation by
a factor of 23.4 ≈ 10.6, which amounts to about an order of magnitude. It is not surprising
that the accuracy of the second-order epicycle expansion follows the same curve for all
semi-major axes considered, as it had already been seen that the accuracy of the approxi-
mation is virtually independent of the distance to the black hole. The exponent value b of
around 3.4 is therefore an intrinsic characteristic of the second-order epicycle expansion,
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Results: bound geodesic motion

rather than of the particular examples considered.
A similar analysis can be done for the absolute difference between the second order epicycle
approximation angular function and its purely numerically calculated counterpart, and it
is found that the absolute difference roughly follows a power law of the eccentricity, as can
be seen in Figure 3.3. The exponent is about 2.5 to 3, meaning that, roughly, the accuracy
of the second order epicycle approximation decreases by a factor of about 5.7 to 8 when
the eccentricity is doubled.
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Figure 3.2: The maximum relative difference between the radial function in percents as calculated by the
second-order epicycle approximation and its purely numerical counterpart, as a function of the eccentricity
e for orbits with semi-major axis a = 10M . The left plot shows the eccentricity up to a value of 0.6; the
right plot zooms in by showing eccentricities up to a value of 0.3. The semi-major axis is taken to be
a = 10M and the relative differences are given in percents. The data points are values obtained by
the comparison as explained in the main text; the curve is the best fit through these points, given by
12.553M · e3.413.
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Figure 3.3: The maximum absolute difference between the angular function in radians as calculated
by the second-order epicycle approximation and its purely numerical counterpart, as a function of the
eccentricity e for orbits of semi-major axis a = 10M . The left plot shows the eccentricity up to a value of
0.6; the right plot zooms in by showing eccentricities up to a value of 0.3. The semi-major axis is taken to
be a = 10M and the absolute differences are given in radians. The data points are values obtained by the
comparison as explained in the main text; the curve is the best fit through these points, which in the left
plot is given by 2.69 · e2.65, and in the right plot by 3.77 · e2.95.
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3.5 Increasing the accuracy

The examples presented show that the geodesic deviation method can be used to accurately
describe eccentric bounded geodesics of a Schwarzschild black hole when the eccentricity
is limited. The choice of boundary conditions used in this chapter focussed mostly on
improving the accuracy of the radial function and, as such, the method effortlessly produces
radial approximations that are accurate to a percent and usually much better still for orbits
of eccentricity to about 0.2, even when describing orbits grazing the ISCO. The accuracy
of the angular function, too, is excellent, and, in accord with the premise of the geodesic
deviation method, the accuracies suffer little from close proximity to the black hole.
Going to orders of higher eccentricity reduces the accuracy of the epicycle expansion by
about an order of magnitude for every doubling of the eccentricity; this too is in accord
with the expectation, as it had been shown that the expansion parameter σ is related to
the eccentricity of the orbits approximated. However, in chapter 5, it will be discussed
that a test mass spiraling into a black hole will lose eccentricity due to the emission of
gravitational waves, and hence will have its orbit better and better approximated by the
epicycle expansion as it approaches the ISCO. It is therefore expected that the expansion
up to second order will suffice to accurately describe all but the most extreme natural
bound orbits.
There are, however, at least two reasons to consider taking the epicycle expansion up to
third order or higher. Firstly, as discussed before, three of the four boundary conditions
available at the second-order expansion are needed to guarantee that the right proper time,
right angle, and right radial distance is reached at periastra, leaving only one boundary
condition to constrain one of the coordinates in between the periastra. Here, the remaining
boundary condition was used to fix the radial position of the apastron, greatly increasing
the accuracy of the radial coordinate r(τ) in between periastra, but it is not guaranteed
that the angular coordinate ϕ(τ) also increases in accuracy. However, an increase in the
accuracy of the angular coordinate can be guaranteed by either choosing the remaining
boundary condition to focus on constraining the angular coordinate ϕ(τ) rather than the
radial r(τ), or by taking the epicycle expansion to third or higher order as every new order
allows for one extra boundary condition. The latter option is preferable, because it allows
for both the radial function and the angular function to be constrained between periastra.
A second reason to consider taking into account more terms in the epicycle expansion is
as follows. The accuracy of the second-order epicycle expansion has here been checked by
comparison with the purely numerical solutions to the geodesic equations, but it would
be preferable to have some intrinsic measure of the accuracy of the expansion. This can
be provided by taking the epicycle expansion to third or higher orders, as the ratio of the
contributions of two subsequent orders gives a measure of the convergence (and therefore
of the accuracy) of the expansion. Most notably, it is expected to yield a theoretical
explanation for the observed fact that the exponent b in the power law for the accuracy of
the radial function is about 3.4.
Thus, even though for all practical matters the epicycle expansion up to second-order
gives excellent approximations of low eccentricity bound orbits, there is reason to take the
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expansion to third or higher orders. It is recommended to take the epicycle expansion to
fourth order: a third order expansion can be used to greatly increase the accuracy of the
angular coordinate, whereas a fourth order can subsequently be used to offer an intrinsic
measure of accuracy of the obtained results. With the method presented in this chapter,
this is a tedious but straightforward exercise.

3.6 Summary

In this chapter, the epicycle expansion has been put to the test quantitatively by comparing
the resulting orbits with the ones that are found when the geodesic equations are solved by
numerical means. In order to do so, boundary conditions on the general first- and second-
order epicycle expansions were formulated, which resulted in algebraic conditions on the
constants of integration. These were formulated such that the resulting epicycle expansions
yield orbits that have the correct physical characteristics at the moment of periastron, and,
in case of the second-order epicycle expansion, additionally have the correct radial apastron
distance as well. The epicycle expansions to first-and second-order were then tested by a
detailed comparison with purely numerically calculated geodesic motion, showing excellent
agreement all the way to the innermost stable circular orbit when eccentricities are up to
about e = 0.1. Higher eccentricities decrease the accuracy of the epicycle expansion by
about an order of magnitude for a doubling of the eccentricity, and this can be remedied
by taking into account higher-order epicycles. This also has the advantage of allowing an
intrinsic measure of the accuracy of the epicycle expansion.
Now it has been seen that the epicycle expansion yields accurate results, applications
of the method are immediately foreseeable. Most notably, it opens up the possibility of
removing one numerical step in calculating the gravitational radiation in a Schwarzschild
background. A formalism to calculate gravitational radiation due to the motion of a test
mass in a Schwarzschild background has been topic of research for many decades and was
presented in a final form in Refs. [32], [33], but where that work had to rely on numerical
descriptions of the geodesic orbits, the geodesic deviation method allows to replace that
numerical step by an analytical one. This will be the topic of the next chapter.

64



Chapter 4

The Zerilli-Moncrief/Regge-Wheeler
formalism

4.1 Introduction

In the previous chapters the geodesic deviation method has been used to find analytical
expressions in the time domain for the geodesic orbits in a Schwarzschild spacetime; the
orbits so obtained proved to accurately resemble the ones in the time domain that pre-
viously were only obtained numerically. What’s more, the background metric was taken
into full account, and hence the results were expected to stay accurate even when close
to the central mass of the spacetime; this indeed was found to be the case. In the cur-
rent chapter, these results will be combined with an existing formalism for the calculation
of gravitational waves and again without making any compromise on the Schwarzschild
spacetime. This formalism produces the gravitational waves as the solutions of two linear
uncoupled differential equations for two scalar, which are called the Zerilli-Moncrief and
the Regge-Wheeler functions. The differential equations so obtained are fully analytic but
require the orbits to be known as a function of time. Such functions are provided by
the geodesic deviation method, and the resulting differential equations will be derived in
this chapter. Solving the differential equations for the Zerilli-Moncrief and Regge-Wheeler
functions, however, still needs to be done numerically. A numerical algorithm used to solve
the differential equations will be the second topic of this chapter.
This chapter is organized as follows. In section 4.2, the derivation of the differential equa-
tions for the Zerilli-Moncrief and Regge-Wheeler functions will be reviewed, along with the
emission of energy and angular momentum by gravitational waves. Section 4.3 presents
the algorithm used to numerically solve the Zerilli-Moncrief and Regge-Wheeler differential
equations. In section 4.4, the sources for the differential equations will be calculated for
geodesic motion by using the analytic expressions for the orbits as derived in chapter 2.
Finally, section 4.5 lists the results of this chapter as a summary.
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4.2 The Zerilli-Moncrief/Regge-Wheeler formalism

4.2.1 Outline of the formalism

The calculation of gravitational waves in a Schwarzschild spacetime proceeds in a way that
is similar to the analogous case of the calculation in a Minkowski spacetime, which was
presented in section 1.5. In principle, what needs to be done is to add a small perturbation
hµν to the Schwarzschild metric and to linearize the Einstein tensor Gµν to first order in
hµν , after which the resulting expression must be equated to the energy momentum tensor
Tµν that describes the source of the gravitational wave. Like in the Minkowski analogue,
the result is a set of ten coupled differential equations that yields the ten components of
the gravitational wave hµν as a function of the presence and dynamics of energy and mass.
The key difference with the case of the Minkowski spacetime is that the resulting set of
differential equations is much more complicated because the Einstein tensor contains co-
variant derivatives of the gravitational wave (whereas in the Minkowski case these can be
replaced by the normal derivatives). As a result, the differential equations contain terms
proportional to hµν (and its derivatives) with non-constant coefficients: the coefficients will
generally depend on the radial coordinate r. Although some of these complicated terms
can be gauged away by transforming to some convenient coordinate system (analogous to
the De Donder gauge and TT-gauge), the remaining set of coupled differential equations
still proves cumbersome.
It is therefore not surprising that it has taken many decades to reduce the system to a
form that is more manageable, starting with a classic paper by Wheeler and Regge [34] in
1957 which, supplemented by contributions from many authors [35], [36], was presented
in a final form in 2004 by Martel and Poisson [32], [33]. The key insights in the resulting
formalism are the following: firstly, the fact that the Schwarzschild spacetime is spherically
symmetric allows for a convenient rewriting of the differential equations in spherical har-
monics, effectively removing the angular dependence from the system. Secondly, a number
of convenient gauge transformations can be made to remove all unphysical degrees of free-
dom and leaving only the two polarizations of the gravitational wave.
In the following, the resulting formalism will be reviewed, leading, ultimately, to two un-
coupled linear differential equations that have the two polarizations of the gravitational
wave hµν as their solution.

4.2.2 Small deviations from a Schwarzschild spacetime

The premise of the formalism is to consider small deviations hµν from the metric gµν that
describes the background spacetime,

gpµν ≡ gµν + hµν , (4.1)
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and to relate these to the energy momentum tensor Tµν responsible for these perturbations.
This can be done by perturbing the Einstein field equation for the total metric,

Rp
µν −

1

2
gpµνR

p = −8πTµν , (4.2)

to first order in the perturbation hµν , while using that the background metric gµν is a
vacuum solution, i.e. Rµν = 0. Doing so then relates the metric perturbation hµν to the
energy momentum tensor via

−1

2
gαβD

αDβhµν +
1

2

(
DβDνhβµ +DβDµhβν

)
−1

2
DµDνh

β
β −

1

2
gµν
(
DαDβhαβ − gαβDαDβhκκ

)
= −8πTµν , (4.3)

in which the covariant derivatives Dα are defined by the background metric gµν , and
it is also this metric that is used for raising and lowering of indices. This expression
holds regardless of the background spacetime (indeed, replacing all covariant derivatives
by partial derivatives of an uncurved spacetime reduces the left hand side of this equation
to the one that holds in a Minkowski spacetime, i.e. Eq. (1.28) ), but as in the current
context the spacetime has a spherical symmetry, the following splitting of the metric is
allowed:

gµν = g̃ab
⊕

r2ΩAB. (4.4)

In this splitting, ΩAB denotes the part of the metric that concerns the angular coordinates
(denoted by upper case Latin indices), and g̃ab denotes the part that concerns the temporal-
radial coordinates (denoted by lower case Latin indices). For example, for a Schwarzschild
spacetime in the Droste coordinates introduced in section 2.2.1, the two parts of the metric
are given by

g̃ab = diag(−f(r), f(r)−1), ΩAB = diag(1, sin2 θ), (4.5)

in which, and in what follows, a shorthand notation is used,

f(r) ≡ 1− 2M

r
. (4.6)

As a next step, the perturbations hµν as well as the energy momentum tensor Tµν will
be decomposed in spherical harmonics, so as to decouple the angular parts of the system
from the parts defining the evolution in t and r. The different elements of the metric
have different behavior under angular rotations, and this reflects itself in the decomposi-
tion: the elements of hµν that behave as a scalar, vector, respectively tensor under spatial
rotations must be decomposed in scalar (Y lm), vector (Z lm

A , X lm
A ), respectively tensorial

(U lm
AB, V

lm
AB, W

lm
AB) spherical harmonics. The definitions and the properties of these different

types of spherical harmonics are well-known and can be found in, e.g., Ref. [34].
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The decomposition of the metric perturbations follows as

hab =
∑
lm

plmab (t, r)Y lm(θ, ϕ),

haA =
∑
lm

qlma (t, r)Z lm
A (θ, ϕ) + hlma (t, r)X lm

A (θ, ϕ),

hAB =
∑
lm

r2

(
K lm(t, r)U lm

AB(θ, ϕ) +Glm(t, r)V lm
AB(θ, ϕ) + hlm2 (t, r)W lm

AB(θ, ϕ)

)
.

(4.7)

The energy momentum tensor is similarly decomposed as

T ab =
∑
lm

8πQab,lm(t, r)Y lm(θ, ϕ),

T aA =
∑
lm

4π

r2

(
Qa,lm(t, r)Z lm

A (θ, ϕ) + P a,lm(t, r)X lm
A (θ, ϕ)

)
,

TAB =
∑
lm

4π

r4

(
r2Q[,lm(t, r)U lm

AB(θ, ϕ) +Q],lm(t, r)V lm
AB(θ, ϕ) + P lm(t, r)W lm

AB(θ, ϕ)

)
.

(4.8)

In these decompositions, all lower case Latin indices (a, b) are to be lowered and raised by
using g̃ab and its inverse, and the upper case indices by using ΩAB and its inverse. The
mode indices (lm) will be dropped on the expansion coefficients for the sake of notational
convenience.
It should be noted that these expansions in spherical harmonics have not introduced any
physics: the scalar, vector, and tensorial spherical harmonics are known to form a complete
set and hence any function can be decomposed in the manner of Eqs. (4.7) and (4.8). The
physics is encapsulated in the question how to relate the ten coefficients pab, qa, ha, K,G, h2

of the perturbation hµν to those Qab, Qa, Q[, Q], P a, P of the energy momentum tensor
Tµν . This can be answered by substituting the expansions for metric perturbation and
energy-momentum tensor in the perturbed Einstein field equation Eq. (4.3) and working
out the relationships between the various coefficients.
At first, the fact that the perturbed Einstein field equation yields ten equations and there
are ten variables to solve for, it appears as if the system is exactly solvable. However,
just like in the case of the analogous derivation in Minkowski spacetime as presented in
section 1.5, this is not true, as General Relativity’s inherent freedom to choose coordinate
systems allows gauge transformations to be made. Ultimately, therefore, there are only
two physical degrees of freedom, corresponding to the two polarizations of a gravitational
wave.
Making use of the established results presented in [32], [33], the two degrees of freedom
are encapsulated in two scalar functions, the Zerilli-Moncrief (ZM) and Regge-Wheeler
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(RW) functions, which are provided by two uncoupled equations of motion for any energy
momentum tensor: (

g̃abD̃aD̃b − V l
ZM(r)

)
Ψlm
ZM(t, r) = SlmZM(t, r), (4.9)(

g̃abD̃aD̃b − V l
RW (r)

)
Ψlm
RW (t, r) = SlmRW (t, r), (4.10)

in which D̃a is the covariant derivative associated with the non-angular part g̃ab of the
metric. The potential functions VZM and VRW are given by

V l
ZM =

1

r2Λ2(r)

(
2λ2

(
λ+ 1− 3M

r

)
+

18M2

r2

(
λ+

M

r

))
, (4.11)

V l
RW =

1

r2

(
l(l + 1)− 6M

r

)
, (4.12)

in which the shorthand notations are used

λ ≡ 1

2
(l + 2)(l − 1), Λ(r) ≡ λ+

3M

r
. (4.13)

The source functions SlmZM,RW carry all information of the energy momentum tensor Tµν
responsible for the production of the gravitational waves. They are given by

SlmZM =
1

(λ+ 1)Λ(r)

(
r2

(
f 2(r)∂rQ

tt − ∂rQrr

)
+ r

(
Λ(r)

f(r)
− 1

)
Qrr

+rf(r)Q[ − f(r)

rΛ(r)

(
λ(λ− 1)r2 + (4λ− 9)Mr + 15M2

)
Qtt

)
+

2

Λ(r)
Qr − 1

r
Q],

SlmRW =
1

r

(
2

r

(
1− 3M

r

)
P − f(r)∂rP + P r

)
. (4.14)

Solving the two equations of motion Eqs. (4.9), (4.10) then provides all information on the
metric perturbation hµν . Indeed, the relationship between the two polarisations and the
Zerilli-Moncrief and Regge-Wheeler functions can be found to be [32]

h+ − ih× =
1

r

∑
lm

(
Ψlm
ZM − 2i

∫ t

−∞
Ψlm
RW (t′)dt′

)
· V lm

ABm̄
Am̄B. (4.15)

In the present case of an EMRI system, the interest lies in the gravitational waves produced
by a test mass µ in a bound geodesic orbit around the black hole. For test masses, the
energy momentum tensor is given by [3]

Tµν = µ

∫ (
1√
−g
· uµuν · δ4(xα − xαp (τ))

)
dτ, (4.16)
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in which g is the determinant of the background metric, xαp (τ) denotes the four-position
of the test mass. This energy momentum tensor leads, via inversion of Eq. (4.8) and
the completeness properties of the spherical harmonics, to the following expressions for
Qab, Qa, Q[, Q], P a, P (which in the following will be referred to as energy coefficients),

Qab =
8πµ

r2

uaub

ut
Y ∗lm(θp, ϕp)δ(r − rp(τ)),

Qa =
16πµ

l(l + 1)

uauA

ut
Z∗lmA (θp, ϕp)δ(r − rp(τ)),

Q[ = 8πµ
uAuB

ut
U∗lmAB (θp, ϕp)δ(r − rp(τ)),

Q] = 32πµ
(l − 2)!

(l + 2)!
r2u

AuB

ut
V ∗lmAB (θp, ϕp)δ(r − rp(τ)),

P a =
16πµ

l(l + 1)

uauA

ut
X∗lmA (θp, ϕp)δ(r − rp(τ)),

P = 16πµ
(l − 2)!

(l + 2)!
r2u

AuB

ut
W ∗lm
AB (θp, ϕp)δ(r − rp(τ)), (4.17)

in which the subscript p refers to the position of the test mass µ in the Schwarzschild
spacetime, and the superscript ∗ denotes the complex conjugate.
In the present case, all motion was taken to be geodesic and hence takes place in a plane,
which was chosen to be θp = π/2 in chapter 2. As a result of this, the spherical harmonics
Y lm, Z lm

A , U lm
AB and V lm

AB vanish when l+m is odd, whereas X lm
A and W lm

AB vanish when l+m
is even. This means that for l + m even or, respectively odd, the only wave function that
need to be calculated is the Zerilli-Moncrief or, respectively, Regge-Wheeler function1.
Furthermore, the functions rp(τ), ϕ(τ) are given analytically, as the geodesic deviation
method of chapter 2 has provided accurate orbital functions in the time domain. As such,
the sources for the Zerilli-Moncrief and Regge-Wheeler equations of motion can be written
down as fully analytical functions of time. The expressions are tedious in their resulting
form. However, in section 4.4 they will be greatly simplified by making use of the fact that
the Zerilli-Moncrief and Regge-Wheeler differential equations will be solved by splitting up
spacetime in a grid of cells of finite size.

4.2.3 The energy and angular momentum of the gravitational
waves

Once the Zerilli-Moncrief and Regge-Wheeler functions have been found, Eq. (4.15) can
be used to produce the two polarisations of the gravitational wave hµν . Additionally, the

1It is for this reason that, in the literature, the Zerilli-Moncrief functions is sometimes called the even
function, whereas the Regge-Wheeler function is sometimes called the odd function. Some caution is called
for, however, as the odd function and Regge-Wheeler function are sometimes related to each other by an
integral.
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power emitted in the form of gravitational waves follows from the Zerilli-Moncrief and
Regge-Wheeler functions as well. In brief, an expression for the energy momentum carried
by gravitational waves is found by taking the expansion Eq. (4.3) to second order in hµν and
interpreting all second-order terms as part of a (pseudo-) tensor, that, following arguments
in section 1.6, can be interpreted as the energy-momentum tensor TGWµν belonging to the
gravitational wave hµν . Thus, Eq. (1.44) applies, and the energy momentum tensor of the
gravitational wave is given by

TGWµν =
1

32π
< Dµh

αβDνhαβ >, (4.18)

in which the brackets denote an average over a region of spacetime large compared to the
wavelength of the gravitational radiation. This expression allows for the calculation of
the change dE/dt ≡ P in energy as well as the change dL/dt ≡ L̇ in angular momentum
of a gravitational wave. Expressed in terms of the Zerilli-Moncrief and Regge-Wheeler
functions, the power at spatial infinity is given by [32]:

P =
1

64π

∑
lm

(l + 2)!

(l − 2)!

(
|Ψ̇lm

ZM |2 + 4|Ψlm
RW |2

)
, (4.19)

in which the overdot denotes a derivative with respect to Schwarzschild time, i.e. the time
as measured by a stationary observer at spatial infinity. The change in angular momentum
is found to be:

dL

dt
=

i

128π

∑
lm

m
(l + 2)!

(l − 2)!

(
Ψ̇lm
ZMΨ∗lmZM + 4Ψ∗lmRW

∫ t

−∞
Ψ∗RW (t′)dt′

)
+ c.c, (4.20)

in which c.c. denotes the complex conjugate.

4.3 The Lousto-Price algorithm

4.3.1 Outline of the algorithm

The equations of motion Eqs. (4.9) and (4.10) for Ψlm
ZM and Ψlm

RW are notoriously difficult
to solve analytically for general orbits. Although strides have been made [38] to do so and
the current context only demands a solution for the case of a circular orbit plus geodesic
deviations, at the present time they will be solved numerically. This is done by following
the Lousto-Price algorithm presented in [39] and which was also used in [32], [33] (though
other numerical methods are equally effective [40], [41] ).
In brief, the Lousto-Price algorithm divides up a two-dimensional spacetime in cells of some
user-defined size ∆ (the exact definition of which will be stated momentarily). Each cell
typically has a number of corners that correspond to spacetime pairs (t, r), at which the
function Ψlm

ZM,RW takes on particular values. These values are calculated by a discretized
version of the wave equations, Eqs. (4.14), which connects the value of the wave Ψlm

ZM,RW at
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Figure 4.1: Left: The grid defined by lines of dτ = 0 in a Minkowski spacetime, in some arbitrary units
of t and r. Right: The grid defined by curves of dτ = 0 in a Schwarzschild spacetime, in some arbitrary
units of t and r and in which the mass of the black hole is taken to be M = 10 in the same units. In both
grids, the vertical axis is the time direction, whereas the horizontal axis is the radial direction. The grid in
Schwarzschild spacetime is characterized by cells of uneven size, and the presence of a vertical asymptote
at the radial position of the horizon at r = 2M . By using the tortoise coordinate r∗ rather than the Droste
coordinate r, the Schwarzschild grid (right) can be made to look like the Minkowski grid (left).

one corner to those at the other corners. Thus, by supplying the values of Ψlm
ZM,RW for some

initial set of grid points (physically, this denotes supplying some initial gravitational wave
at, e.g. t = 0 ), the Lousto-Price algorithm allows the iterative calculation of the values of
Ψlm
ZM,RW at other grid points of interest. Listing all values at some fixed spatial position

robs for a sequence of subsequent times, constitutes the time evolution of the gravitational
wave at that fixed spatial position robs.
In what follows, the algorithm will be presented in detail. Firstly, an appropriate way of
splitting up the spacetime in grid cells will be discussed. After that, a way to discretize
the wave equation will be presented, so as to express the value of Ψlm

ZM,RW at the corners
of a single cell in terms of each other.

4.3.2 Tortoise coordinates

There are, of course, in principle many ways to divide up a spacetime in a grid of cells. For
example, for a Minkowski curvature, a natural choice is to split up spacetime in symmetric
diamond shaped cells in the manner shown in the left panel of Figure 4.1. In that figure,
the grid lines are defined by lines of the form

t∓ r = t0 (4.21)

in which the t0 are arbitrary constants, the values of which are related to the size ∆ of
the individual cells. As such an equation is obtained from the Minkowski line element
by setting dτ 2 = 0, these lines are exactly the world lines followed by light (or any other
influence that travels with the speed of light, such as, for example, gravitational waves).
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In particular this means that an observer’s causality triangle is trivially identified, and the
discretization of the wave equation needs only consider equally spaced timesteps as all cells
are equally spaced.
In a curved spacetime, splitting up the spacetime by using lines of constant t ∓ r will
yield cells that, generally, have variable sizes depending on the position of the cells in the
spacetime. For example, in the current case of the Schwarzschild spacetime, using such a
choice of grid lines produces a grid as shown in the right panel of Figure 4.1. As can be
seen, the cells are not equally shaped nor are the grid points at fixed distance from each
other. What’s more, the coordinate singularity at r = 2M represents itself as an impracti-
cal vertical asymptote. Discretizing a Schwarzschild spacetime in such a way would prove
cumbersome when implementing the algorithm as a numerical code.
It is therefore desirable to use General Relativity’s inherent freedom to choose a coordinate
system to transform to a system of coordinates in which the cells are equally sized through-
out spacetime. From the Schwarzschild line element of Eq. (2.2) this can be achieved by
setting dτ 2 = 0 and integrating the result to yield an expression for t in terms of r:

dτ 2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 = 0,

⇒ dt = ±
∫ (

1− 2M

r

)−1

dr,

⇒ t = ±
(
r + 2M ln

( r

2M
− 1
))

+ t0, (4.22)

in which t0 is an arbitrary constant. By defining the tortoise coordinate r∗ as follows

r∗ ≡ r + 2M ln
( r

2M
− 1
)
, (4.23)

this relation between the spatial coordinate and time coordinate can be written in the
form of Eq. (4.21), and thus suggests a natural way to divide the spacetime up in a grid
of equally sized cells in the manner of the left panel of Figure 4.1.
This has several advantages: as setting dτ 2 = 0 amounts to describing motion with the
speed of light, the grid lines of constant t∓r∗ correspond to the world lines followed by light,
gravitational waves (or any other influence that travels with the speed of light). As such, in
the tortoise coordinates (t, r∗) it is trivial to identify the triangle of causality for an observer
at a fixed position r∗obs. Furthermore, the coordinate singularity at r = 2M that appeared
in the Droste coordinates of Eq. (2.2) has now been placed at minus infinity, effectively
removing it from the system for all practical matters2. Finally, in tortoise coordinates the
line element of the Schwarzschild spacetime takes a form that is symmetric in its radial
and temporal coordinates, as

dτ 2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)
dr2
∗ − r2ΩABdx

AdxB. (4.24)

2This echoes the comment made in section 2.2.1: the singularity at r = 2M is merely a result of the
coordinates chosen, so it does not represent any actual physics.
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As a result of this symmetric appearance, the wave equation becomes of the form of a
Klein-Gordon equation,(

−∂2
t + ∂2

r∗ − V̄
l
ZM,RW (r)

)
Ψlm
ZM,RW = S̄lmZM,RW , (4.25)

in which for notational convenience the subscript (ZM,RW ) will be dropped for the time
being, and

V̄ l(r) ≡
(

1− 2M

r

)
V l(r), S̄lm(t, r) ≡

(
1− 2M

r

)
Slm(t, r). (4.26)

Finally, the source function S̄lm will be assumed to be of the general form

S̄lm = Glm(r)δ(r − rp(t)) + F lm(r)∂rδ(r − rp(t)). (4.27)

This is motivated by Eqs. (4.14), which state that the source function is a sum of the
energy coefficients of Eq. (4.17) and their derivatives with respect to the radial coordinate
r. In section 4.4, this assumption will be justified and the epicycle expansion will be used
to find explicit and analytical expressions for F lm(r) and Glm(r).
It will be in the form Eq. (4.25) that the wave equation will be discretized to allow an
iterative integration. This will be done next.

4.3.3 Integration over a single grid cell

Having divided up the Schwarzschild spacetime in equal sized grid cells by transforming to
tortoise coordinates (t, r∗), the next step in the Lousto-Price algorithm is to discretize the
wave equation Eq. (4.25) so that it enables the calculation of the value of Ψlm at the top
corner of a single cell when the values at the three other corners are known. This will be
done by integrating the wave equation over a single grid cell by evaluating the following
three expressions,∫

cell

(
−∂2

t + ∂2
r∗

)
Ψlm dtdr∗ ,

∫
cell

V̄ l(r)Ψlm dtdr∗ ,

∫
cell

S̄lm dtdr∗ . (4.28)

A picture of a single cell is shown in Figure 4.2, which serves to introduce the definition of
the cell size parameter ∆ and the various observables used in the presentation that follows.
The first expression in Eq. (4.28) can be evaluated straightforwardly to yield∫

cell

(
−∂2

t + ∂2
r∗

)
Ψlm dtdr∗ = − 2Ψlm(t, r∗) + 2Ψlm(t+ ∆, r∗ −∆)

+ 2Ψlm(t+ ∆, r∗ + ∆)− 2Ψlm(t+ 2∆, r∗). (4.29)

This expression is an identity, as the derivatives and the integrations canceled each other
by the basic rules of calculus.
In contrast, the second expression in Eq. (4.28) can not be evaluated exactly because it
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Figure 4.2: A single grid cell, traversed by the worldline of the test mass. The worldline splits up the cell
in four areas, denoted A1, A2, A3, A4 in the manner shown. The total area of the cell is 2∆2 in tortoise
coordinates.

requires the wave function to be known explicitly. This can be remedied by choosing the
cell small enough so as to allow the assumption that the integrand changes very little
throughout the cell, and hence the outcome of the integration is approximately equal to
the average of the values at the four corners:∫

cell

V̄ l(r)Ψlm dtdr∗ ≈
(

+ V̄ l(r∗)Ψ
lm(t, r∗) + V̄ l(r∗)Ψ

lm(t+ 2∆, r∗)

+ V̄ l(r∗ −∆)Ψlm(t+ ∆, r∗ −∆)

+ V̄ l(r∗ + ∆)Ψlm(t+ ∆, r∗ + ∆)
)1

2
∆2, (4.30)

where it has been used that the area of the cell is 2∆2, as can be seen in Figure 4.2.
In case the cell is traversed by the world line, the averaging procedure needs to be modified
because the wave function Ψlm is not continuous over the area of the cell. This is because
the world line itself is a discontinuity, and hence the wave function Ψlm takes on different
values at either side of the line. In the Lousto-Price algorithm, this is remedied by applying
a weighing procedure to the averaging: the world line is in each cel approximated by a
straight line such that it splits up the cell in four pieces, as depicted in Figure 4.2. On
each piece the wave function is continuous and the value of the integral can be calculated
approximately. The latter is done by assuming that the function integrand is approximately
constant on the piece so that it can be taken outside the integral. The outcome thus equals
the area of the piece multiplied by the value of the function at the closest grid point. The
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total average is then constructed as the sum of the four separate contributions, and the
resulting expression is∫

cell

V̄ lΨlm dtdr∗ ≈ V̄ l(r∗)Ψ
lm(t, r∗)A2

+ V̄ l(r∗)Ψ
lm(t+ 2∆, r∗)A4

+ V̄ l(r∗ −∆)Ψlm(t+ ∆, r∗ −∆)A1

+ V̄ l(r∗ + ∆)Ψlm(t+ ∆, r∗ + ∆)A3. (4.31)

The final expression in Eq. (4.28) needs only to be evaluated for the cells that are traversed
by the world line of the test mass, as the delta function and its derivative trivially vanish
when the zero point (i.e. the position of the test mass) does not lie inside the range of the
integration. The evaluation of the integral for cells that are traversed is straightforward,
albeit tedious, and is presented in appendix D. The result of the evaluation is an identity
and is given by ∫

cell

S̄lm dr∗dt =

∫ tt

tb

dt

(
Glm(r)

f(r)
− ∂r

(F lm(r)

f(r)

)) ∣∣∣∣∣
r=rp(t)

± F
lm(rp(tb))

f 2(rp(tb))

1

1∓ ṙ∗p(t)

∣∣∣∣∣
t=tb

± F
lm(rp(tt))

f 2(rp(tt))

1

1± ṙ∗p(t)

∣∣∣∣∣
t=tt

, (4.32)

in which an overdot denotes a derivative with respect to Schwarzschild time t, and in which
tb respectively tt denote the Schwarzschild times at which the world line of the test mass
enters the cell, respectively leaves the cell. The ambiguity in the signs of the boundary
terms is resolved as follows: in the first boundary term, the upper sign must be chosen
when the world line enters the cell from the right whereas the lower sign must be chosen
when the world line enters the cell at the left. In the same way, in the second boundary
term the upper sign must be chosen when the world line leaves the cell at the right, whereas
the lower sign must be chosen when the world line leaves the cell at the left.
Combining the outcomes Eqs. (4.29), (4.30), (4.31), and (4.32) of the integrations of the
different terms in the wave equation over an individual cell, yields an expression that relates
the values of Ψlm at the four corners of the cell to each other. It is now possible to express
the value Ψlm(t + 2∆, r∗) at the upper corner of a cell to the values Ψlm(t + ∆, r∗ ± ∆),
Ψlm(t, r∗) at the three other corners of the cell. The result for cells that are not traversed
by the world line of the test mass, is

Ψlm(t+ 2∆, r∗) = −Ψlm(t, r∗) +
1− ∆2

4
V̄ l(r∗ −∆)

1 + ∆2

4
V̄ l(r∗)

Ψlm(t+ ∆, r∗ −∆)

+
1− ∆2

4
V̄ l(r∗ + ∆)

1 + ∆2

4
V̄ l(r∗)

Ψlm(t+ ∆, r∗ + ∆), (4.33)
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and for cells that are traversed by the world line, the result is

Ψlm(t+ 2∆, r∗) = − Ψlm(t, r∗)
1 + A2

4
V̄ l(r∗)

1 + A4

4
V̄ l(r∗)

−
∫
cell

S̄lm(t, r) dtdr∗

4 + V̄ l(r∗)A4

+
1− A1

4
V̄ l(r∗ −∆)

1 + A4

4
V̄ l(r∗)

Ψlm(t+ ∆, r∗ −∆)

+
1− A3

4
V̄ l(r∗ + ∆)

1 + A4

4
V̄ l(r∗)

Ψlm(t+ ∆, r∗ + ∆). (4.34)

By using Eqs. (4.33), (4.34) it is possible to iteratively calculate the value of Ψlm at every
grid point in the spacetime, starting from a given set of values at some initial set of grid
points. Of course, the only grid points at which the value need to be calculated are the
ones that lie within the causality triangle of the observer at r∗obs.
This concludes the review of the Lousto-Price algorithm for the numerical integration of the
Zerilli-Moncrief and Regge-Wheeler differential equations. In the usual presentation, the
only assumption made on the form of the sources of the differential equations is that they
are of the form of Eq. (4.27). In the literature, the functionsGlm and F lm therein themselves
are calculated numerically, as they require the coordinates of the test mass’ world line be
known as a function of time. In the present case, however, no need for such numerical
calculation of the sources is necessary, as the geodesic deviation method has provided the
world line as an analytical function of time in the form of the epicycle expansion of chapter
2. It is therefore possible to calculate the sources explicitly as analytical functions of time.
This will be done next.

4.4 The source functions and geodesic deviations

The geodesic deviation method allows the calculation of the source functions S̄lmZM,RW of
the Zerilli-Moncrief and Regge-Wheeler functions. To do so, the energy coefficients of Eq.
(4.17) need to be substituted in the general expressions for S̄lmZM,RW , Eq. (4.27), carefully
separating all terms that contain the delta function from those that contain its derivative
with respect to the radial coordinate r; the former terms will make up the function Glm

ZM,RW ,
the latter terms the function F lm

ZM,RW .
Naively (and correctly), this can be done by a straightforward substitution and working out
the results, but this exercise is rather cumbersome due to the many derivatives. However,
the work can be greatly simplified by making use of the fact that the source functions S̄lm

will, in the Lousto-Price algorithm, always be integrated over a cell. For such integrations
the following rules hold:∫

cell

(
a(r)δ(r − rp(t))

)
dtdr∗ =

∫
cell

a(rp(t)) δ(r − rp(t)) dtdr∗ ,∫
cell

b(r)∂r

(
a(r)δ(r − rp(t))

)
dtdr∗ =

∫
cell

b(r)a(rp(t)) ∂rδ(r − rp(t)) dtdr∗ ,

(4.35)
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for any well-behaved functions a(r), b(r); this is discussed in more detail in Appendix D.
The first of these rules is just the defining property of the delta function applied on a finite
region of integration; the second rule states, simply put, that when a derivative is taken
of some function a(r)δ(r− rp(t), the integration over a cell allows the radial coordinate in
the function a(r) to be replaced by the zero point rp(t) of the delta function, whereas this
does not happen for the radial coordinate in the function b(r). This greatly simplifies the
calculation of the functions F (r) and G(r) as now many of the derivatives need not to be
taken.
There is, however, an even more stringent reason to use Eq. (4.35): it allows all the four-
velocities in the energy coefficients to be replaced by the ones describing the geodesic
motion. Before, in the general expression for S̄lm, the four-velocities were supposed to be
the most general uµ describing bound geodesic motion, and only after derivatives have been
taken to obtain F lm and Glm, were they to be replaced by the ones describing the particular
geodesic motion of interest. It is for this reason that, in the literature [45], [32], some time
is spent to obtain general expressions for the four-velocities before evaluating the functions
F lm and Glm. The use of the rule Eq. (4.35) circumvents this, as the direct replacement
of many of the r by rp(t) replaces the general uµ by those given by the epicycle expansion.
The latter statement is true for geodesic motion, because the Killing constants of Eq. (2.3)
state that the four-velocities ut and uϕ are a function of solely the radial position rp(t);
then also, by the normalization of four-velocity Eq. (1.16), ur is a function of the radial
position only. Thus, replacing the radial coordinate by rp(t) is equivalent to replacing all
general four-velocities by the ones calculated to describe some specific geodesic motion.
For the Zerilli-Moncrief source, the functions F lm

ZM and Glm
ZM are then straightforwardly

found to be given by the expressions

F lm
ZM(r, rp(t)) =

r2

(λ+ 1)Λ(r)

8πµ

r2
p(t)
·

((
1− 2M

r

)3

utp −
(

1− 2M

r

)
(urp)

2

utp

)
· Y ∗lm(θp, ϕp),

Glm
ZM(rp(t)) =

8πµ

(λ+ 1)Λ(rp(t))
·

(
rp(t)

(
Λ(rp(t))− f(rp(t))

)
1

r2
p(t)

(urp)
2

utp
· Y ∗lm(θp, ϕp)

+rp(t)f
2(rp(t))

(uϕp )2

utp
· U∗lmϕϕ (θp, ϕp)−

f 2(rp(t))u
t
p

rp(t)Λ(rp(t))

·
(
λ(λ− 1)r2

p(t) + (4λ− 9)Mrp(t) + 15M2

)
· Y ∗lm(θp, ϕp)

)

+ 32πµ · f(rp(t))

Λ(rp(t))

1

l(l + 1)

urpu
ϕ
p

utp
· Z∗lmϕ (θp, ϕp)

− 32πµ · f(rp(t))
(l − 2)!

(l + 2)!
rp(t)

(uϕp )2

utp
· V ∗lmϕϕ (θp, ϕp). (4.36)
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For the Regge-Wheeler source, a similar calculation yields the functions F lm
RW and Glm

RW :

F lm
RW (r, rp(t)) = −16πµ · f

2(r)

r
r2
p(t)

(l − 2)!

(l + 2)!

(uϕp )2

utp
·W ∗lm

ϕϕ (θp, ϕp),

Glm
RW (rp(t)) = 32πµ · f(rp(t))

(
1− 3M

rp(t)

)
(l − 2)!

(l + 2)!

(uϕp )2

utp
·W ∗lm

ϕϕ (θp, ϕp)

+ 16πµ · f(rp(t))

l(l + 1) · rp(t)
urpu

ϕ
p

utp
·X∗lmϕ (θp, ϕp). (4.37)

A number of observations can be made. Firstly, in the context of the Zerilli-Moncrief
and Regge-Wheeler formalism, no further approximations have been made so that the
expressions are all exact in terms of rp(t). Furthermore, they are completely known as
analytical functions of time and the radial position. Finally, the expressions are very
general: the only assumptions that have been made is that the motion takes place in a
plane (so as to ignore all terms containing uθp), that the motion is geodesic (so as to be able
to conclude that the components of the four-velocity are fully fixed when the radial position
is known), and that the geodesic motion is known as a function of time. Using the geodesic
deviation method of the previous chapter, these assumptions are all automatically fulfilled
and hence the source functions Eqs. (4.36), (4.37) are fully compatible with any expansion
the geodesic deviation method produces, for example (but not limited to) the epicycle
expansion. In the next chapter, this will be illustrated by using the source functions to
calculate the gravitational waves emitted by an EMRI system.

4.5 Summary

This chapter described methods to calculate the production and propagation of gravi-
tational waves in a Schwarzschild spacetime, taking into account the full Schwarzschild
geometry. A formalism to do so is known in the literature and was briefly reviewed. It
expands the energy momentum tensor of the physical source of the waves in spherical har-
monics, and does so too for the gravitational waves. The coefficients in both expansions are
then related to each other by an explicit substitution of the two expansions in the Einstein
field equations, resulting in, ultimately, two uncoupled scalar differential equations that
yield the two physical degrees of freedom of the gravitational wave as their solution: the
Zerilli-Moncrief and Regge-Wheeler functions.
Solving these differential equations has to be done numerically, and the formalism to do so
was reviewed as well. This algorithm first splits up the Schwarzschild spacetime in finitely
sized cells, and then supplies a discretized version of the Zerilli-Moncrief and Regge-Wheeler
differential equations that can be used to calculate the value of the solution at one corner
of a cell if the values at the other corners are known. This allows an iterative calculation of
the Zerilli-Moncrief and Regge-Wheeler function by means of a computer program, which
was implemented in C++.
This algorithm was then combined with the analytical orbital functions provided by the
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geodesic deviation method of chapter 2, producing expressions for the source functions
of the Zerilli-Moncrief and Regge-Wheeler differential equations. The source functions so
obtained are, in contrast with methods presented in the literature, completely analytically
known as functions of time, and they are also very general: the only assumption made
was that the described motion is geodesic and known as a function of time. As such, the
source functions obtained can be used for any orbital expansion provided by the geodesic
deviation method. The results of this chapter will next be applied to the EMRI system.
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Chapter 5

Results: gravitational waves

5.1 Introduction

The previous chapters have dealt with methods to calculate the orbits in an extreme
mass-ratio inspiral system and the resulting gravitational waves. Chapter 2 presented the
formalism to accurately calculate geodesic orbits as a function of time, which were subse-
quently used in chapter 4 to find analytic expressions for the sources of the Zerilli-Moncrief
and Regge-Wheeler equations. In the current chapter, these results will be collected and
used to calculate gravitational waves emitted by the EMRI system, allowing a comparison
of the methods of this thesis with the purely numerical ones presented in the literature.
There are two sources of inaccuracy in this method, coming from the facts that the epicycle
expansion is itself an approximation and that the numerical code relies on a finite cell-size.
The distinction between the two sources of inaccuracy will be investigated and quantified
in this chapter as well. Finally, this chapter will investigate how the geodesic orbits evolve
under influence of the emission of gravitational radiation, so as to confirm the claim that
the orbits become increasingly circular and thus that the Epicycle Expansion is increas-
ingly justified.
This chapter is organized as follows. In section 5.2 the code will be tested for a number
of orbits that are simple enough not to require the epicycle approximation, so as to make
quantitive the intrinsic error that is a result of the numerical algorithm of the code. It will
also be discussed how an estimate can be made of the inaccuracy in the gravitational waves
due to the fact that the orbits supplied to the code come from the epicycle expansion. In
section 5.3, the gravitational waves of a series of bound eccentric orbits modeled by the
epicycle expansion will be calculated, resulting in values for the average power and angular
momentum emitted by gravitational waves. Also, the values for the powers are compared
to the values as predicted by the Peters-Mathews equation, showing where the latter gives
a reasonable approximation. Section 5.4 investigates the influence of the emission of energy
and angular momentum on the shape of the bound orbits. Finally, section 5.5 lists the
results of this chapter as a summary.
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5.2 The accuracy of the method

5.2.1 The intrinsic error of the code

It was discussed in chapter 4 that the Zerilli-Moncrief and Regge-Wheeler equations of
motion can be solved by an iterative method provided by the Lousto-Price algorithm, which
can be implemented as a computer code. A preliminary version of such a code written in
the language C++ was presented in Ref. [42], where it was shown to accurately calculate
the gravitational waves emitted when a test mass falls radially into a Schwarzschild black
hole. Since then, the code has been generalized to allow the calculation of gravitational
waves due to any motion of a test mass in the vicinity of a Schwarzschild black hole, and
it is this version of the code that has produced all Zerilli-Moncrief and Regge-Wheeler
functions to be presented in this chapter, along with the energy and angular momentum
the resulting gravitational waves carry away from the EMRI system.
Before presenting these results, the intrinsic error of the code will be quantified. This will
be done by investigating the class of circular orbits of various radii. This is a case well-
studied in the literature by purely numerical approaches, as the circular orbit is known
analytically as a function of time and thus allows for an exact calculation of the sources
S̄lmZM,RW of the Zerilli-Moncrief and Regge-Wheeler differential equations. Therefore, the
resulting gravitational waves and the energy and angular momentum that they carry are
not plagued by the question how accurate the sources are known; instead, the results form
a direct measure of the accuracy of the numerical algorithm.
The literature presents at least two different ways to calculate the energy and angular
momentum carried by gravitational waves emitted by a circular orbit. One is done in
the frequency domain [43], [44], i.e. the calculation is done in Fourier space first and the
outcomes are subsequently transformed back to the time domain. The second approach
is in the time domain from the outset [32], [33] and follows the Lousto-Price algorithm
presented in Chapter 4. The two approaches yield outcomes for the energy and angular
momentum that have a relative difference typically less than a percent and usually much
less still. These outcomes will be used for comparison with the results obtained by the
methods described in this thesis.
Circular orbits of the following two radii will be used: a = 7.9456M and a = 46.062M , and
the energy per unit mass and angular momentum per unit mass carried by the gravitational
waves will be calculated for a number of modes (l,m). The ratio between the companion
star’s mass µ and the black hole mass M will be set to µ/M = 10−5. The results are
presented in table 5.1; it lists the power and change in angular momentum per unit mass
for a number of modes for the cases a = 7.9456M and a = 46.062M , and compares these
to the values obtained in the literature. In obtaining these average values (and all other
averages presented later in this chapter), the following equations are used

< Ė >=
1

T

∫ t+T

t

Ė dt, < L̇ >=
1

T

∫ t+T

t

L̇ dt , (5.1)

82



in which T is the Schwarzschild time that elapses between one periastron and a next
periastron.
The results listed in the table show that the code works correctly and that it accurately
reproduces the energy and angular momentum sent out by the system: the total (i.e.
summed over all modes) relative difference with the high-precision values stated in the
literature is typically of the order of a few tenths of a percent. For the purposes of this
thesis this accuracy suffices, for reasons that will be explained momentarily.

a = 7.9456M Frequency domain Time domain This thesis

mode P L̇ P L̇ P L̇

l = 2, |m| = 2 1.706 · 10−4 3.822 · 10−3 1.705 · 10−4 3.816 · 10−3 1.707 · 10−4 3.803 · 10−3

l = 2, |m| = 1 8.163 · 10−7 1.828 · 10−5 8.162 · 10−7 1.827 · 10−5 8.208 · 10−7 1.819 · 10−5

l = 3, |m| = 3 2.547 · 10−5 5.705 · 10−4 2.543 · 10−5 5.688 · 10−4 2.550 · 10−5 5.640 · 10−4

l = 3, |m| = 2 2.520 · 10−7 5.644 · 10−6 2.516 · 10−7 5.626 · 10−6 2.524 · 10−7 5.612 · 10−6

l = 3, |m| = 1 2.173 · 10−9 4.867 · 10−8 2.174 · 10−9 4.868 · 10−8 2.197 · 10−9 4.877 · 10−8

l = 4, |m| = 4 4.726 · 10−6 1.058 · 10−4 4.708 · 10−6 1.052 · 10−4 4.729 · 10−6 1.052 · 10−4

l = 4, |m| = 3 5.775 · 10−8 1.293 · 10−6 5.746 · 10−8 1.293 · 10−6 5.767 · 10−8 1.292 · 10−6

l = 4, |m| = 2 2.509 · 10−9 5.620 · 10−8 2.499 · 10−9 5.593 · 10−8 2.516 · 10−9 5.567 · 10−8

total 2.019 · 10−4 4.524 · 10−3 2.018 · 10−4 4.515 · 10−3 2.021 · 10−4 4.497 · 10−3

a = 46.062M Frequency domain Time domain This thesis

mode P L̇ P L̇ P L̇

l = 2, |m| = 2 2.865 · 10−8 8.957 · 10−5 2.865 · 10−8 8.981 · 10−6 2.888 · 10−8 9.026 · 10−6

l = 2, |m| = 1 1.849 · 10−11 5.780 · 10−9 1.871 · 10−11 5.850 · 10−9 1.911 · 10−11 5.810 · 10−9

l = 3, |m| = 3 8.064 · 10−10 2.521 · 10−7 8.084 · 10−10 2.527 · 10−7 8.116 · 10−10 2.537 · 10−7

l = 3, |m| = 2 1.093 · 10−12 3.416 · 10−10 1.099 · 10−12 3.436 · 10−10 1.109 · 10−12 3.465 · 10−10

l = 3, |m| = 1 7.549 · 10−14 2.360 · 10−11 7.726 · 10−14 2.416 · 10−11 8.073 · 10−14 2.524 · 10−11

l = 4, |m| = 4 2.794 · 10−11 8.734 · 10−9 2.800 · 10−11 8.753 · 10−9 2.807 · 10−11 8.775 · 10−9

l = 4, |m| = 3 4.660 · 10−14 1.457 · 10−11 4.680 · 10−14 1.463 · 10−11 4.670 · 10−14 1.469 · 10−11

l = 4, |m| = 2 1.602 · 10−14 5.008 · 10−12 1.617 · 10−14 5.056 · 10−12 1.643 · 10−14 5.136 · 10−12

total 2.950 · 10−8 9.224 · 10−6 2.951 · 10−8 9.249 · 10−6 2.974 · 10−8 9.295 · 10−6

Table 5.1: The power P and time derivative L̇ of the angular momentum emitted by two systems of
a test mass orbiting a black hole at radii of a = 7.9456M and a = 46.062M , respectively, per mode as
listed in the first column of each table (where |m| denotes the sum of the two modes ±m). The power
and angular momentum as calculated in the literature in the frequency domain [43], [44] are given in the
second and third column, and these values as calculated in the literature in the time domain [32], [33] are
listed in the fourth and fifth column. The last two columns state the values as calculated by the methods
of this thesis. The power is stated in units (µ/M)

2
and the derivative of the angular momentum in units(

µ2/M
)
, and their ratio used in these tables is given by µ/M = 10−5. The relative differences between the

total (i.e. summed over all modes) outcomes of the three methods is of the order of a tenth of a percent.
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5.2.2 The inaccuracy due to the epicycle expansion

Now that the intrinsic inaccuracy has been found to be of the order of 0.1%, any remain-
ing inaccuracy in the gravitational wave is due to the fact that the orbital functions r(τ)
and ϕ(τ) supplied to the code themselves have an error, as they are given by the epicycle
expansion of chapter 2. Typically, when using expansion series, the accuracy of the series
is provided by the series itself as the relative size of two subsequent terms is a measure of
the convergence of the series. In the case of the epicycle expansion taken to second order,
such a measure can only be formulated for the first-order expansion, as a measure for the
accuracy to second-order requires a third-order to be calculated as well. However, the
accuracy of the second-order epicycle expansion can be compared to the orbital functions
as found by a purely numerical solution to the geodesic equations. Indeed, the accuracies
so obtained were already listed in tables 3.1, 3.2, 3.3, and 3.4 for a large number of bound
geodesic orbits.
Taking the accuracies of the orbital functions to be known, the subsequent question is
how these translate to inaccuracies in the Zerilli-Moncrief and Regge-Wheeler functions.
Of course, this can be answered again by extrinsic means, i.e. by comparing the result-
ing functions to the ones found when the Zerilli-Moncrief and Regge-Wheeler sources are
supplied purely numerically (as is done in the literature). However correct, this is not
necessary: the inaccuracy of the Zerilli-Moncrief and Regge-Wheeler functions is directly
and straightforwardly related to the inaccuracy of the orbital functions.
Physically, this is because in the derivation of the Zerilli-Moncrief and Regge-Wheeler
wave equations it was assumed that the gravitational waves hµν are small compared to the
curvatue of the Schwarzschild spacetime, so as to be able to linearize the Einstein field
equations. As a result, a deviation ∆Ψlm

ZM,RW of the wave function will propagate through
the spacetime decoupled from Ψlm

ZM,RW itself (i.e. there is no backreaction of the wave
function on itself), and, what is more, the dynamics of the deviation will be dictated by
exactly the same differential operator as the wave function itself. Putting this mathemati-
cally, an inaccuracy ∆xµ in the orbital functions will result in an inaccuracy ∆S̄lmZM,RW in
the source of the Zerilli-Moncrief and Regge-Wheeler equations,

xµ(τ)→ xµ(τ) + ∆xµ(τ) ⇒ S̄lm → S̄lm + ∆S̄lm, (5.2)

which in turn will lead to an inaccuracy ∆Ψlm
ZM,RW in the wave function which then, due

to the fact that the wave equation is linear, will solve a differential equation similar to the
Zerilli-Moncrief and Regge-Wheeler equations,(

−∂2
t + ∂2

r∗ − V̄
l(r)
)

∆Ψlm
ZM,RW = ∆S̄lm. (5.3)

This allows the inaccuracy ∆Ψlm
ZM,RW to be calculated in at least three ways.

One possibility is to use a similar numerical algorithm as was used to solve the Regge-
Wheeler and Zerilli-Moncrief wave equations, i.e. the Lousto-Price algorithm discussed
in Chapter 3. Some modifications to the algorithm need to be made, however, as the
inaccuracy ∆xµ will make the source ∆S̄ZM,RW be of a different form than in Eq. (4.32).
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Instead, it will be of the form

∆S̄lmZM,RW = Glm(r) δ(r − rp(t)) + F lm(r) ∂rδ(r − rp(t)) +H lm(r) ∂2
r δ(r − rp(t)) , (5.4)

due to the fact that a first-order Taylor expansion needs to be made around ∆xµ = 0. The
appearance of the new term ∝ ∂2

r δ(r− rp(t)) changes the outcome of the integration of the
source over a single grid cell. Indeed, following the methods of Appendix D, it is found
that the left hand side of Eq. (4.32) must be supplemented by

+

∫ tt

tb

dt ∂2
r

(
H lm(r)

f(r)

)∣∣∣∣∣
r=rp(t)

∓

(
1

f(r)
∂r

(
H lm(r)

f(r)

)
+ ∂r

(
H lm(r)

f 2(r)

))∣∣∣∣∣
r=rp(tb)

· 1

1∓ ṙ∗p(t)

∣∣∣∣∣
t=tb

∓

(
1

f(r)
∂r

(
H lm(r)

f(r)

)
+ ∂r

(
H lm(r)

f 2(r)

))∣∣∣∣∣
r=rp(tt)

· 1

1± ṙ∗p(t)

∣∣∣∣∣
t=tt

, (5.5)

in which, as in Section 4.3.3, tb denotes the time at which the worldline of the test mass
enters the cell, tt the time it leaves the cell; in the first boundary term, the upper/lower
sign must be chosen when the worldline enters the cell on the right/left and in the second
boundary term the upper/lower sign must be chosen when the worldline leaves the cell on
the right/left. With this modification, the Lousto-Price algorithm can be used to calculate
the propagation of the inaccuracy ∆Ψlm

ZM,RW .
A second method to solve Eq. (5.3) is by using some expansion series. For instance, using
the dimensionless ratio 2M/r as the expansion parameter, the wave equation simplifies to
lowest order to

−∂2
t ∆Ψlm

ZM,RW + ∂2
r∆Ψlm

ZM,RW −
2

r2
(λ+ 1)∆Ψlm

ZM,RW = ∆S̄lmZM,RW , (5.6)

which can be solved by Green’s function methods. It can be noted that this equation
applies equally to the original Zerilli-Moncrief and Regge-Wheeler equation and can even
serve as the starting point of a novel analytical solution method for the calculation of
gravitational waves in a Schwarzschild spacetime. Of course, an expansion in the param-
eter 2M/r is physically one in the curvature of the Schwarzschild spacetime, making this
method akin to the Post-Newtonian methods. This would be contrary to the premise of
the geodesic deviation method as the latter does not require spacetime to be approximately
uncurved; however, for the purposes of estimating the order of magnitude rather that the
full solution, this approach suffices1.

1Indeed, in Section 5.3.2 this will be seen explicitly, as there the energy per unit mass as calculated by
the Zerilli-Moncrief/Regge-Wheeler formalism will be compared to the outcome obtained by a calculation
in an uncurved spacetime (i.e. by using the Peters-Mathews equation). Typically, the outcomes agree up
to some ten percent, which is enough to make a good estimate of the order of magnitude of the solution.
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One last way to estimate the order of magnitude of the inaccuracy ∆Ψlm
ZM,RW is by making

use once more of the fact that the Zerilli-Moncrief/Regge-Wheeler differential equation is
linear. As a result of this property, any constant relative difference in the source S̄ZM,RW

will yield a constant relative difference in the solution Ψlm
ZM,RW of the exact same size.

Thus, once an estimate is made of the maximum error ∆S̄lmZM,RW due to the error of the
orbital functions, the maximum error in the wave functions follows immediately. It will be
this method that will be used to make an order of magnitude estimate of the accuracy of
the Zerilli-Moncrief and Regge-Wheeler functions.

In order to do so, the general expressions for the source S̄lmZM,RW can be used, Eqs. (4.36),
(4.37). From this expression it can be seen that the source depends on the radial position
rp(τ) of the test mass via the various (inverse) powers of rp and via the presence of the
four-velocities uµp . The latter holds true because, as was mentioned already in section 4.4,
for geodesic motion the four-velocities are all completely fixed via Eq. (2.9) once the radial
position is known. Furthermore, the source depends on the angular position ϕp via the
spherical harmonics.
The response of the four-velocities on a relative change of the radial position rp(t) is that
they change by a relative amount of the same order, and so it follows immediately that the
source functions S̄lmZM,RW experience a relative change of this order of magnitude as well.
As for the response of the source functions to the introduction of an inaccuracy ∆ϕ in the
angular orbital function ϕp, it needs only be realized that the angular coordinate solely
appears as an argument in the spherical harmonics, in which they simply are (complex)
exponents. Thus, when

ϕp → ϕp + ∆ϕp , (5.7)

it follows by a first-order Taylor expansion that

Y lm(θ, ϕp)→ Y lm(θ, ϕp) (1 + im∆ϕp) , (5.8)

(and likewise for the vectorial and tensorial spherical harmonics) which shows that adding
a small absolute difference ∆ϕp to the angular position will translate to a relative difference
in S̄lmZM,RW of the order of magnitude of m∆ϕp.
Combining results, it follows that an order of magnitude estimate for ∆S̄ZM,RW/S̄ZM,RW

is given as the sum of a few times the ratio (rp + ∆rp)/rp and m times ∆ϕp. It will be this
rule that will be used to estimate the accuracy of the Zerilli-Moncrief and Regge-Wheeler
functions in the examples that follow. As will be seen, for all cases for which the literature
provides a quantitative value for the average energy per unit mass and angular momentum
per unit mass sent out by these EMRI systems, the rules of estimate prove trustworthy.
Finally, as the second-order epicycle expansion was seen in chapter 2 to give radial orbital
functions that have an error of a few tenths of percents (at least for all cases considered),
the estimate rules predict that the gravitational waves will have an error of this order of
magnitude as well. It is for this reason that, as was remarked before, an intrinsic numerical
error of the code of the order of tenths of percents will suffice.
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5.3 Bound eccentric orbits

5.3.1 An explicit example: e = 0.1, a = 10M

In the previous section it was argued that the numerical inaccuracy can be made arbitrar-
ily small but that in practice a value of 0.1% will be allowed. The attention will now be
turned to bound eccentric orbits, which introduces a second source of inaccuracy which
is extrinsic to the code as it stems from the fact that the sources of the Zerilli-Moncrief
and Regge-Wheeler differential equations are now themselves an approximation. In this
section, this inaccuracy will be investigated.
In order to do so, an orbit will be considered that is well studied in the literature and so can
be used to compare the epicycle results to those of purely numerical calculations. This orbit
is uniquely specified by the following values of the parameters (e, a): e = 0.1, a = 10M .
The average power and angular momentum for this orbit are known in the literature to a
precision of about nine decimal places. It is therefore well suited to be used as a test of
the accuracy of the gravitational waves as based on the epicycle expansion of the orbital
functions.
The epicycle expansion of the orbit (e = 0.1, a = 10M) was presented to first and to
second order in detail in section 3.3.1, where it was found to be an excellent approximation
to the real orbit: to second order the relative difference between the radial coordinate r
and its numerical counterpart was seen to be 0.05% at most, and the absolute difference
between the angular coordinate ϕ and its numerical counterpart was found to be 0.004
radians at most. These accurate results for the orbital functions suggest that the grav-
itational waveforms and the resulting power and angular momentum per unit time sent
out by the system will be accurate as well. Indeed, the rules of error estimate of the last
section predict that the inaccuracy due to the second-order epicycle expansion is of the
order of a few tenths of a percent at most.
In order to test this, the Zerilli-Moncrief and Regge-Wheeler contributions are calculated
up to mode l = 4,m = ±3; contributions of higher multipoles only add to the total out-
comes (much) less than 0.1% and will therefore be ignored. In fact, the main contributions
come from the l = 2,m = ±2 modes, as is to be expected from the quadrupole nature of
free gravitational waves. The average power and angular momentum per unit time con-
tributed by each individual mode are listed in table 5.2. Plots of the Zerilli-Moncrief and
Regge-Wheeler functions of the most contributing modes are given in figures 5.1 and 5.2,
along with the plots of their resulting power and angular momentum.
In the plots, it can be seen that the power and the angular momentum follow a periodic
pattern that has twice the frequency as the bound orbit of the test mass. There is also some
distorted data points around t ≈ 510M , which is around the time the gravitational wave
(emitted at t = 0 and moving with the speed of light) arrives at the position of the observer
(who is located at r = 500M , which in tortoise coordinates is around r∗ = 511M). The
distorted data points are the result of the initial conditions taken for the Zerilli-Moncrief
and Regge-Wheeler functions at t = 0, or, physically, the amount of gravitational waves
already present in the system before the bound orbit of the test mass commences. In

87



Results: gravitational waves

making the plots above, both the Zerilli-Moncrief and Regge-Wheeler functions (as well
as their derivatives with respect to time) have been taken to be zero at t = 0. This is
unphysical, because the presence of the test mass indicates that it has either been brought
at its starting position from afar, or that it has been in this bound orbit indefinitely, either
possibility of which would have produced gravitational waves. Setting these zero implies
that the test mass spontaneously came into existence at its starting position, and it is this
assumption that produces the distorted data points.
Despite being unphysical, the initial conditions are of little consequence due to the com-
bination of the following two reasons: firstly, the fact that the Zerilli-Moncrief and Regge-
Wheeler differential equations are linear means that the initial gravitational wave will
propagate to spatial infinity without having an effect on the propagation of the gravita-
tional waves emitted by the EMRI system; secondly, the fact that the effect of the loss
of energy and angular momentum on the shape of the orbit is not yet taken into account
means that the test mass will move in its bound orbit indefinitely. Thus, the chosen initial

Figure 5.1: Upper: The real (left) and imaginary (right) parts of the l = 2,m = 2 mode of the Zerilli-
Moncrief function as a function of Schwarzschild time t for the case of an orbit (a, e) = (10M, 0.1). Lower:
The power (left) and time derivative of the angular momentum (right) emitted by this mode, as a function
of Schwarzschild time t. The observer is situated at r = 500M . In this plot, the mass of the black hole
was taken to be M = 10, and the mass ratio was taken to be (µ/M) = 10−5.
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Figure 5.2: Upper: The real (left) and imaginary (right) parts of the l = 2,m = 1 mode of the Regge-
Wheeler function as a function of Schwarzschild time t for the case of an orbit (a, e) = (10M, 0.1). Lower:
The power (left) and time derivative of the angular momentum (right) emitted by this mode, as a function
of Schwarzschild time t. The observer is situated at r = 500M . In this plot, the mass of the black hole
was taken to be M = 10, and the mass ratio was taken to be (µ/M) = 10−5.

condition for the Zerilli-Moncrief and Regge-Wheeler functions will have ample time to
propagate away from the system and hence remove themselves from the results. Indeed, in
the plots, the distorted data points have vanished around the time t ≈ 600M . In all other
examples of this chapter, the same assumption will be made.
Adding all contributions listed in table 5.2 gives the following values for the average power
and angular momentum emitted per unit time

< P > = 6.294 · 10−5
( µ
M

)2

, < L̇ > = 1.949 · 10−3

(
µ2

M

)
, (5.9)

which are in good agreement with the values obtained by the purely numerical calculations
of [40], [41]:

< P > = 6.318 · 10−5
( µ
M

)2

, < L̇ > = 1.953 · 10−3

(
µ2

M

)
, (5.10)
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mode 〈P 〉 〈L̇〉
l = 2, |m| = 2 5.492 · 10−5 1.703 · 10−3

l = 2, |m| = 1 2.045 · 10−7 6.262 · 10−6

l = 3, |m| = 3 6.730 · 10−6 2.067 · 10−4

l = 3, |m| = 2 5.216 · 10−8 1.583 · 10−6

l = 4, |m| = 4 1.033 · 10−7 3.134 · 10−5

l = 4, |m| = 3 9.915 · 10−9 2.982 · 10−7

total 6.294 · 10−5 1.949 · 10−3

Table 5.2: Average power and angular momentum emitted in gravitational waves by a system of a star
of mass µ in a bound orbit of eccentricity e = 0.1 and semi-major axis a = 10M around a black hole, per
mode (l,m) as listed in the first column (where |m| denotes the sum of the two modes ±m). The second
column presents the power in the second order epicycle approximation, whereas the third column presents
the average angular momentum. The powers are given in units (µ/M)2, the derivative of the angular
momenta in units (µ2/M). The ratio of these masses is taken to be (µ/M) = 10−5.

the relative differences being a mere 0.4% and 0.2%, respectively.
In making the plots and calculating the power and angular momentum, the cell size has
been chosen small enough for the power and angular momentum not to change anymore
when going to even smaller cell size. From this it can be concluded that the 0.4% and 0.2%
deviations found are solely due to the epicycle approximation. This is in good agreement
with the expectation.

5.3.2 Power emitted for e = 0.1, various a

Having investigated the accuracy of the method used, the average powers of a series of
examples can now be calculated. The examples considered in this section will be those
presented before in section 3.3, i.e. a series of bound geodesic orbits with a fixed eccen-
tricity e = 0.1 and decreasing value of the semi-major axis a, all the way to the orbit at
a = 66 that has its periastron grazing the ISCO. The accuracy of the epicycle expansions
was presented in table 3.1; additional details of the orbits can be found in Appendix C.
Table 5.3 presents in the second and third columns the average power < P >epicycles as
calculated by the epicycle expansion and numerical algorithm. Finally, for comparison, the
last column shows the average power < P >PM as calculated with the Peters-Mathews
equation. In all cases, the size ∆ of the cells of the spacetime was chosen such that setting
a smaller size still would have no effect on the power at the level expected by the error of
the epicycle expansion. In this way, the errors in the results for the power are purely due
to the error of the epicycle expansions. Using the error estimate rules, the inaccuracy of
the epicycle results is of the order of a percent or less.
As can be seen, both at large distances and close to the ISCO, the power computed by the
epicycle procedure exceeds that of the Newtonian approximation, while in intermediate
regions the power is lower. This can be understood by the opposite effect of two factors:
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on the one hand the precession of the periastron shows that the orbital velocity and ac-
celeration in the relativistic orbit is higher than that in the Newtonian orbit; on the other
hand, in the relativistic case the redshift of the gravitational waves lowers the power as
measured by a distant observer.

a/M 〈P 〉epicycle 〈P 〉PM rel. diff.

20.0 2.033 · 10−6 2.033 · 10−6 < 0.1 %
15.0 8.139 · 10−6 8.555 · 10−6 −5.1%
10.0 6.294 · 10−5 6.496 · 10−5 −3.2%
9.0 1.083 · 10−4 1.100 · 10−4 −1.6%
8.5 1.475 · 10−4 1.464 · 10−4 −0.5%
8.0 1.991 · 10−4 1.983 · 10−4 +0.4%
7.5 2.944 · 10−4 2.738 · 10−4 +7.6%
7.0 4.209 · 10−4 3.865 · 10−4 +8.9%
6.6 5.869 · 10−4 5.187 · 10−4 +13%

Table 5.3: Average power 〈P 〉 emitted in gravitational waves by a system of a star of mass µ in a bound
orbit of eccentricity e = 0.1 around a black hole of mass M for various values of a, as listed in the first
column. The second column presents the power in the second-order epicycle approximation, whereas the
third column presents the power as calculated by the Peters-Mathews equation. The third column presents
the relative difference in percents. All powers are computed to a numerical accuracy of the level of 0.1%
and are stated in units (µ/M)

2
. The ratio of the masses is taken to be (µ/M) = 10−5.

5.3.3 Higher eccentricities

As a next example, the energy per unit mass and angular momentum per unit mass will be
calculated for an EMRI system that has an eccentricity of the order of e = 0.2. For such
bound orbits, the second-order epicycle expansion was seen in chapter 2 to be an order
of magnitude less accurate than for the orbits with an eccentricity of e = 0.1. Indeed,
table 3.4 showed that the maximum relative difference in the radial coordinate was about
half of a percent, whereas the maximum absolute difference in the angular coordinate is
about 0.2 radians and usually much less. By the error estimate rules of section 5.2.2, it is
expected that the resulting gravitational waves (and the energy per unit mass and angular
momentum per unit mass they take away from the system) will be mostly off due to the
inaccuracy of the angular coordinate, and is expected to be of the order of percents to a
few tens of percents. This would make the second-order epicycle expansion considerably
less accurate to describe gravitational waves in EMRI systems of eccentricity 0.2 than of
eccentricity 0.1.
This will now be demonstrated explicitly by considering a bound orbit with semi-major
axis a = 7.50478M and eccentricity e = 0.188917, as this is one of the cases for which the
literature states the purely numerically calculated values for the energy per unit mass and
angular momentum per unit mass.
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By the methods of section 2.2, the physical characteristics (energy per unit mass ε, angular
momentum per unit mass `, the periastron rpa, the apastron raa, periastron shift δϕ and
proper time between two successive periastra ∆τ) are given by

ε = 0.9483, ` = 3.55M, rpa = 6.312M, raa = 9.253M, δϕ = 7.92, ∆τ = 232.3M ,

(5.11)

and by the methods of section 3.2, the epicycle parameters (R, σ,∆n,∆m) needed for the
most accurate second-order epicycle approximation are found to be

R = 7.9876M, σ = −0.31103M, ∆n = −2.8862, ∆m = −21.9232
1

M
, (5.12)

yielding the second-order epicycle expansions

t(τ) = 1.2843 τ + 2.2008M sin ((ω + σω1)τ) + 0.14769M sin (2(ω + σω1)τ) ,

r(τ) = 7.8249M − 1.47025M cos ((ω + σω1)τ)− 0.042359M cos (2(ω + σω1)τ) ,

ϕ(τ) = 0.0611436
τ

M
+ 0.572787 sin ((ω + σω1)τ) + 0.042723 sin (2(ω + σω1)τ) ,

(5.13)

in which the frequencies are given by

ω = 0.02796
1

M
, σω1 = −0.000916

1

M
, ω + σω1 = 0.02704

1

M
. (5.14)

The accuracy of this second-order epicycle expansion is of the same order of magnitude as
the orbits in table 3.4: the maximum relative difference of the radial function compared to
its numerical counterpart is 0.18%, and the maximum absolute difference of the angular
function with its numerical counterpart is 0.29 radians. Figure 5.3 presents the comparison
of the second-order epicycle approximations to the purely numerical orbital functions.

The error estimate rules then state that, indeed, there will be an error in the power and
angular momentum of the order of tens of percents, and that this will be most dominantly
due to the inaccuracy of the angular coordinate. This can be confirmed when the power and
angular momentum are calculated by the methods of chapter 4; this is done for all modes
up to (l,m) = (4,±3). The resulting power and angular momentum are stated per mode
in table 5.4; the Zerilli-Moncrief function and Regge-Wheeler function that contributes
most to the total outcomes are shown in figures 5.4, 5.5 along with the power and angular
momentum they carry as a function of time. Adding the contributions in the table gives
the total average energy per unit mass and angular momentum per unit mass sent out by
the system per unit time

< P > = 2.6534 · 10−4
( µ
M

)2

, < L̇ > = 5.4782 · 10−3

(
µ2

M

)
, (5.15)
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Figure 5.3: Left: The radial function r(τ) in epicycle approximation up to second order, divided by the
numerical one, as a function of proper time τ . Right: The angular function ϕ(τ) in radians as given by
the epicycle approximation up to second order, minus the numerical one, as a function of proper time τ .

mode 〈P 〉 〈L̇〉
l = 2, |m| = 2 2.2200 · 10−4 4.5827 · 10−3

l = 2, |m| = 1 1.1332 · 10−6 2.3560 · 10−5

l = 3, |m| = 3 3.4911 · 10−5 7.2113 · 10−4

l = 3, |m| = 2 3.6867 · 10−7 7.6500 · 10−6

l = 4, |m| = 4 6.8352 · 10−6 1.4124 · 10−4

l = 4, |m| = 3 8.9265 · 10−8 1.8502 · 10−6

total 2.6534 · 10−4 5.4782 · 10−3

Table 5.4: Average power and angular momentum emitted in gravitational waves by a system of a star
of mass µ in a bound orbit of eccentricity e = 0.188917 and semi-major axis a = 7.50478M around a black
hole, per mode (l,m) as listed in the first column (where |m| denotes the sum of the two modes ±m). The
second column presents the power in the second order epicycle approximation, whereas the third column
presents the average angular momentum. The powers are given in units (M/µ)2 and the angular momenta
in units (M/µ2). The mass ratio was taken to be (µ/M) = 10−5.

whereas the purely numerical results state

< P > = 3.1770 · 10−4
( µ
M

)2

, < L̇ > = 5.9329 · 10−3

(
µ2

M

)
. (5.16)

The relative differences are about 19% and 8%, respectively, which is of the expected order
of magnitude.
From this example, it can be concluded that the epicycle expansion taken to second order
does not suffice to accurately calculate the gravitational waves emitted by an EMRI system
when the eccentricity is of the order of 0.2: the inaccuracy of the angular orbital function
causes the source of the Zerilli-Moncrief and Regge-Wheeler functions to be off by a few
tens of percents, leading to inaccuracies in the emitted energy per unit mass and angular
momentum per unit mass that are of the same order of magnitude. As discussed at the
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Figure 5.4: Upper: The real (left) and imaginary (right) parts of the l = 2,m = 2 mode of
the Zerilli-Moncrief function as a function of Schwarzschild time t for the case of an orbit (a, e) =
(7.50478M, 0.188917). Lower: The power (left) and time derivative of the angular momentum (right)
emitted by this mode, as a function of Schwarzschild time t. The observer is situated at r = 500M .
In this plot, the mass of the black hole was taken to be M = 10, and the mass ratio was taken to be
(µ/M) = 10−5.

end of section 3.5, this can be remedied by sacrificing one boundary condition on the radial
coordinate in favor of one on the angular coordinate, but it is preferable to better constrain
both the radial coordinate and the angular coordinate by adding another (i.e. third or
higher) order to the epicycle expansion with the methods of chapter 2.

5.4 Gravitational waves from an EMRI system with

radiative self force

The examples of the last section showed that the combination of the second-order epicycle
expansion and the Regge-Wheeler/Zerilli-Moncrief formalism yields accurate results for the
gravitational waves and the energy per unit mass and angular momentum per unit mass
emitted by an EMRI system, as long as the eccentricity of the bound orbit is taken to be
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Figure 5.5: Upper: The real (left) and imaginary (right) parts of the l = 2,m = 1 mode of
the Regge-Wheeler function as a function of Schwarzschild time t for the case of an orbit (a, e) =
(7.50478M, 0.188917). Lower: The power (left) and time derivative of the angular momentum (right)
emitted by this mode, as a function of Schwarzschild time t. The observer is situated at r = 500M .In this
plot, the mass of the black hole was taken to be M = 10, and the mass ratio was taken to be (µ/M) = 10−5.

limited (i.e. of the order of 0.1). It also showed that higher eccentricities (i.e. of the order
of 0.2) still yield reasonably accurate results for the orbits, but not for the gravitational
waves and the emitted energy per unit mass and angular momentum per unit mass. It has
been argued several times throughout this thesis that this is not a drawback of the epicycle
expansion, as the condition of small eccentricity is naturally fulfilled in all but the most
extreme natural cases. This is due to circularisation: under the emission of gravitational
waves, eccentric geodesic orbits tend to become increasingly less eccentric. This is effec-
tively because gravitational waves do not only carry away energy from the binary system,
but also angular momentum.
Circularization has been studied generally in Ref. [46] and is found in Post-Newtonian
calculations as well as purely numerical calculations. It can also be demonstrated within
the fully relativistic context of the epicycle expansion scheme, and this is what will be
done next. It serves not only to demonstrate that bound geodesic orbits circularize under
emission of gravitational waves, but also as the major justification of the practical utility
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a/M e < P > < L̇ > ∆a/a ∆e/e ∆t/µ max.rel.diff. r max.abs.diff. ϕ

12.00 0.1500 2.536 · 10−5 0.996 ·10−3 n.a. n.a. n.a. 0.20% 0.0085
11.64 0.1447 2.951 · 10−5 1.125 ·10−3 3.1% 3.7% 4.021 ·1011 0.18% 0.0080
11.28 0.1410 3.451 · 10−5 1.258 ·10−3 3.2% 2.6% 3.526 ·1011 0.16% 0.0080
10.93 0.1378 4.051 · 10−5 1.410 ·10−3 3.2% 2.4% 3.121 ·1011 0.15% 0.0081
10.58 0.1349 4.785 · 10−5 1.589 ·10−3 3.3% 2.2% 2.756 ·1011 0.14% 0.0083
10.23 0.1322 5.683 · 10−5 1.794 ·10−3 3.4% 2.0% 2.423 ·1011 0.13% 0.0087
9.87 0.1300 6.774 · 10−5 2.039 ·10−3 3.6% 1.8% 2.123 ·1011 0.12% 0.0094
9.52 0.1287 8.193 · 10−5 2.326 ·10−3 3.7% 1.0% 1.850 ·1011 0.11% 0.011
9.16 0.1273 9.853 · 10−5 2.661 ·10−3 3.9% 1.1% 1.604 ·1011 0.11% 0.013

Table 5.5: A series of eccentric orbits parametrized by a and e, as listed in the first two columns. The
orbits are related by the emission of gravitational waves in an adiabatic way, as explained in the main
text. The average power emitted is given in the third column in units (µ/M)

2
, and the average angular

momentum emitted per unit time is given in the fourth column in units
(
µ2/M

)
. The fifth and sixth

columns list the percentual change in a and e compared to the next larger orbit, showing explicitly the
inspiral and circularization due to the emission of gravitational waves. The seventh column presents the
Schwarzschild time taken to make the discrete step from the previous orbit to the current. The eighth
column presents the maximum relative difference between the second-order epicycle radial orbital function
r(τ) and its numerical counterpart; the last column presents the maximum absolute difference between
the second-order epicycle angular orbital function ϕ(τ) and its numerical counterpart. The mass ratio was
taken to be (µ/M) = 10−5.

of the epicycle expansion.
The calculation of the emitted power and angular momentum per unit time for a series of
eccentric orbits that are adiabatically related to each other by the emission of gravitational
radiation proceeds as follows. The average emitted power and angular momentum for each
given eccentric orbit is calculated by the second-order epicycle expansion and numerical
code, and these values are subsequently used to update the values of ε and ` in a discrete
step; the newly found values for ε and ` then correspond to the next orbit in the series.
The discrete step is chosen as follows: the next orbit will always be chosen to be the one
that has a value ` that is 1% smaller than that of the current orbit. In this way, it is found
in practice that successive orbits have a percentual change in periastra of less than 4%,
which justifies the adiabatic approximation. The results are shown in table 5.5. As before,
the size of the grid was chosen such that the values for < P > and < L̇ > do not change
more than at the 0.1% level, and the estimate rules of section 5.2.2 state that the found
values are accurate to the order of a percent.
Although in this example the amount of successive orbits is limited and the results are
accurate to the order of a percent, this suffices to conclude that circularization takes place.
Indeed, figure 5.6 depicts the decrease of the eccentricity e as a function of time, and
shows that it does so nearly linearly, at least on the timescale considered. At the same
time, the right panel of the plot shows that also the semi-major axis a decreases and that
it does so exponentially. This indicates that, at least for the case considered, the test mass
quickly reaches the ISCO of the black hole and has, by comparison, little time to circu-
larize. However, as was shown explicitly in chapter 2, the accuracy of the second-order
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Figure 5.6: Left: the evolution of the eccentricity e of the adiabatically related bound orbits, as explained
in the main text, as a function of Schwarzschild time t/µ. The best linear fit of the data points is given by
0.14925−0.001054·t/µ. Right: the evolution of the semi-major axis a/M of the adiabatically related bound
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as explained in the main text, as a function of Schwarzschild time t. The best exponential fit of the data
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2
. Right: the

evolution of the average time derivative < dL/dt > of the adiabatically related bound orbits, as explained
in the main text, as a function of the Schwarzschild time t/µ. The best exponential fit of the data points
is given by 0.8726 + 0.1536 · exp(0.1139 t/µ), and < dL/dt > is given in units 10−3

(
µ2/M

)
. In both plots,

the time t/µ is measured in units 1011.

epicycle expansion suffers only little from a close proximity to the black hole, and hence
the fact that the decrease of the semi-major axis proceeds more rapidly than the process
of circularization is of little consequence on the accuracy of the expansion.
Rather, the epicycle expansion is expected to become increasingly accurate for successive
orbits, and indeed this is seen to be the case. To wit: the radial orbital function r becomes
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almost twice as accurate in the course of the orbits considered. In contrast, the angular
coordinate ϕ does not improve in accuracy, but instead remains mostly fixed. An increase
in angular accuracy was not to be expected. This is because the second-order epicycle
expansion allows for four boundary conditions to restrict the orbital functions, two of
which are needed to make sure successive periastra are reached in a given time interval
and with a given value for the periastron shift, leaving only two boundary conditions to
restrict the orbital functions r and ϕ. In the calculation presented, these remaining two
boundary conditions were used to fix the values of the radial positions of the periastron
and apastron, which in practice also makes the orbital function ϕ very accurate, but a
priori does not guarantee that this accuracy increases with decreasing eccentricity. Indeed,
the table shows that the absolute difference between the orbital function ϕ as calculated
by the second-order epicycle expansion and its purely numerically calculated counterpart,
is around the value of 0.008 radians. For almost all practical applications, this accuracy is
excellent.
Finally, the fact that the semi-major axis decreases under influence of the emission of gravi-
tational waves suggests (for example by assuming the Peters-Mathews equation, Eq. (1.46),
to give reasonably accurate results in the Schwarzschild spacetime, as was quantitatively
demonstrated in section 5.3.2) that the emission of energy will increase exponentially. This
is indeed the case, and likewise so for the angular momentum, as can be seen in figure 5.7.

5.5 Summary

In this chapter, the methods developed throughout this thesis have been used to calculate
gravitational waves for bound eccentric orbits in an EMRI system. A number of test cases
were investigated first: by calculating the average power and angular momentum emitted
by an EMRI with a perfectly circular orbit and comparing the outcomes to those stated in
the literature, the correct working of the code was confirmed. It was seen that the intrinsic
numerical error could effortlessly be made of the order of 0.1% and smaller still. Next, the
error due to the fact that the epicycle expansion is an approximation itself, was quantified.
This rule was tested by calculating the average power and angular momentum emitted by
an EMRI system for one specific well-known eccentric orbit. It was found that here too
the results agree well with those stated in the literature, with a relative difference of the
order of 0.1%; this was in agreement with the error estimate rule.
The methods were then used to straightforwardly calculate the gravitational waves for a
number of orbits of eccentricity 0.1% that were not known in the literature, all of which
have a total error (i.e intrinsic and extrinsic) of the order of 0.1% to a percent. The results
for the powers were compared to the ones obtained by using the Peters-Mathews equation,
showing, as expected, good agreement when the orbit has a semi-major axis much greater
than the typical size of the black hole. Closing in, however, the Peters-Mathews equation
becomes less accurate due to the interplay of two opposing relativistic effects: the true
orbit has a greater quadrupole moment due to the periastron shift than expected on the
basis of a Newtonian premise, whereas the curvature of spacetime gives the emitted grav-
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itational waves a gravitational redshift that decreases the energy as measured at infinity.
The former effect becomes dominant when in close proximity to the black hole, making
the Peters-Mathews equation underestimate the power in gravitational waves by about ten
percent in the case investigated.
The gravitational waves due to a bound orbit of eccentricity e = 0.1889 was investigated as
well, and it was found that the epicycle error in the angular coordinate makes the accuracy
of the emitted power and angular momentum significantly less than in the e ≈ 0.1 case.
This was seen to be due to the strong dependence of the spherical harmonics on the error
in the angular coordinate.
Finally, the effect of the emission of gravitational waves on the shape of the bound orbits
was investigated. It was found that, due to the loss of energy and angular momentum,
the orbits circularize, i.e. they become increasingly less eccentric. This not only justi-
fied the use of the epicycle expansion in the first place, but it was also explicitly shown
that the resulting orbits naturally become more and more accurate under the emission of
gravitational waves.
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Chapter 6

Conclusions & outlook

This thesis concerned the fully relativistic calculation of bound geodesic motion in EMRI
systems and the resulting gravitational waves, with the aid of the geodesic deviation
method. This last chapter summarizes the methods as explained in detail in the pre-
vious chapters, lists the conclusions of the thesis, and presents a number of directions of
possible future research.

The geodesic deviation method provides a way to calculate geodesics in an expansion
scheme that does not assume that gravity is weak. Rather, it takes all relativistic effects
into full account, so that the outcomes should be accurate regardless of high velocities or
strong gravitational fields. It assumes the initial geodesics to be simple (i.e meaning that
they can be written down in analytical form as a function of time) and complements this
with small deviations in order to find the more general geodesics as a function of time.
This method can be applied to many physical systems, by which is meant several back-
ground spacetimes and several simple geodesics as starting point of the expansion. In this
thesis, the emphasis has been on the physical system of an EMRI: a heavy non-spinning
central mass (called the black hole throughout this thesis) around which a smaller com-
panion star is in bound orbit. Because of the high mass-ratio of the black hole and the
companion star, the background spacetime can be taken to be Schwarzschild, and as start-
ing geodesic a circular orbit was taken because this is the simplest bound orbit that can
be written as an explicit function of time, and because all bound eccentric geodesic mo-
tion around a Schwarzschild black hole becomes increasingly circular due to the emission
of gravitational waves. The result gives rise to the epicycle expansion: bound geodesic
motion around a Schwarzschild black hole can be approximated by adding periodic and
secular contributions to a perfectly circular orbit, in which the eccentricity of the orbit is
related to the expansion parameter.
The periodic contributions were studied in the literature before, but the secular contri-
butions have always been omitted because they were not thought to have any physical
significance. In this thesis, however, it was shown that the secular contributions are needed
to make the approximation already accurate at first order. More specifically: it was shown
that the inclusion of secular contributions amounts to one extra constant of integration
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with every next order added to the expansion, allowing for one extra boundary condition
to constrain the resulting orbit. In the first-order expansion, this already gives enough
constants of integration to make sure the resulting bound orbit is properly synchronized
with the exact geodesic that is approximated; omission of the secular term always results
in a lag, and makes the description of bound geodesic orbits considerably less accurate.
Going to higher orders, the inclusion of secular contributions were seen to have the math-
ematical complication to lead to Poincaré resonances when solving the geodesic deviation
equations. These were removed by applying the Poincaré-Lindtsted method and the re-
sult was an expansion series for bound geodesics that, by construction, solves the geodesic
equations, the geodesic deviation equations, and has a four-velocity that is properly nor-
malized. The results given in previous literature are thus shown to be only a special and
limited case of the most general expressions presented here.
In this thesis, the epicycle expansion has been pursued to second order. In practice, this
allows for four boundary conditions to constrain the orbit, two of which are used to make
the resulting orbit be synchronized with the true geodesic, and two of which are used to fix
the radial distances of the periastron and apastron of the orbit. As such, the second order
epicycle expansion was seen to produce accurate approximations to the radial distance
between black hole and the companion star if the eccentricity of the orbit was small.
For example, if the eccentricity is around 0.1, the relative difference between epicycle
approximation and the numerically calculated radial coordinate is typically a tenth to a
hundredth of a percent. The angular coordinate was seen to be excellently approximated
as well, with the absolute difference between epicycle approximation and the numerically
calculated angular coordinate being typically of the order of a hundredth to a thousandth
of a radian. As expected, it was seen that the accuracy does not suffer from close prox-
imity to the black hole. Orbits of higher eccentricity are less well approximated by the
second-order epicycle expansion: increasing the eccentricity by a factor of two decreases
the accuracy of the second-order epicycle approximation by an order of magnitude.
The epicycle expansions were subsequently used to calculate the gravitational waves emit-
ted by the EMRI system. This was done by using the Zerilli-Moncrief/Regge-Wheeler
formalism to derive differential equations that have the two polarizations of the gravita-
tional waves as their solutions. The sources of these differential equations require the orbits
to be known as analytical functions of time, and because such expressions are given by the
epicycle expansion, this thesis presented analytical functions for the sources for the first
time.
However, solving the Zerilli-Moncrief and Regge-Wheeler differential equations is a task
that still needed to be done numerically. For this, a numerical program has been imple-
mented in the language C++, allowing for the calculation of gravitational waves produced
in the EMRI system and the energy and angular momentum they carry away from the
system. The code principally can produce outcomes of any desired accuracy, but as the
epicycle approximation has a finite accuracy itself, outcomes were calculated accurate to
0.1% level. It was found that the epicycle approximated outcomes agree to this accuracy
level with the purely numerical ones stated in literature for all cases considered in which
the second order epicycle expansion is justified. Outcomes for new cases of such eccentric-
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ity were calculated effortlessly and rapidly.
For bound orbits of eccentricity around 0.2, the gravitational waves yield values for the
emitted energy and angular momentum per unit mass that have an error of the order of
percents to tens of percents, and this was seen to be mainly due to the inaccuracy of the
angular coordinate as given by the second-order epicycle expansion.
Finally, it was studied how the emission of gravitational waves changes the bound orbits,
by using the calculated values for the emitted energy and angular momentum to update
the parameters that uniquely specify the orbit. This was done in an adiabatic way, by up-
dating the orbital parameters in discrete steps small enough to justify this approximation.
It was found that orbits become smaller (to which the accuracy of the epicycle expansion is
very much resistant) and circularize (which makes the epicycle expansion more accurate).
To conclude, the epicycle expansion developed in this thesis is very well suited to describe
bound orbits around a Schwarzschild black hole, as its accuracy is virtually independent
of relativistic effects due to close proximity of the star to the black hole, and the emission
of gravitational waves naturally leads to orbits of small eccentricity for which the epicycle
expansion is well-justified and yields excellent results.

There are several directions for future research foreseeable. For instance, the epicycle
expansion can be taken to third or higher order. Considering the previous conclusion
about the high accuracy of the second-order epicycle expansion and the fact that bound
motion naturally becomes more circular, this does not seem a priority for practical pur-
poses. There are, however, at least two other motivations to do so. Firstly, the second-order
epicycle expansion allows for boundary conditions to constrain the resulting orbit, which
are used to synchronize the resulting orbit to the true geodesic and to fix the radial dis-
tances between successive periastra, but do not yet guarantee that the angular coordinate
is accurate between periastra as well. In practice it was found that the angular coordinate
is well-approximated already at second order by the boundary conditions on the radial
coordinate for orbits with eccentricities of about 0.1, but it can be guaranteed by adding
third- or higher-order terms in the epicycle expansion by using the resulting extra con-
stants of integration to fix the value of the angular coordinate at apastron. This would
also greatly increase the accuracy of the gravitational waves calculated using the epicycle
expansion. Secondly, in this thesis the accuracy of the second-order epicycle expansions
was quantified by comparing the orbits to the ones calculated by purely numerical means;
adding third- or higher-order terms allows a measure of accuracy of the expansion that is
intrinsic. Thus, in order to be able to accurately approximate bound orbits of eccentricity
of the order of 0.2 and higher, and, additionally, to provide an intrinsic measure of the
resulting orbital functions and their resulting gravitational waves, it is worthwhile to take
the epicycle expansion to higher orders. It is recommended that the expansion is taken
to fourth order, so that one order can be used to fix the value of the angular coordinate
at apastron (thereby greatly increasing the accuracy of the angular approximation and
hence of the resulting gravitational waves), and the remaining extra order can be used as
an intrinsic measure of the obtained results. With the methods explained in this thesis,
calculating third- and higher-order terms is a straightforward, albeit tedious, exercise.
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Another direction of future research is the application of the geodesic deviation method to
different physical systems. This is particularly straightforward when the geodesic deviation
equations for such systems have only constant coefficients, as then the analysis presented
in this thesis applies directly. This is the case, for example, when considering the bound
orbits of electrically charged test masses around a Schwarzschild black hole surrounded by
an axially symmetric magnetic field. What’s more, it is straightforward to modify the C++
code to calculate the resulting emission of both gravitational waves and electromagnetic
waves, the results of which are of value in multimessenger astronomy.
Finally, a future direction of research is in finding analytical expressions for the gravita-
tional waves emitted by the EMRI system. In the present case, the calculation of these
waves was done numerically because there are no known analytical general solutions to the
Zerilli-Moncrief and Regge-Wheeler equations. However, the current case of the epicycle
expansion supplying the source of these differential equations, there is only the need for a
solution in case the orbit is a small deviation from a circular one. It might be interesting
to investigate whether the Zerilli-Moncrief and Regge-Wheeler differential equations can
be solved analytically for that particular case. If that is to succeed, a fully analytical cal-
culation scheme would be available for both the geodesic orbits as the gravitational waves
in the Schwarzschild spacetime, of which outcomes can be checked by the results given in
this thesis. This would be a very interesting alternative to the Post-Newtonian techniques,
as it does away with the assumption that gravity is weak and/or velocities are small.
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Appendix A

Source terms for the second-order
geodesic deviation equation

This appendix presents the explicit expressions for the coefficients (aµ, bµ, cµ) in the ex-
pansion of the source terms Σµ[n] for the second-order deviations, Eq. (2.66). Using these
results, the coefficients Uµ

i of the second-order solutions Eq. (2.84) will be expressed in
terms of the four epicycle parameters (σ,R,∆n,∆m).

The general expression for the source Σµ[n] of the second-order deviation equation is given
by Eq. (2.62),

Σµ[n] = Sµ[n] +
ω1

ω
T µ[n], (A.1)

in which Sµ[n] is given in Eq. (2.32) after substitution τ → λ, and T µ[n] is defined by

T µ[n] = −4
d2nµ

dλ2
− 4Γ̄ µ

λν u
λdn

ν

dλ
. (A.2)

After substitution of the first order solutions Eq. (2.64) in Eq. (2.32) with τ → λ, the
expression for Sµ[n] becomes of the form of Eq. (2.56),

Sµ[n] = Aµc cos 2ωλ+ Aµs sin 2ωλ+Bµ
c cosωλ+Bµ

s sinωλ+ Cµ,

in which the coefficients Atc = Ars = Aϕc = 0 vanish, and:

Ats = at = −2ωα

R

1

1− 2M
R

(nrc)
2 ,

Arc = ar = −M
R4

3− M
R
− 18M2

R2(
1− 2M

R

) (
1− 3M

R

) (nrc)
2 ,

Aϕs = aϕ = −3ωη

R
(nrc)

2 .

(A.3)
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Next, Bt
c = Br

s = Bϕ
c = 0, and:

Bt
s = −ωα
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(A.4)

In addition there is a constant term in the r-component:

Cr = −3M

R4

1 + M
R

1− 3M
R

(nrc)
2 − 3M

2R4

5− 34M
R

+ 75M2

R2 − 54M3

R3(
1− 3M

R

)3 (∆n)2 . (A.5)

The Lindtsted-Poincaré correction terms (A.2) are, after substitution of the first order
solutions Eq. (2.64), of the form:

T µ[n] = Dµ
s sinωλ+Dµ

c cosωλ+ Eµ, (A.6)

in which it follows that Dt
c = Dr

s = Dϕ
c = 0 and:

Dt
s = −2ωαnrc,

Dr
c = −4M

R3

1

1− 3M
R

nrc,

Dϕ
s = −2ωηnrc,

(A.7)

while Et = Eϕ = 0 and:
Er = −2κ∆n. (A.8)

Combining the results to compute:

bt = Bt
s +

ω1

ω
Dt
s, br = Br

c +
ω1

ω
Dr
c , bϕ = Bϕ

s +
ω1

ω
Dϕ
s ,

the coefficients bµ are found to be of the form (2.74) with:

F t = −ωα
4− 13M

R
+ 6M2

R2(
1− 2M

R

) (
1− 3M

R

) ,
F r = −2M

R3

7− 36M
R

+ 48M2

R2(
1− 2M

R

) (
1− 3M

R

)2 ,

Fϕ = −ωη
5− 12M

R

1− 3M
R

,

(A.9)
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and:
Gt = 2ωα,

Gr =
4M

R3

1

1− 3M
R

,

Gϕ = 2ωη.

(A.10)

It then follows by Eq. (2.75), that:

ω1

ω
= −3

2

1− 10M
R

+ 18M2

R2(
1− 3M

R

) (
1− 6M

R

) ∆n

R
. (A.11)

Finally, the constant cr in the source terms Σr[n] is given by:

cr = Cr +
ω1

ω
Er. (A.12)

Using the value (A.11) for the ratio ω1/ω, this leads to the result:

cr = −3M

R4

1 + M
R

1− 3M
R

(nrc)
2 +

3M

2R2

(
∆n

R

)2 1− 26M
R

+ 165M2

R2 − 396M3

R3 + 324M4

R4(
1− 3M

R

)3 (
1− 6M

R

) . (A.13)

By collecting results from this appendix and chapter 2, the expressions for the coefficients
Uµ
i of Eq. (2.84) can be written solely in terms of the four epicycle parameters R, σ,∆n,∆m

and the mass M of the black hole. The result for U t
i is:

U t
0 =

1√
1− 3M

R

− σν ·∆n −
1

2
σ2ν ·

(
∆m −

(nrc)
2

R

1 + M
R

1− 2M
R

−
2− 3M

2R

1− 3M
R

∆2
n

R

)
,

U t
1 = −σλ · nrc −

1

2
σ2λ ·

(
nrc∆n

R

3− 34M
R

+ 72M2

R2(
5− 18M

R

) (
1− 2M

R

)) ,
U t

2 =
1

2
σ2λ · (nrc)

2

2R

2− 15M
R

+ 14M2

R2(
1− 2M

R

) (
1− 6M

R

) , (A.14)

in which

ν ≡ 3M

2R2

1(
1− 3M

R

)3/2
, λ ≡ 2

√
M

R

1(
1− 2M

R

)√
1− 6M

R

, nrc + ∆n =

√
1− 2M

R
.

(A.15)
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Source terms for the second-order geodesic deviation equation

For U r
i the result is:

U r
0 = R + σ∆n +

1

2
σ2∆m,

U r
1 = σnrc +

1

2
σ2

(
4nrc∆n

R

2− 15M
R

+ 30M2

R2(
5− 18M

R

) (
1− 2M

R

) (
1− 6M

R

)) ,
U r

2 = −1

2
σ2 (nrc)

2

R

(
1− 7M

R

1− 6M
R

)
. (A.16)

And for Uϕ
i , the result is:

Uϕ
0 =

√
M

R3

1√
1− 3M

R

−σκ∆n −
1

2
σ2κ ·

(
∆m −

∆2
n

2R

5− 20M
R

+ 24M2

R2(
1− 2M
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) (
1− 3M
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) − (nrc)
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R
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,

Uϕ
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1

2
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(
2nrc∆n

R

1− 7M
R

+ 18M2

R2(
5− 18M

R

) (
1− 2M

R

)) ,
Uϕ

2 =
1

2
σ2µ ·

(
(nrc)

2

4R

5− 32M
R

1− 6M
R

)
, (A.17)

in which

κ ≡ 3

2R2

√
M

R

1− 2M
R(

1− 3M
R

)3/2
, µ ≡ 2

R

1√
1− 6M

R

. (A.18)

Finally, the epicycle frequency ω̄,
ω̄ ≡ ω + σω1, (A.19)

is expressed in (M,R, σ,∆n) via

ω =

√
M

R3

1− 6M
R

1− 3M
R

, ω1 = −ω 3∆n

2R

1− 10M
R

+ 18M2

R2(
1− 3M

R

) (
1− 6M

R

) . (A.20)
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Appendix B

Retrieving the original epicycle
expressions

This appendix investigates the relationship between the most general second-order solu-
tions as stated in this thesis and the limited ones stated in the literature.

In the literature, the geodesic deviation method is applied to a number of cases, i.e. a
number of different spacetimes and simple geodesics as starting point for the expansion.
For the case of a Schwarzschild spacetime and a circular orbit as starting geodesic, the
method is pursued to third order. The expressions for the second-order solutions are
stated in, e.g. [21], and yield the following orbital functions:

t(τ) =
1√

1− 3M
R

τ +
2
√
Mnr0

√
R
(
1− 2M

R

)√
1− 6M

R

sin(ωτ) +
1

2
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·

(
−

3
(
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)2 τ +
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R
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1− 6M

R

) (
1− 2M

R

)3
ω

sin(2ωτ)

)
,

r(τ) = R− nr0 cos(ωτ) +
1

2
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−
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(
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, (B.1)
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Retrieving the original epicycle expressions

in which, as in this thesis,

ω =

√
M

R3

1− 6M
R

1− 3M
R

, (B.2)

and the expansion parameter is nr0.
Going to third and higher order in the eccentricity will produce Poincaré resonances in the
geodesic deviation equations, because the sources will contain, via Eq. (2.32), oscillatory
terms that have the same frequency as the differential matrix.
These solutions are not the most general solutions to the first- and second-order geodesic
deviation equations, as the secular contributions have not been taken into account. In
contrast, the solutions given in this thesis do take these into account, as it was recognized
in the main text of chapter 2 that these are not only mathematically allowed, but even
necessary to ensure the resulting orbits produce the correct periastron shift, even already
at first order. The price that has been paid for the inclusion of the secular constants is that
the Poincaré resonances already appear when solving the second order geodesic deviation
equations, rather than the third-and higher orders. This is explictly dealt with in the main
text of chapter 2, and yields the solutions Eq. (2.83).
These are the most general solutions to the geodesic deviation equations up to second
order. It should therefore be possible to choose the secular constants ∆n,∆m such, that
Eqs. (2.83) reduce to the ones stated in the literature, Eqs. (B.1). Indeed, by comparing
the frequencies, it follows immediately that the secular constant ∆n must be chosen to
vanish,

∆n = 0. (B.3)

From the resulting expression for the radial function r(τ) it then follows that the expansion
parameter σ is related to the parameter nr0 via

σ = − nr0√
1− 2M

R

, (B.4)

and that the secular constant ∆m must be chosen as follows:

∆m =
1

R

(
5− 33M

R
+ 90M2

R2 − 72M3

R3(
1− 6M

R

)2

)
. (B.5)

It is then straightforward to show that these values also make the orbital functions t(τ)
and ϕ(τ) in Eq. (2.83) reduce to the ones stated in Eq. (B.1). Thus, it has now been
explicitly shown that the solutions found in the literature are only a small subset of the
general solutions obtained in this thesis.
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Appendix C

Details of the bound orbits

This appendix presents the physical characteristics and values of the epicycle parameters
as used in the epicycle expansions of the bound geodesic orbits considered in section 3.3,
i.e. of the orbits around a Schwarzschild black hole of eccentricities e = 0.075, e = 0.1,
e = 0.15, and e = 0.2 and various decreasing values of the semi-major axis a. It also
presents the physical characteristics and values of the second order epicycle parameters of
the adiabatically related orbits considered in section 5.4.

Tables C.1 and C.2 correspond to bound orbits with eccentricity e = 0.1. Table C.1
lists the following physical characteristics of the orbits: the energy per unit mass ε, the
angular momentum per unit mass `, the periastron rpa, the apastron raa, the periastrion
shift δϕ, and the proper time between two successive periastra ∆τ . The first two of these
are calculated using Eq. (2.21), the next pair follow from Eq. (2.18), and the last two pa-
rameters follow from Eqs. (2.22) and (2.23). As explained in the main text, the parameters
ε and ` serve as a parametrization of bound orbits equivalent to (a, e), whereas the pa-
rameters rpa, raa, δϕ and ∆τ are used as boundary conditions for the epicycle expansions.
The epicycle expansions themselves are, to first and second order in σ, given by Eqs. (2.50)
and (2.83), respectively. Table C.2 present the (R, σ,∆n) for the first-order expansion and
the parameters (R, σ,∆n,∆m) for the second-order expansion. The accuracies of the ex-
pansions were already given in chapter 2.
In a similar manner, tables C.3 and C.4 list the information for bound orbits with eccen-
tricity e = 0.075, C.5 and C.6 for bound orbits with eccentricity e = 0.15, and C.7 and C.8
for bound orbits with eccentricity e = 0.2.
Finally, tables C.9 and C.10 correspond to the adiabatically related bound orbits of various
values for the parameters (a, e), as explained in the main text of section 5.4. Table C.9
lists the following characteristics of the orbits considered: the energy per unit mass ε, the
angular momentum per unit mass `, the periastron rpa, the apastron raa, the periastrion
shift δϕ, and the proper time between two successive periastra ∆τ . Table C.10 lists the
parameters (R, σ,∆n,∆m) used to construct the second order epicycle expansions for these
orbits.
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Details of the bound orbits

a/M ε `/M rpa/M raa/M δϕ ∆τ/M

20.0 0.97641 4.85214 18.181 22.222 1.2269 680.713
15.0 0.96925 4.33193 13.636 16.667 1.8291 427.277
10.0 0.95657 3.78235 9.0909 11.111 3.6560 266.105
9.0 0.95299 3.67730 8.1818 10.000 4.6087 242.749
8.5 0.95107 3.62771 7.7273 9.4444 5.3164 233.590
8.0 0.94911 3.58129 7.2727 8.8889 6.3069 227.268
7.5 0.94716 3.53947 6.8182 8.3333 7.8137 225.916
7.0 0.94534 3.50438 6.3636 7.7778 10.468 235.390
6.6 0.94412 3.48335 6.0000 7.3333 15.018 265.816

Table C.1: The physical characteristics of bound geodesic orbits of eccentricity e = 0.1 and various
values of the semi-major axis a, as listed in the first column. Second and third columns list the values
of the energy per unit mass ε and angular momentum per unit mass `. The next two columns show the
values of the periastron rpa and apastron raa, and the last two columns show the periastron shift δϕ and
the proper time ∆τ between two successive periastra.

first-order epicycles second-order epicycles
a/M R/M σ/M ∆n R/M σ/M ∆n ∆mM

20.0 20.2062 -2.13271 0.01327 20.035 -1.93222 -0.08776 0.04842
15.0 15.1590 -1.63423 0.02047 15.016 -1.4596 -0.09603 0.05668
10.0 10.1274 -1.15699 0.05047 10.005 -0.97114 -0.12613 0.00228
9.0 9.13836 -1.08228 0.07685 9.01120 -0.85874 -0.14993 -0.05357
8.5 8.66094 -1.06466 0.107331 8.52420 -0.78830 -0.17940 -0.17797
8.0 8.23686 -1.10798 0.18396 8.07092 -0.66955 -0.27967 -0.70697
7.5 7.26501 -0.524878 -0.47662 7.31204 -0.96884 0.05307 0.69225
7.0 6.93534 -0.677709 -0.11382 6.90124 -0.78414 -0.04173 0.43238
6.6 6.56258 -0.674712 -0.03728 6.49392 -0.67525 -0.09367 0.34511

Table C.2: The parameters used in the epicycle expansions of bound geodesic orbits of eccentricity
e = 0.1 and various values of the semi-major axis a, as listed in the first column. The first-order epicycle
parameters (R, σ, ∆n) are listed in the second to fourth column, whereas the second-order epicycle
parameters (R, σ, ∆n, ∆m) are listed in the fifth to last column.
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a/M ε `/M rpa/M raa/M δϕ ∆τ/M

20.0 0.97632 4.85152 18.605 21.622 1.2269 624.199
15.0 0.96913 4.33114 13.954 16.216 1.8288 424.727
10.0 0.95640 3.78116 9.3023 10.811 3.6540 264.669
9.0 0.95281 3.67596 8.3721 9.7297 4.6047 241.501
8.5 0.95089 3.62627 7.9070 9.1892 5.3103 232.428
8.0 0.94892 3.57972 7.4419 8.6487 6.2965 226.178
7.5 0.94670 3.53775 6.9767 8.1081 7.7929 224.864
7.0 0.94515 3.50246 6.5116 7.5676 10.411 234.218
6.45 0.94358 3.47540 6.0000 6.9730 18.032 289.785

Table C.3: The physical characteristics of bound geodesic orbits of eccentricity e = 0.075 and various
values of the semi-major axis a, as listed in the first column. Second and third columns list the values
of the energy per unit mass ε and angular momentum per unit mass `. The next two columns show the
values of the periastron rpa and apastron raa, and the last two columns show the periastron shift δϕ and
the proper time ∆τ between two successive periastra.

first-order epicycles second-order epicycles
a/M R/M σ/M ∆n R/M σ/M ∆n ∆mM

20.0 20.1155 -1.59207 0.00996 20.0185 -1.4805 -0.06515 0.0460
15.0 15.0891 -1.21925 0.01537 15.0093 -1.1226 -0.07071 0.0534
10.0 10.0716 -0.859283 0.03821 10.0021 -0.75666 -0.09167 -0.0208
9.0 9.0782 -0.799674 0.05882 9.00567 -0.67573 -0.10806 -0.0490
8.5 8.5920 -0.782078 0.08359 8.5132 -0.62738 -0.12823 -0.1604
8.0 8.1429 -0.807107 0.15242 8.0424 -0.54910 -0.19916 -0.6342
7.5 7.3398 -0.425673 0.40026 7.3804 -0.72670 -0.06120 0.8055
7.0 6.9624 -0.533942 -0.08420 6.9441 -0.59816 -0.02993 0.4272
6.45 6.4281 -0.515734 -0.00862 6.3699 -0.48123 -0.11200 0.3059

Table C.4: The parameters used in the epicycle expansions of bound geodesic orbits of eccentricity
e = 0.075 and various values of the semi-major axis a, as listed in the first column. The first-order epicycle
parameters (R, σ, ∆n) are listed in the second to fourth column, whereas the second-order epicycle
parameters (R, σ, ∆n, ∆m) are listed in the fifth to last column.
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Details of the bound orbits

a/M ε `/M rpa/M raa/M δϕ ∆τ/M

20.0 0.97670 4.85393 17.391 23.529 1.2273 639.384
15.0 0.96961 4.33419 13.044 17.647 1.8301 434.718
12.0 0.96302 4.00501 10.435 14.118 2.6068 329.498
10.0 0.95705 3.78573 8.6957 11.765 3.6619 270.295
9.0 0.95349 3.68114 7.8261 10.588 4.6201 246.389
8.5 0.95159 3.63185 7.3913 10.000 5.3340 236.980
8.0 0.94964 3.58579 6.9565 9.4118 6.3369 230.445
7.5 0.94769 3.54441 6.5217 8.8235 7.8742 228.983
6.9 0.94554 3.50407 6.0000 8.1177 11.5005 323.726

Table C.5: The physical characteristics of bound geodesic orbits of eccentricity e = 0.15 and various
values of the semi-major axis a, as listed in the first column. Second and third columns list the values
of the energy per unit mass ε and angular momentum per unit mass `. The next two columns show the
values of the periastron rpa and apastron raa, and the last two columns show the periastron shift δϕ and
the proper time ∆τ between two successive periastra.

first-order epicycles second-order epicycles
a/M R/M σ/M ∆n R/M σ/M ∆n ∆mM

20.0 20.4698 -3.24085 0.01988 20.0887 -2.7807 -0.13419 0.0539
15.0 15.3619 -2.48589 0.03061 15.0459 -2.0827 -014861 0.0642
12.0 12.3058 -2.04456 0.04647 12.0220 -1.6519 -0.16879 0.0632
10.0 10.2876 -1.77371 0.07424 10.0153 -1.3433 -0.20152 0.0282
9.0 9.3078 -1.6723 0.11047 9.0300 -1.1609 -0.24437 -0.0639
8.5 8.8489 -1.6568 0.14928 8.5581 -1.0377 -0.29768 -0.2202
8.0 8.4671 -1.7285 0.23245 8.1406 -0.83164 -0.46707 -0.8805
7.5 7.1187 -0.704007 -0.57916 7.1507 -1.4175 0.0237 0.5653
6.9 6.7877 -0.937917 -0.13668 6.6862 -1.0743 -0.0842 0.4309

Table C.6: The parameters used in the epicycle expansions of bound geodesic orbits of eccentricity
e = 0.15 and various values of the semi-major axis a, as listed in the first column. The first-order epicycle
parameters (R, σ, ∆n) are listed in the second to fourth column, whereas the second-order epicycle
parameters (R, σ, ∆n, ∆m) are listed in the fifth to last column.
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a/M ε `/M rpa/M raa/M δϕ ∆τ/M

20.0 0.97710 4.85643 16.667 25.000 1.2278 655.832
15.0 0.97012 4.33736 12.500 18.750 1.8314 445.538
12.0 0.96362 4.00892 10.000 15.000 2.6100 337.356
10.0 0.95773 3.79049 8.3333 12.500 3.6701 276.384
9.0 0.95403 3.68654 7.5000 11.250 4.6362 251.677
8.5 0.95232 3.63767 7.0833 10.625 5.3588 241.905
8.0 0.95038 3.59211 6.6667 10.000 6.3796 235.059
7.5 0.94845 3.55135 6.2500 9.3750 7.9614 233.438
7.2 0.94733 3.53009 6.0000 9.0000 9.4491 237.323

Table C.7: The physical characteristics of bound geodesic orbits of eccentricity e = 0.2 and various
values of the semi-major axis a, as listed in the first column. Second and third columns list the values
of the energy per unit mass ε and angular momentum per unit mass `. The next two columns show the
values of the periastron rpa and apastron raa, and the last two columns show the periastron shift δϕ and
the proper time ∆τ between two successive periastra.

first-order epicycles second-order epicycles
a/M R/M σ/M ∆n R/M σ/M ∆n ∆mM

20.0 20.8499 -4.39958 0.02648 20.181 -3.5711 -0.18067 0.059
15.0 15.6542 -3.37729 0.04070 15.097 -2.6478 -0.20309 0.0732
12.0 12.5515 -2.78281 0.06148 12.051 -2.0691 -0.23446 0.0745
10.0 10.5146 -2.42397 0.09701 10.038 -1.6439 -0.28634 0.0365
9.0 9.54135 -2.29614 0.14121 9.0638 -1.3803 -0.35560 -0.0747
8.5 9.09781 -2.28070 0.18553 8.6090 -1.1990 -0.44190 -0.2716
8.0 8.74451 -2.36595 0.27083 8.2220 -0.90799 -0.70266 -1.1121
7.5 6.98164 -0.866146 -0.64383 8.0069 -0.29761 -3.25667 -25.3034
7.2 6.89483 -1.06202 -0.3374 6.7763 -1.54511 -0.00669 0.485

Table C.8: The parameters used in the epicycle expansions of bound geodesic orbits of eccentricity
e = 0.2 and various values of the semi-major axis a, as listed in the first column. The first-order epicycle
parameters (R, σ, ∆n) are listed in the second to fourth column, whereas the second-order epicycle
parameters (R, σ, ∆n, ∆m) are listed in the fifth to last column.
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Details of the bound orbits

a/M e ε `/M rpa/M raa/M δϕ ∆τ/M

12.00 0.1500 0.96302 4.00501 10.435 14.118 2.607 329.50
11.64 0.1446 0.96200 3.96496 10.170 13.610 2.747 317.41
11.29 0.1410 0.96096 3.92532 9.8899 13.138 2.903 305.99
10.93 0.1378 0.95988 3.88607 9.6072 12.677 3.077 295.05
10.58 0.1349 0.95877 3.84721 9.3208 12.227 3.274 284.58
10.23 0.1322 0.95761 3.80873 9.0315 11.784 3.498 274.60
9.87 0.1300 0.95640 3.77665 8.7379 11.348 3.757 265.13
9.52 0.1287 0.95515 3.73294 8.4335 10.925 4.061 256.25
9.16 0.1273 0.95184 3.69561 8.1260 10.497 4.427 247.96

Table C.9: The physical characteristics of bound geodesic orbits for various values of a and the eccen-
tricity e, as listed in the first two columns. These orbits are related to each other by adiabatic emission
of energy and angular momentum by gravitational waves, as explained in the main text. The third and
fourth columns list the corresponding values of the energy per unit mass ε and angular momentum per
unit mass `. The next two columns show the values of the periastron rpa and apastron raa, and the last
two columns show the periastron shift δϕ and the proper time ∆τ between two successive periastra.

a/M e R/M σ/M ∆n ∆mM

12.00 0.1500 12.022 -1.6519 -0.1688 0.0632
11.64 0.1446 11.659 -1.5525 -0.1658 0.0600
11.29 0.1410 11.299 -1.4707 -0.1652 0.0561
10.93 0.1378 10.943 -1.3936 -0.1654 0.0510
10.58 0.1349 10.589 -1.3211 -0.1666 0.0440
10.23 0.1322 10.236 -1.2517 -0.1690 0.0342
9.87 0.1300 9.8838 -1.1852 -0.1731 0.0202
9.52 0.1287 9.5310 -1.1247 -0.1807 -0.0012
9.16 0.1273 9.1.772 -1.0606 -0.1917 -0.0360

Table C.10: The parameters used in the second-order epicycle expansions of bound geodesic orbits of
various values for a and the eccentricity e, as listed in the first two columns. These orbits are related to
each other by adiabatic emission of energy and angular momentum by gravitational waves, as explained
in the main text. The second-order epicycle parameters (R, σ, ∆n, ∆m) are listed in the third to last
columns.
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Appendix D

Integrations over a grid cell

This appendix considers some of the integrals of the main text of chapter 4. The integrands
contain delta functions and its derivative, and the integrations are to be done over an in-
dividual cell of the grid. They are therefore integrations over a finite region of spacetime,
which requires a careful evaluation. Exactly this is what will be presented.

In Eq. (4.32) of the main text, an integration of the following form is done:∫
cell

S̄lm dr∗dt =

∫
cell

(
Glm(r)δ(r − rp(t)) + F lm(r)∂rδ(r − rp(t))

)
dr∗dt. (D.1)

This integration consist of two different terms:∫
cell

G(r)δ(r − rp(t)) dr∗dt,
∫
cell

F (r)∂rδ(r − rp(t)) dr∗dt, (D.2)

dropping the indices for notational convenience. Both will be evaluated now, starting with
the first.

An integration over the finite region of spacetime of a single grid cell requires a parametriza-
tion of the integrations boundaries. These can be read off from Figure 4.2, from which it
can be seen

if: −∆ ≤ t ≤ 0 ⇒ −(t+ ∆) ≤ r∗ ≤ +(t+ ∆),

if: 0 ≤ t ≤ ∆ ⇒ +(t−∆) ≤ r∗ ≤ −(t−∆), (D.3)

where it has been assumed, without loss of generality, that the lowest point of the cell is
located at (t, r∗) = (−∆, 0). The integral thus splits up in two parts:∫

cell

G(r)δ(r − rp(t))dr∗dt =

∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ G(r)δ(r − rp(t))

+

∫ ∆

0

dt

∫ −(t−∆)

(t−∆)

dr∗ G(r)δ(r − rp(t)). (D.4)
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Integrations over a grid cell

The two terms are very similar, and the evaluation of the first will be presented in detail.
An integration over a delta function is straightforward by the well-known defining property
of the delta function. However, in the present case, this property can not be used just yet
as the argument of the delta function does not match the integration variable. This can
be remedied by using the chain rule for delta functions [47]:

δ(g(x)) =

∣∣∣∣∣dg(x)

dx

∣∣∣∣∣
−1

δ(x− x0), (D.5)

which holds for any well-behaved function g(x), and in which x0 is the zero point of the
argument of the original delta function, i.e. it is defined by

g(x0) = 0. (D.6)

Applying this rule to the first term of Eq. (D.4) yields:∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ G(r)δ(r − rp(t)) =

∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ G(r)

∣∣∣∣∣ ddr∗ (r−rp(t))
∣∣∣∣∣
−1

δ(r∗−r∗0(t)), (D.7)

in which r∗0(t) is the value of the tortoise coordinate r∗ that corresponds to the zero point
of the original delta function, i.e. it is the position of the particle in tortoise coordinates:
r∗0 = r∗p(t). The absolute value signs can be dropped as the derivative returns f(r),
which is always positive. The integration variable now matches the argument of the delta
function, so the integration can now be performed by using the defining property of the
delta function. This should be done with some care, as the integration is not done over
infinite range and hence vanishes if the zero point r∗p(t) does not lie in the interval ∓(t+∆).
This can be taken into account by using theta functions:∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗
G(r)

f(r)
δ(r∗ − r∗0(t)) =

∫ 0

−∆

G(rp(t))

f(rp(t))
θ(t+ ∆− r∗p(t))θ(t+ ∆ + r∗p(t)) dt.

(D.8)

The theta functions now serve to restrict the range of the remaining integration over t.
The first of the theta functions only starts to contribute to the outcome when the world
line of the particle crosses the line t+∆. As this line is the right lower boundary of the cell,
the theta function only starts to contribute at the moment the world line of the test mass
enters the cell at some time t = tb. For that situation, the second theta function equals
unity over the whole range of integration. Similarly, the second theta function only starts
to contribute to the integral when the world line enters the cell at some time t = tb at the
left lower boundary of the cell, in which case the first theta function always equals unity
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over the range of integration. The integral of the first term of Eq. (D.4) is thus found to
evaluate to ∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ G(r)δ(r − rp(t)) =

∫ 0

tb

G(rp(t)

f(rp(t)
dt. (D.9)

The second term of Eq. (D.4) can be evaluated similarly, yielding the outcome∫ ∆

0

dt

∫ −(t−∆)

(t−∆)

dr∗ G(r)δ(r − rp(t)) dt =

∫ tt

0

G(rp(t)

f(rp(t)
dt, (D.10)

in which tt is the time at which the world line leaves the cell. The two outcomes can be
taken into one single expression:∫

cell

G(r)δ(r − rp(t)) dr∗dt =

∫ tt

tb

G(rp(t))

f(rp(t))
dt. (D.11)

This concludes the evaluation of the first type of integral of Eq. (D.2).

Next, integrations of the second type in Eq. (D.2) will be evaluated. The integration
ranges of Eq. (D.3) apply again, and hence the integration splits up in two parts:∫

cell

F (r)∂rδ(r − rp(t))dr∗dt =

∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ F (r)∂rδ(r − rp(t))

+

∫ ∆

0

dt

∫ −(t−∆)

(t−∆)

dr∗ F (r)∂rδ(r − rp(t)). (D.12)

The evaluation of the first term will be demonstrated in detail; the evaluation of the second
term is done similarly.
In order to use the defining property of the delta function, the delta function needs to be
taken outside of the derivative. This can be done by a partial integration, and this requires
the derivative to be with respect to the same variable as the integration. Using the chain
rule to write ∂r = f−1(r) ∂r∗ allows the partial integration, and it follows∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ F (r)∂rδ(r − rp(t)) =

∫ 0

−∆

dt

(
F (r)

f(r)
δ(r − rp(t))

) ∣∣∣∣∣
(t+∆)

r∗=−(t+∆)

−
∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ ∂r∗

(
F (r)

f(r)

)
δ(r − rp(t)).

(D.13)

The second term is easily evaluated by first writing the derivative back to a derivative with
respect to r and then using Eq. (D.11). The result is∫ 0

−∆

dt

∫ (t+∆)

−(t+∆)

dr∗ ∂r∗

(
F (r)

f(r)

)
δ(r − rp(t)) = −

∫ 0

tb

dt ∂r

(
F (r)

f(r)

) ∣∣∣∣∣
r=rp(t)

. (D.14)
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Integrations over a grid cell

As for the first term, the two boundary terms r∗ ∓ (t + ∆) can only be substituted when
the argument of the delta function is expressed in tortoise coordinates. This can be done
using the chain rule Eq. (D.5), giving

∫ 0

−∆

dt

(
F (r)

f(r)
δ(r − rp(t))

) ∣∣∣∣∣
(t+∆)

r∗=−(t+∆)

=

∫ 0

−∆

F (r)

f 2(r)
δ(t+ ∆− r∗p(t)) dt

−
∫ 0

−∆

F (r)

f 2(r)
δ(−t−∆− r∗p(t)) dt. (D.15)

The integrations over t can be performed after the argument of the delta function is made
to match the integration variable, which can be done by using once more the chain rule
Eq. (D.5). This gives:

δ(±(t+ ∆)− r∗p(t)) =

∣∣∣∣∣ ddt(± (t+ ∆)− r∗p(t)
)∣∣∣∣∣
−1

δ(t− tb)

=

∣∣∣∣∣ 1

±1− ṙ∗p(t)

∣∣∣∣∣δ(t− tb), (D.16)

in which an overdot denotes the derivative with respect to Schwarzschild time, and tb is
the time that corresponds to the zero point of the original delta function. It is the time at
which the world line r∗p(t) crosses the line ±(t+ ∆), i.e. the moment the world line enters
the cell from the right (upper sign) or the left (lower sign). As the world line describes
motion with a velocity smaller than that of light, ṙ∗p(t) < 1, the absolute value signs can
be dropped when the correct overall sign is taken into account. Finally, the world line
cannot enter the cell both at the right and at the left side, so one of the terms in Eq.
(D.15) vanishes. The remaining integration is straightforward to evaluate, and Eq. (D.16)
thus equals:

∫ 0

−∆

dt

(
F (r)

f(r)
δ(r − rp(t))

) ∣∣∣∣∣
(t+∆)

r∗=−(t+∆)

= ± F (rp(tb))

f 2(rp(tb))

1

1∓ ṙ∗p(t)

∣∣∣∣∣
t=tb

. (D.17)

Collecting results, the first term in Eq. (D.12) has now been shown to evaluate to the
result: ∫ 0

∆

∫ (t+∆)

−(t+∆)

dr∗ F (r)∂rδ(r − rp(t)) dt = −
∫ 0

Tb

dt ∂r

(
F (r)

f(r)

) ∣∣∣∣∣
r=rp(t)

± F (rp(tb))

f 2(rp(tb))

1

1∓ ṙ∗p(t)

∣∣∣∣∣
t=tb

. (D.18)
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The second term in Eq. (D.12) can be evaluated similarly, and yields the result:

∫ ∆

0

∫ −(t−∆)

(t−∆)

dr∗ F (r)∂rδ(r − rp(t)) dt = −
∫ Tt

0

dt ∂r

(
F (r)

f(r)

) ∣∣∣∣∣
r=rp(t)

± F (rp(tt))

f 2(rp(tt))

1

1± ṙ∗p(t)

∣∣∣∣∣
t=tt

, (D.19)

in which tt denotes the time at which the world line leaves the cell; the upper sign applies
to leaving the cell at the right side, whereas the lower sign applies to leaving the cell at
the left side. The last two results can be taken together in one expression,

∫
cell

dr∗dt F (r)∂rδ(r − rp(t)) = −
∫ tt

tb

dt ∂r

(
F (r)

f(r)

) ∣∣∣∣∣
r=rp(t)

± F (rp(tb))

f 2(rp(tb))

1

1∓ ṙ∗p(t)

∣∣∣∣∣
t=tb

± F (rp(tt))

f 2(rp(tt))

1

1± ṙ∗p(t)

∣∣∣∣∣
t=tt

, (D.20)

This concludes the evaluation of the second type of integral of Eq. (D.2).

Having evaluated both two types of integrals of Eq. (D.2), their resulting expressions can
be taken together to give Eq. (D.1) as

∫
cell

S̄lm dr∗dt =

∫ tt

tb

dt

(
Glm(r)

f(r)
− ∂r

(F lm(r)

f(r)

)) ∣∣∣∣∣
r=rp(t)

± F
lm(rp(tb))

f 2(rp(tb))

1

1∓ ṙ∗p(t)

∣∣∣∣∣
t=tb

± F
lm(rp(tt))

f 2(rp(tt))

1

1± ṙ∗p(t)

∣∣∣∣∣
t=tt

, (D.21)

in which the indices lm have been reinstated. This is exactly Eq. (4.32) stated in the main
text.
Finally, Eq. (4.35) of the main text can be proved as well. The first of these is straight-
forwardly shown to hold true by applying Eq. (D.11) to both sides and noting that their
outcomes are the same. The second equation in Eq. (4.35) can be shown to hold true
as follows: working out the derivative of its left hand side and applying Eqs. (D.11) and
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Integrations over a grid cell

(D.20) to the resulting terms, gives:∫
cell

b(r)∂r

(
a(r)δ(r − rp(t))

)
dtdr∗ =

∫ tt

tb

dt
b(r)∂ra(r)

f(r)

∣∣∣∣∣
r=rp(t)

−
∫ tt

tb

dt ∂r

(
b(r)a(r)

f(r)

) ∣∣∣∣∣
r=rp(t)

± b(rp(tb))a(rp(tb))

f 2(rp(tb))

1

1∓ ṙ∗p(t)

∣∣∣∣∣
t=tb

± b(rp(tt))a(rp(tt))

f 2(rp(tt))

1

1± ṙ∗p(t)

∣∣∣∣∣
t=tt

. (D.22)

The two integrals can be taken together to give:∫ tt

tb

dt
b(r)∂ra(r)

f(r)

∣∣∣∣∣
r=rp(t)

−
∫ tt

tb

dt ∂r

(
b(r)a(r)

f(r)

) ∣∣∣∣∣
r=rp(t)

= −
∫ tt

tb

dt a(rp(t))
∂rb(r)

f(r)

∣∣∣∣∣
r=rp(t)

.

(D.23)

The resulting expression for the left hand side of the second equation of Eq. (4.35) is then
exactly equal to the expression that is found when Eq. (D.20) is applied to the right hand
side. Both sides are thus equal, which is what was to be shown.
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Epicycles and Poincaré Resonances in General Relativity (arXiv:1011.3973)

[24] J.W. van Holten
Worldline deviations and epicycles (Int. J. Mod. Phys. A17 (2002), 2645;
arXiv: hep-th/0201083 )

124



[25] R. Colistete, C. Leygnac and R. Kerner
Higher-order geodesic deviations applied to the Kerr metric ( Class. Quantum Grav.
19 (2002), 4573; arXiv:gr-qc/0205019)

[26] R. Kerner, R. Martin, J. Mignemi and J.W. van Holten
Geodesic Deviation in Kaluza-Klein Theories, Phys. Rev. D63 (2001), 027502;
arXiv:gr-qc/0010098

[27] David C. Lay
Linear Algebra and its Applications (Addison-Wesley; 1996)

[28] Ptolemy of Alexandria
Almagest (Ancient Egypt, 2nd Century)

[29] A. Lindtsted
Abh. K. Akad. Wiss. (St. Petersburg) 31 (1882)

[30] H. Poincaré
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Summary

This is a thesis about gravity, and a number of the interesting effects it has on the motion
of stars when they get in close proximity to each other. Describing such motions turns
out to be a complicated problem, and this at first seems to be a remarkable statement.
After all, gravity is a force that we human beings are very familiar with from every day
experience. It is the force that keeps us with our feet on the ground, makes apples fall from
trees, traps the Moon in an orbit around the Earth, and the Earth itself in an orbit around
the Sun. The fact that research in gravity is nonetheless challenging, is due to the fact
that gravity is conceptually very different from the three other fundamental forces that
are known in physics (the electromagnetic force, the strong nuclear force, and the weak
nuclear force), which reflects itself in the radically different mathematics involved. It is for
this reason that it required the genius of two of the greatest scientific minds in history to
provide us with an understanding of how things fall.

Gravity according to Newton and Einstein

Sir Isaac Newton (1642-1727) was the first to provide mankind with an accurate descrip-
tion of gravity. He considered it to be an ’action at a distance’, a mysterious and invisible
tendency of all matter to pull all other matter in the Universe closer. In 1687 he published
a mathematical formula with which the pull could be calculated. This Universal Law of
Gravity is very successful: for the first time in history, mankind had the means to accu-
rately calculate the trek of the planets around the Sun, to predict solar- and lunar eclipses,
and to solve the mystery of the tides. Despite these successes, however, a number of things
were not quite exactly described by this theory. For example, very precise measurements
on the orbit of Mercury show that the planet orbits the Sun slightly faster than predicted
by the Universal Law of Gravity. Also, Newton’s theory postulates that gravity is an in-
stantaneous force, by which is meant that there is zero elapse of time between a cause and
its gravitational effect. If, for example, the Sun were to magically disappear, the gravita-
tional pull felt on the Earth would vanish at the exact same instant. This would indicate
that the effects of gravity traversed the distance between the Sun and the Earth with an
infinite velocity. This can not be, as it contradicts the Special Theory of Relativity. This
is a theory, published in 1905 by Albert Einstein (1879-1955), which states that nothing
can go faster than light. Gravity is not allowed to be an exception to this rule, and it thus
became clear that Newton’s Law of Universal Gravity had to be modified.
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Figure D.1: The curvature of space due to the presence of a star (centre). The planet (left) follows a
path that is wrapped around the star due to the curvature of space. The result is a closed orbit.

It was that same Special Theory of Relativity that suggested how this should be done.
The theory states that the laws of physics should be the same for all observers moving
with a constant velocity with respect to each other. It should therefore be possible to
write the equations of physics in such a way that they can be used by all such observers
regardless of their relative constant velocity. Einstein realized that this idea should also
apply to observers who are accelerating with respect to each other, and was able to link
this principle to the force of gravity. After all, he argued, if we are standing in an elevator
that is accelerating upward, we feel that we are pushed to the floor of the elevator just
as we would if there was a force of gravity pulling us down. With this insight, Einstein
postulated that the phenomena of acceleration and gravity are fundamentally equivalent
to each other, and formulated the General Theory of Relativity in 1916.
In the General Theory of Relativity, gravity is described as the curvature of space and
time. Just as a meridian deviates from a straight line because the globe is spherically
shaped, the path of a mass in motion will not follow a straight line if space is curved; the
deviation from the straight line is what we ascribe to gravity. The way that space and
time are curved is, in turn, determined by the presence of mass and energy: the more
mass is present in space, the more space and time are curved, and the more the paths of
masses in motion deviate from straight lines. An example of this is shown in Figure D.1,
in which the presence of a heavy star curves space in such a way that the orbit of a planet
is wrapped around the star. As a result, the planet follows a closed elliptical orbit instead
of a straight line. Einstein published a formula that relates the curvature of space and
time to the presence of mass and energy, and showed that when the curvature is not too
extreme, the General Theory of Relativity exactly reduces to Newton’s Universal Law of
Gravity.
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Black Holes and Gravitational Waves

The General Theory of Relativity is the most successful description of gravity that we
have. It correctly predicts the orbit of the planet Mercury, the deflection of starlight when
it grazes the Sun, the slowing down of time due to the presence of mass, and even the ex-
pansion of the Universe as a whole. All these predictions have, in a century of experiments,
been accurately confirmed by observations. The theory makes two additional predictions
that yet await experimental confirmation. The first is the existence of black holes : col-
lapsed stars that are so massive that not even light can escape their gravitational pull and
where time itself is slowed down to a standstill. Black holes are the most extreme examples
of curved spacetime that we know.
The second unconfirmed prediction that the General Theory of Relativity makes is the
existence of gravitational waves : microscopically small vibrations of space and time that
are produced when two large masses move in each other’s close proximity. These vibrations
travel through the Universe with the speed of light, and we can reveal their presence by
closely observing the relative position of two masses. Just as two bobbers will wobble with
respect to each other when a little wave of water disturbs the pond, two masses will wobble
with respect to each other when a gravitational wave disturbs space and time. The relative
motion of the two masses is usually extremely small (the wobbles are typically of the order
of a millionth of the size of a proton), and is biggest when the source of the gravitational
wave has a very strong field of gravity. The production of the biggest gravitational waves
is therefore expected to happen close to a very massive black hole.
Gravitational waves produced in this way contain a treasure trove of information about
the black hole and allow us to test the General Theory of Relativity. It is for this reason
that measuring gravitational waves is one of the biggest current challenges in physics. At
this very moment, experiments such as VIRGO in Italy and LIGO in the United States
are working to measure gravitational waves, and plans are in development to continue the
effort underground in the upcoming Einstein Telescope, and in space in the upcoming LISA
satellite experiment. In all cases, it is of absolute necessity to know in advance the exact
shape of the gravitational waves in order to filter out the very small gravitational waves
from the data collected by such experiments. This means that these must be calculated
using the General Theory of Relativity.

Relativistic Epicycles...

It is not an easy task to calculate gravitational effects close to a black hole, as the math-
ematics needed to understand the General Theory of Relativity is very complicated. As
such, solutions to the formulas are usually found only approximately. One of the ways that
researchers do this is by first assuming that the gravitational field around the black hole is
weak enough so as to describe it by Newton’s Universal Law; the effects due to Einstein’s
curvature of space and time are subsequently added as corrections to Newton’s solutions.
A disadvantage of such a method is that it becomes less accurate when the star gets very
close to the black hole. After all, it is in that region that the curvature of space and time
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Figure D.2: Ptolemy (left) described the apparent motion of the planets, Sun, and Moon around the
Earth by placing circles on top of circles, as is shown on a page (right) from his book Almagest.

is the most extreme and Newton’s gravity does not suffice anymore. This is unfortunate,
as it is also exactly this region where the strongest gravitational waves are produced.
In this thesis we present a novel method to calculate the gravitational waves produced
when a star moves in close proximity to a black hole, in which we do not make the as-
sumption that the gravitational field is weak. In our method, we assume instead that the
orbit of the star around the black hole is simple enough to be described by a circle. By
subsequently adding corrections to this circular orbit, we obtain the equations for more
general orbits. The outcome of our calculations turns out to be akin to the system that the
ancient egyptian sage Ptolemy (90-168) proposed to describe the apparent motion of the
planets, Sun, and Moon around the Earth (which he thought the be at the centre of the
Universe). He placed the planets on circles, on top of which he placed smaller circles called
epicycles, in the manner shown in Figure D.2. Ptolemy’s system is, of course, not correct
(he made the incorrect assumption that the Earth is at the centre of the Universe, and he
had no knowledge of the Theory of Relativity), but our research has shown that the motion
of a star around a black hole can be described in a way very similar to Ptolemy’s method.
In our context, the corrections applied to a circular orbit are not themselves circles, but
bear a more complicated shape that we have calculated accurately. We call our model
Relativistic Epicycles.
In this model we never make any compromise on the strength of the gravitational field of
the black hole: we do not assume it to be weaker than it really is. As a result, we expect
our predictions for the orbit of the star to be accurate even when the star and the black
hole are very close to each other. We found that this is indeed the case: as long as the
orbit of the star does not deviate too much from a perfectly circular orbit, our results have
an accuracy of more than 99%, and this regardless of how close the star is to the black
hole.
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...and the resulting gravitational waves

As the orbits of the star around the black hole could be accurately calculated, the next
step in our research was to calculate the gravitational waves due to the star’s motion in
the gravitational field of the black hole. This turns out to be a complicated mathematical
challenge: the first steps were already taken in 1957 (half a century ago!), and the final
formalism was only published in 2004. This formalism requires that the orbit of the star
is known as a function of time, and exactly this is provided by our method of Relativistic
Epicycles. The resulting formulas for the gravitational waves we have subsequently solved
by using a computer program that we have written ourselves. The gravitational waves
we calculated in this way agree very well with the ones that were already known in the
literature, and new ones we can calculate effortlessly and rapidly. Here too we found that
the accuracy or our method is excellent, with accuracies being of the order of 99% when
the orbits do not deviate too much from perfect circles.
Finally, as the last step in our research, we have investigated the limitations of our method
of Relativistic Epicycles. The main disadvantage of our method is that we need to assume
that the orbit of the star is close to circular; we have indeed found that our results become
less accurate when the orbits become more eccentric. However, our calculations have also
shown that, as the system sends out gravitational waves, the star’s orbit becomes increas-
ingly less eccentric and the predictions of our method are therefore rendered increasingly
accurate. This means that the main disadvantage of our method is naturally nullified by
the emission of gravitational waves! We therefore conclude that the method of Relativistic
Epicycles is very well suited to describe the production of gravitational waves due to the
motion of a star around a black hole, even when the star and black hole get in extremely
close proximity.

Future research

There are numerous ideas for future research. For example, we could improve the ac-
curacy of the Relativistic Epicycle even more by adding some more corrections on the
orbit. Secondly, up to this point we have only taken into account the curvature of space
and time due to the presence of the black hole, but it would be in order to also take into
account the curvature due to the star. It would also be interesting to investigate whether
the calculation of the gravitational waves could be done without invoking a computer, by
replacing the outcome of the program by a mathematical formula. Finally, our calculations
have shown that the method of Relativistic Epicycles also applies to the situation of electri-
cally charged masses moving around a pulsar (which is a heavy star that is surrounded by
a magnetic field that, like a lighthouse, periodically sends out flashes of light). The latter
possibility is very interesting, as it allows the study of astrophysical objects by not just
looking at the gravitational waves that they send out, but also at their electromagnetics
waves. We have already taken the first steps in that direction, which will be the basis for
future research.

133



134



Populair-wetenschappelijke
samenvatting

Dit proefschrift gaat over zwaartekracht, en een aantal van de bijzondere effecten die zij
heeft op de beweging van sterren wanneer die extreem dicht bij elkaar in de buurt komen.
Dat blijkt een heel ingewikkelde situatie te zijn, en dat lijkt in eerste instantie verbazend.
Zwaartekracht is immers een natuurkracht waar iedereen van jongs af aan mee bekend is:
het houdt ons met onze benen op de grond, zorgt ervoor dat appels uit de bomen vallen,
dwingt de maan in een baan rond de aarde, en de aarde in een baan rond de zon. Wat
onderzoek in zwaartekracht desondanks een uitdaging maakt, is dat het een natuurkracht
is die veel afwijkt van ons begrip van de rest van de natuurkunde: de zwaartekracht
is conceptueel heel anders dan de drie andere fundamentele natuurkrachten (de elektro-
magnetische kracht, de sterke kernkracht, en de zwakke kernkracht) en haar beschrijving
vereist een heel andere wiskunde. Het vereiste dan ook het intellect van twee van de groot-
ste wetenschappelijke genieën uit de historie om inzicht te krijgen in het vallen der dingen.

Zwaartekracht volgens Newton en Einstein

Sir Isaac Newton (1642-1727) was de eerste die een accurate beschrijving wist te geven
van de werking van de zwaartekracht. Hij beschouwde het als een ’action at a distance’,
een mysterieuze en onzichtbare neiging van materie om alle andere materie naar zich toe
te trekken, en wist daar een wiskundige formule aan toe te kennen die hij publiceerde in
1687. Deze Universele Wet van de Zwaartekracht bleek erg succesvol: voor het eerst in de
geschiedenis kon de mensheid nauwkeurig de banen van de planeten berekenen, Zons- en
Maansverduisteringen voorspellen, en kenden de getijden geen geheimen meer. Toch bleek
een aantal dingen niet helemaal te kloppen: zo laten metingen zien dat de planeet Mer-
curius iets sneller om de zon draait dan door de Universele Wet van de Zwaartekracht wordt
beschreven. Bovendien zegt Newtons theorie dat zwaartekracht instantaan is: er gaat geen
tijd verloren tussen oorzaak en gevolg. Bijvoorbeeld: als de Zon op magische wijze zou
verdwijnen zou dat op aarde direct merkbaar zijn, wat zou betekenen dat de zwaartekracht
de afstand tussen de zon en de aarde heeft overbrugd met een oneindig hoge snelheid. Dat
is in strijd met de Speciale Relativiteitstheorie, die in 1905 is opgesteld door Albert Einstein
(1879-1955) die zegt dat niets sneller kan gaan dan het licht. Zwaartekracht mag hierop
geen uitzondering zijn, en dus moest Newtons Universele Wet worden aangepast!
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Figure D.3: De kromming van de ruimte door een ster (midden). De planeet (links) volgt een pad dat
gebogen is door de kromming van de ruimte. Een gesloten baan rond de ster is het gevolg.

Hoe dat moest gebeuren, werd gesuggereerd door diezelfde Speciale Relativiteitstheorie.
Deze zegt namelijk ook dat de wetten van de natuurkunde dezelfde moeten zijn voor alle
waarnemers die ten opzichte van elkaar bewegen met constante snelheid. Einstein wist dit
principe te verenigen met de zwaartekracht door te stellen dat er eveneens geen onderscheid
bestaat tussen waarnemers die zich ten opzichte van elkaar versnellen. Immers, zo berede-
neerde hij, iemand die in een lift staat die omhoog versnelt voelt dat hij met zijn voeten op
de vloer wordt gedrukt, maar zou precies hetzelfde hebben gevoeld als het de zwaartekracht
was die hem naar beneden trok. Met dit inzicht stelde Einstein de zwaartekracht equivalent
aan versnelling, en formuleerde hij in 1916 de Algemene Relativiteitstheorie.
In deze theorie wordt zwaartekracht beschreven door een kromming van de ruimte en tijd.
Zoals een meridiaan een gebogen pad volgt omdat de globe bolvormig is, zal een massa een
gebogen baan volgen omdat hij beweegt in een ruimte die gekromd is; de buiging van het
pad schrijven we toe aan zwaartekracht. De precieze vorm van de kromming van de ruimte
en tijd wordt op zijn beurt gedicteerd door de aanwezigheid van massa: hoe meer massa
er aanwezig is, hoe meer de ruimte en tijd gekromd zijn. Een voorbeeld hiervan is te zien
in Figuur D.3; hierin kromt een zware ster de ruimte zodanig, dat de baan van de planeet
om de ster heen gebogen wordt. De planeet volgt dan ook een gesloten baan rond de ster.
Einstein publiceerde een formule waarmee de kromming van de ruimte en tijd berekend
kan worden. Tenslotte liet hij zien dat, in het speciale geval dat de zwaartekracht niet al
te sterk is, de Algemene Relativiteitstheorie weer netjes de Universele Zwaartekracht van
Newton oplevert.

Zwarte Gaten en Gravitatiegolven

De Algemene Relativiteitstheorie is de meest succesvolle beschrijving van de zwaartekracht
die we kennen. De theorie verklaart de afwijkingen van de baan van Mercurius, de afbuiging
van licht door de Zon, de vertraging van de tijd door de aanwezigheid van massa, en zelfs
de uitrekking van het Universum. Al deze voorspellingen zijn, vaak uiterst nauwkeurig,
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bevestigd door experimentele waarnemingen. De theorie doet verder nog twee exotische
voorspellingen. Een ervan is het bestaan van zwarte gaten: ineengestorte sterren die zoveel
massa samenballen dat zelfs het licht niet aan de resulterende zwaartekracht kan ontsnap-
pen en waar de tijd tot stilstand komt. Zwarte gaten zijn de sterkste bronnen van de
kromming van ruimte en tijd die we kennen.
Verder voorspelt de Algemene Relativiteitstheorie het bestaan van gravitatiegolven: miniem
kleine trillingen van de ruimte en tijd die worden opgewekt wanneer een massa beweegt
in het zwaartekrachtsveld van een andere massa. Deze trillingen planten zich voort door
het heelal met de snelheid van het licht, en we kunnen hun aanwezigheid meten door goed
naar de onderlinge beweging van materie te kijken: zoals twee dobbers in een vijver zullen
schommelen ten opzichte van elkaar wanneer er een watergolfje voorbij komt, zullen twee
massa’s in de ruimte dat doen door een gravitatiegolf. Deze schommelbeweging is echter
heel erg klein (de relatieve verplaatsing van de massa’s heeft een typische grootte van de
kern van een waterstofatoom), en is het grootst wanneer de bron van de golven een heel
sterk zwaartekrachtsveld heeft. Een van de sterkste bronnen van gravitatiegolven is dan
ook wanneer een ster beweegt in het extreem sterke zwaartekrachtsveld van een zwart gat.
Zulke gravitatiegolven bevatten een schat aan informatie over zwarte gaten en over de
geldigheid van de Algemene Relativiteitstheorie, en het meten van deze golven is een van
de grootste uitdagingen van de hedendaagse natuurkunde. Op dit moment wordt naarstig
gezocht naar gravitatiegolven door o.a. de experimenten VIRGO in Italie, LIGO in de
Verenigde Staten, en worden er voorbereidingen getroffen om de zoektocht voort te zetten
buiten de aarde in het LISA experiment en onder de grond met de Einstein Telescope.
Om de zeer kleine gravitatiegolven te herkennen in het meetsignaal en om daar informatie
over zwarte gaten uit te concluderen, moet er wel een goede voorspelling paraat staan;
dit betekent dat uit de Algemene Relativiteitstheorie berekend moet worden hoe de grav-
itatiegolven er precies uit zien.

Relativistische Epicykels...

Dat is geen gemakkelijke opgave: de wiskunde van de Relativiteitstheorie is erg ingewikkeld,
en oplossingen worden vaak alleen bij benadering gevonden. Veelal wordt er daarbij ge-
bruik gemaakt van de aanname dat de zwaartekracht in eerste instantie zwak genoeg is om
beschreven te worden met Newtons Universele Zwaartekrachtswet; de effecten van Einsteins
tijdruimtekromming worden daarna als correctie toegevoegd. Nadeel van deze aanpak is
dat hij steeds minder goed werkt wanneer de ster steeds dichterbij het zwarte gat komt,
omdat daar het zwaartekrachtsveld sterker en sterker wordt. Dat is jammer, omdat juist
daar de grootste gravitatiegolven worden opgewekt.
In dit proefschrift presenteren wij een andere methode, die nergens aanneemt dat zwaarte-
kracht zwak is. In plaats daarvan doen wij de aanname dat de beweging van de ster in
eerste instantie eenvoudig genoeg is om beschreven te worden door een cirkelbaan, en voe-
gen we daarna correcties op de baan toe om zo de werkelijke, ingewikkelder, beweging te
vinden. De uitkomsten van onze berekeningen lijken op het model waarmee de Egyptis-
che wijsgeer Ptolemeus (90-168) in de tweede eeuw na Christus de beweging van de Zon,
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Figure D.4: Ptolemeus (links) beschreef de beweging van planeten en zon rond de aarde door cirkels
bovenop cirkels te plaatsen, zoals te zien is op een bladzijde (rechts) uit zijn boek Almagest.

de Maan, en de planeten rond de aarde probeerde te verklaren. Hij plaatste daartoe de
planeten op een cirkelbaan en voegde kleinere cirkels, de zogenaamde epicykels, toe ter
correctie, zoals te zien is in Figuur D.4. Ptolemeus’ model was, uiteraard, niet correct (zo
was zijn aanname dat alle planeten en de zon rond de aarde draaien al verkeerd, laat staan
dat hij kennis had van de Relativiteitstheorie), maar ons onderzoek heeft laten zien dat de
Algemene Relativiteitstheorie dicteert dat de beweging van een ster rond een zwart gat op
een soortgelijke manier te beschrijven is. In ons geval zijn de correcties niet cirkelvormig
maar een ingewikkelder gesloten vorm, die we heel precies hebben uitgerekend. Wij noe-
men ons model Relativistische Epicykels.
Omdat wij het enorme zwaartekrachtsveld van het zwarte gat in vol ornaat meenemen, is
de verwachting dat de uitkomsten van onze Relativistische Epicykels uiterst nauwkeurig
zijn.. zelfs wanneer de ster extreem dicht bij het zwarte gat komt. We vinden dat dat
inderdaad het geval is: zolang de banen niet te zeer afwijken van een cirkelbaan, komen
onze uitkomsten typisch voor meer dan 99% overeen met de werkelijke banen.

...en de resulterende gravitatiegolven

Nu de banen bekend zijn, is de volgende stap het berekenen van de gravitatiegolven ten
gevolge van de beweging van de ster rond het zwarte gat. Dit is een hele opgave gebleken: de
eerste stappen werden al gezet in 1953, en een uiteindelijk formalisme is pas in 2004 gepub-
liceerd. Dit formalisme vereist dat de baan van de ster rond het zwarte gat in wiskundig
precieze vorm bekend is als functie van de tijd, en onze Relativistische Epicykels stellen
ons in staat dat te doen. De aldus verkregen formules voor de gravitatiegolven hebben
we daarna door de computer laten oplossen, met behulp van een computerprogramma
geschreven in de taal C++. De gevonden gravitatiegolven blijken goed overeen te komen
met de uitkomsten die al in de literatuur bekend waren, en nieuwe uitkomsten berekenen
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we nu snel en gemakkelijk. Ook hier geldt dat een nauwkeurigheid van ruim 99% gebruike-
lijk is.
Tenslotte hebben we onderzoek gedaan naar de beperkingen van onze Relativistische
Epicykels. Het nadeel van onze methode is immers dat de baan van de ster rond het
zwarte gat niet teveel mag afwijken van een cirkel; inderdaad vinden we dat onze uitkom-
sten minder nauwkeurig worden naarmate de ster een meer en meer eccentrische baan volgt.
Echter, onze berekeningen laten ook zien dat de uitgezonden gravitatiestraling ervoor zorgt
dat de baan van de ster van vorm verandert, en wel zodanig dat hij steeds cirkelvormiger
wordt. Dit betekent dat onze uitkomsten steeds nauwkeuriger worden naarmate de ster
dichterbij het zwarte gat komt! Het nadeel van onze methode wordt dus teniet gedaan door
de natuurlijke cirkelvorming van een eccentrische baan ten gevolge van het uitzenden van
gravitatiegolven. We concluderen dan ook dat onze Relativistische Epicykels erg geschikt
zijn voor het beschrijven van de gravitatiegolven opgewekt door de beweging van een ster
rond een zwart gat, zelfs wanneer de ster uiterst dichtbij het zwarte gat is.

Vervolgonderzoek

Ideeën voor vervolgonderzoek zijn er volop. Zo kan de nauwkeurigheid van de Relativis-
tische Epicykels verder worden verhoogd door nog een aantal extra correcties op de baan
uit te rekenen. Verder is tot nu toe louter de tijdruimtekromming van het zwarte gat
beschouwd en dat van de ster verwaarloosd; een vervolgstap zou kunnen zijn deze extra
tijdruimtekromming ook in rekening te brengen. Ook is het interessant te onderzoeken of
de berekening van de gravitatiegolven niet zonder computer gedaan zou kunnen worden,
door de berekening van het C++ programma te vervangen door een puur wiskundige for-
mule. Tenslotte is uit onze berekeningen gebleken dat onze methode ook in staat is de
beweging van elektrisch geladen deeltjes te beschrijven rond een pulsar (een zware ster
met een magnetisch veld die, zoals een vuurtoren, regelmatig lichtflitsen uitzendt). Met
name deze laatste mogelijkheid is bijzonder interessant, omdat pulsars ons in staat stellen
multimessenger astronomy te doen: het bestuderen van de sterren door zowel naar gravi-
tatiegolven te kijken als lichtgolven. De eerste stappen in die richting hebben we al gezet,
en zal de basis zijn van vervolgonderzoek.

Gideon Koekoek,
2011.
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