

Status of the AdV detection subsystem

March 17, 2015 Benoit Mours for the DET group LAPP Annecy

The DET subsystem

Senses the beams coming out

- Six suspended optical benches
- Photodiodes, quadrant photodiodes, cameras, phase cameras..
- ♦ OMC

llØIJ

• Key new features for AdV:

- ♦ DC readout → new OMC
- ♦ Signal recycling → one more bench squeezed in the PR cavity
- More suspended benches
 - » To mitigate diffuse light effects
 - \rightarrow minitowers
- New photodiode chain with digital demodulation for RF signals
 - » More flexible solution;
 - » more compact for multiple frequencies

More phase cameras
 See next talk on mode matching telescopes by Matteo Tacca

[[0]]]

The AdV OMC

- DC readout requires RF side bands rejection
 - Higher finesse cavity
- Evolution of the initial Virgo design :
 - Two small monolithic cavities
 - Thermal control + PZT
 - » PZT: length modulation
 - » PZT not along cavity axis

[[0]]]

OMC Finesse

- Specification : 143
- All measurements: ~ 125
 - Cavity scans
 - Cavity pole measurement
 - Reflection coefficients measurements
- Smaller finesse but still ok for filtering
 - "double" safety factors
 - » Requested DARM accuracy to prevent noise up-conversion: Δ L_DARM≤ 10⁻¹⁵ m
 - Includes a factor 10 of safety margin
 - Do not include non-linear response correction
 - » Low frequency SB noise could spoil DARM accuracy → set constraint on SB residual power after OMC: PSB ≤ 80 μ W (per side band) + SB dP/P ≤ 4%
 - Includes another factor 10 of safety margin.
 - \rightarrow Impact on sensitivity of lower finesse (nominal PSB x 1.5) is negligible

llØIJ

OMC losses

Measured total losses 5%

- 1.4% mismatch losses:
 - » Misalignment,
 - Birefrigence ($\leq 0.6\%$) **》**
 - Astigmatism »
 - » ...
- 2.4% OMC1 scattering
- » was ~ 1% twelve months earlier;
 applied first contact to classical and c result still unknown
- 1.1% OMC2 scattering
- Hope for ~ 4% total losses $_{\epsilon}$

OMCs internal losses (refl. 1 + refl. 2 + transmission)

[[0]]]

OMC beam quality

- OMC2 is slightly astigmatic: $\triangle RoC \le 10\%$ (substrate #5)
- Direct measurements are ambiguous
 - Depend on order of HOM used
- Mismatch is low (total < 1.4%)
- Beam quality is good

Shot noise + thermorefractive noise projection

Other noise projections

Internal resonances

- Injecting white noise into PZT
- Mechanical resonances > 5 kHz

PZT dithering modulation depth

- power modulated by $\leq 0.1\%$
 - \Rightarrow modulation ≤ 6 10⁻¹¹ m
- Non-linear noise coupling at PD
- - Not an issue V1:MC_PD5_DmB21_flat__FFT

OMC length noises expected a factor 10 below AdV sensitivity

Photodiode electronic layout

- The photodiode provide audio and RF signals
- Preamplifier

(O))

- Use simple load resistors followed by voltage amplifiers
- 3 channels provided
 - » DC from 0 to ~ 5 Hz(well more)
 - » Audio: 5 Hz to 10-50 kHz
 - » RF: 1 Mhz to ~100 MHz
- Demodulation mezzanine
 - Handle the RF channel
 - Provide demodulated signals
- Service mezzanine
 - Audio and DC channels readout
 - Provide power to the preamplifier
 - Provide/monitor Vbias and current
 - » includes safety in case of over current
 - Provide P and T measurements, shutter control

New photodiode chain

RF signal demodulation

- Tests: full chain successfully tested
 - Low noise channels in their frequency band
 - We can get the electronic noise at ~ shot noise/10

Production of all parts on going

((O))

((O)) The minitower suspended benches

- Required to mitigate diffused light noise
- The challenge: limited space
- The solution:
 - Bench in "small" vacuum tank: "minitower"
 - A compact isolation system build by Nikhef
 - Electronic "inside" the bench
 - » To avoid spoiling the seismic isolation by cables
 - » Additional challenges: heat dissipation

Heat dissipation tests

• Checked that the heat could be evacuated through radiation

- Upper limit: 300 W on the most crowded bench
- Increase heat transfer by
 - » Anodizing the benches
 - » Sand blasting the minitower
- Test: bench temperature stay below 40°C

Checked that the multSAS is well shielded

◆ No suspension retuning while opening the minitower doors

Minitower benches: status

- 3 out of 5 minitowers installed with their seismic isolation
 - Extensive tests at Nikhef of the multiSAS isolation system
- All benches produced
 - vacuum tested
- Production of optics & electronic well advanced
- Starting bench assembly
 - ◆ In clean room at LAPP-Annecy
 - First quadrants received from Nikhef
- To be installed at the site in the coming months...

