

Storage Resource Broker

Toolkit

Author D. Sentenac

Date 06/03/08

Version v0r1

Document No. EGO-REP-COM-39

EGO - European Gravitational Observatory
Traversa H di Via Macerata - Santo Stefano a Macerata, -56021 Cascina, Italia.

Secretariat: Telephone (+39) 050 752 521 FAX (+39) 050 752 550

Storage Resource Broker Toolkit

EGO-REP-COM-39 2

Change Record

Version Date Section
Affected

Reason / Remarks

v0r1 06/03/08 All First draft

Storage Resource Broker Toolkit

EGO-REP-COM-39 3

Contents

1 INTRODUCTION 4

1.1 Purpose 4

1.2 Reference Documents 4

1.3 Abbreviations and Acronyms 4

1.4 Overview 4

2 SRB TOOLKIT 4

2.1 Generalities 4

2.2 Hardware Requirements 6

2.3 Software Requirements 6
2.3.1 Client Binaries 7
2.3.2 APIs 7
2.3.3 Graphical Clients 7

2.4 Data path configuration 7

2.5 User Requirements 7

3 DATA TRANSFER 8

3.1 Logs 8

3.2 Big data files transfer 9

3.3 Small data files transfer 10

3.4 Transfer performances 11

4 DATA ACCESS 12

4.1 Use of SRB SCommands 12

4.2 Use of the SRB API 12
4.2.1 Fr 12
4.2.2 DataDisplay 13
4.2.3 Vega 13
4.2.4 Data book-keeping 13

5 CONCLUSION 15

Storage Resource Broker Toolkit

EGO-REP-COM-39 4

1 Introduction

1.1 Purpose

This document is reporting on the study of the Storage Resource Broker toolkit (SRB) as
a possible solution for accessing and transferring data to the Centre de Calcul of Lyon (CC).

1.2 Reference Documents

[1] Official SRB Web site: http://www.sdsc.edu/srb/index.php/Main_Page
[2] CC online documentation: http://cc.in2p3.fr/rubrique339.html?var_recherche=SRB?lang=fr
[3] Client binaries download page: http://cc.in2p3.fr/docenligne/281

1.3 Abbreviations and Acronyms

SRB: Storage Resource Broker
CC: Centre de Calcul de Lyon
SDSC: San Diego Supercomputing Center

1.4 Overview

In this document, the capabilities of the Storage Resource Broker toolkit (SRB) to
manage the data transfer and data access is evaluated. SRB is a product developed by the San
Diego Supercomputing Center (SDCS) and exists since 1997. It provides the abstraction
mechanisms needed to implement data grids, digital libraries, and persistent archives for data
sharing, data publication, and data preservation. Presented by the CC as a supported stable
solution for data management, we studied the possibility to use it for managing the Virgo
collaboration data stored on HPSS media. We tested in particular the data transfer in different
conditions, using small and big files and under saturated bandwidth. We also present data
access and manipulation test examples, focusing on what seems the most interesting features of
SRB.

2 SRB TOOLKIT
 This section describes the SRB toolkit, and the different steps to set-up an installation.

2.1 Generalities

 Data transfer is a common task that can become complicated when dealing with huge
amount of data. The transfer task does not represent a difficulty on its own and many classical
tools like bbftp can achieve it in a fast and easily way. The main problem consists of insuring
the integrity of the data copy and in particular prevents any data loss. The major task is
therefore dominated by the effort of cross-checking the copy and the source in the most reliable
way. The latter becomes especially difficult when dealing with particular type of storage media
like HPSS which do not provide by itself an efficient way to manage the data unlike UNIX like
disk storage systems. To overcome this problem, an important disk cache is generally

Storage Resource Broker Toolkit

EGO-REP-COM-39 5

associated to the tape storage media. Data management is done via a a minimum software layer
that allows to stage the data on disk. More interesting are software toolkits which make data
management transparent, whatever the nature of the storage media. This is what SRB provides.
SRB is proposed by the CC as a standard solution for managing data stored on HPSS media.
More generally, SRB is a middleware that provides distributed clients with uniform access to
diverse storage resources in a heterogeneous computing environment.

 Fig 1. General view of SRB

 The model in Figure 1 consists of three components: the Metadata catalog called
MCAT service, SRB servers and SRB clients, connected to each other via network. The
MCAT stores the Metadata associated with data sets, users and resources managed by the SRB.
The MCAT server handles requests from the SRB servers. These requests include information
queries as well as instructions for Metadata creation and update. Client applications are
provided with a set of API for sending requests and receiving response to/from the SRB
servers. The SRB server is responsible for carrying out tasks to satisfy the client requests.
These tasks include interacting with the MCAT service, and performing I/O on behalf of the
clients. A client uses the same common API to access every storage systems managed by the
SRB. The complex tasks of interacting with various types of storage system and OS/hardware
architecture are handled transparently by the SRB server.

Storage Resource Broker Toolkit

EGO-REP-COM-39 6

 Fig 2. The SRB process model

 Figure 2 depicts the SRB process model. The design of the SRB server is based on the
traditional network connected client/server model. It is composed of two separate servers, SRB
Master and SRB Server. The SRB Master is the main daemon listening continuously on a well-
known port for connection requests from clients. Once a connection from a client is established
and authenticated, it forks and execs a copy of the SRB Server, which we call SRB agent, to
service the connection. From that point onward, the client and the SRB agent communicate
using a different port and the SRB Master goes back to listening for more connections. A client
can use the same SRB agent to service multiple requests.
Client applications communicate with the SRB agent using a set of API via TCP/IP sockets.
The client library sends requests using pre-defined request stubs to the SRB agent, and receives
and parses replies from the SRB agent. The model is distributed in the sense that clients and
servers may be running on different hosts.
More complex architecture can be realized but are beyond the scope of this document. It
consists of a group of distributed SRB servers coordinating with each other to service client
requests, and forming a federation [1].

2.2 Hardware Requirements

 Installation of a SRB server is proposed through the use of a Perl script by SDSC. We
did not have to accomplish this task that was taken in charge by CC user-support. A SRB
server v3.5.0 dedicated to the Virgo group has been installed on ccsrb02.in2p3.fr machine. A
disk cache of 10 TB has been setup on machine ccsrb06.in2p3.fr. The cache size can be
extended easily in the future, the politics of CC being the expansion of SRB service among
experiments.

2.3 Software Requirements

 The server side software is completely taken in charge by CC user-support. SRB clients
can be used as simple binaries or through APIs. A good point of SRB is to provide clients for

Storage Resource Broker Toolkit

EGO-REP-COM-39 7

various platforms: Linux, Suse, Solaris, Mac OS X, Windows, AIX. This is the result of the
SRB philosophy which aims at providing a global and adaptable toolkit to be used in a
heterogeneous computing environment converging to uniform data access.

2.3.1 Client Binaries

 Client binaries are made familiar to UNIX user. They are called Scommands. They
refer to a set of utility routines that can be used in a UNIX shell or Windows DOS command
shell and access data and meta data information from SRB and MCAT. They also have a set of
man pages describing each of the commands. One can type remotely command lines using Sls,
Scd, Spwd, Smv, Sput, Sget, and plenty others, to manage the data. A tar file of Scommands
can be downloaded at [3]. The Scommands were tested especially in test scripts for data
transfer, as we will see in the data transfer section, and also for data management as we will
see in the data access section.

2.3.2 APIs

 A broad set of APIs are available in C, C++, JAVA, Perl, Python. They can be easily
used altogether with Virgo software, as it will be demonstrated later in the data access section.

2.3.3 Graphical Clients

 SRB offers all in one graphical clients for interfacing with data collections in addition
to command line Scommands client. They include inQ, a Windows client that closely
resembles the familiar Explorer interface used to organize local files, and MySRB, a web-
based client.

2.4 Data path configuration

 SRB collections are logical paths that point to real HPSS paths. We defined the
association simply as follows at the root path for Virgo group:

 HPSS : /hpss/in2p3.fr/group/virgo �������� SRB : /ccin2p3/virgo

Therefore the following two commands are equivalent:

>Sls /ccin2p3/virgo

>rfdir /hpss/in2p3.fr/group/virgo

The notable difference when experiencing these two commands is that the “Sls” one will give
for sure a result whatever the content size, while the second one may hang up in a time-out if
the content is too big.

2.5 User Requirements

 An account must be enabled prior to access the data. It consists of a user name a
password and a domain name. Note that SRB can also use the GSI authentication layer if
requested. Enabling the account is made very handy. It consists of having an environment file
called .MdasEnv in the local home (default is ~/.srb directory) holding the connection
description as follows:

Storage Resource Broker Toolkit

EGO-REP-COM-39 8

mdasCollectionHome '/ccin2p3/home/virgo.cascina'

mdasDomainName 'cascina'

srbUser 'virgo'

srbHost 'ccsrb02.in2p3.fr'

srbPort '5561'

mcatZone 'ccin2p3'

Where “virgo” is the username, and “cascina” the domain name. The zone “ccin2p3” defines
the domain extension of the SRB server as several domains can exist (federation of SRB
servers). The fisrt time the user “virgo” logs in, he has to type the Scommand:
> Sinit

A password is required the first time logged in. Then, a .srbAuthFile is created automatically
in the ~/.srb directory and no ulterior password request will be necessary afterwards.
 At the administration level, file access rights can be managed exactly as being in a
UNIX environment by using Scommands like Schmod. At present, a “virgo” user has been
created with “read” rights permission only. It was done by simply typing:
> Schmod –rb r virgo cascina /ccin2p3/virgo

Where :
 -r grants/changes access permissions or ownership or ACL inheritance recursively for
data and sub-collections in collection and in all sub-collections under it.
 –b stands for grants/changes access permissions or ownership in bulk for all data and
sub-collections recursively in collection.

3 Data Transfer
 Data transfer was performed using the Scommands client embedded in shell scripts.
Several tests have been made for two main categories of data: small Ligo files (~10MB) and
big Virgo files (~1GB). When transferring a file, a resource destination has to be indicated. In
our case we had two possibilities according to the type of transfer we made. For big files, we
used the HPSSLyon resource, that point to the default disk cache configuration with automatic
export to HPSS. For Ligo small files we used a custom cache configuration, the LigoDisk
resource, with no automatic export to HPSS for file merging task. Cache was configured by CC
user-support.

3.1 Logs

 For all transfers we tested the Sput and the Srsync command that allow uploading files
and synchronizing source/remote directories, respectively. We used these commands as
follows:
>Srsync -Mvr -S LyonHPSS /archive/50Hz s:/ccin2p3/virgo/DATA/50Hz/2008

>Sput -vkKM –R3 -S LigoDisk /archive/ligo/v1/mdc/GHLV-HSG1_S5_R2/GHLV-

HSG1_S5_R2-876998814-1000.gwf /ccin2p3/virgo/DATA/ligo/mdc/GHLV-HSG1_S5_R2

Where:
 -v stands for verbose

Storage Resource Broker Toolkit

EGO-REP-COM-39 9

 -K stands for checksum calculation at source location
 -k stands for checksum calculation at copy location
 -M stands for enabling multithreaded transfer
 -r stands for recursive
 -R stands for ulterior retries, here set to 3 retries if transfer failed

Other options were not thought useful to be considered here but can be consulted in [2].
These commands deliver a complete report of the final status of each transfer indifferently as
follows:

->SRB:/archive/50Hz/V-885830400-31-Jan-2008-17h00-720F.50 | LOCAL:/archive/50Hz/V-

885830400-31-Jan-2008-17h00-720F.50->SRB:V-885830400-31-Jan-2008-17h00-

720F.50®_CHKSUM=60104 | 962.153 MB | 6.443 MB/s | 393.84 s | 2008.03.04

14:00:38 | 6 thr | chksum=60104

 In addition to the source and copy checksums, the file size and the average speed of the
transfer are indicated. From this log it is possible to ascertain that the transfer was successful.
However it may happen that the logs are absent, if any kind of problem occurred
(server/network connection crash or time-out etc...). This is why it is necessary to produce an
additional check after a bunch of file has been transferred. SRB offers the use of Srsync

command with the –l option that performs a file source/copy checksum and size comparison
without actually doing the synchronization. An alternative less time-cost consuming (but less
secure), is to make a diff on source and remote file lists, the latter being simply obtained by
using a remote Sls command, similarly to the UNIX “ls” command. With the combination of
both logs, we are pretty sure of the integrity of the transfer.

3.2 Big data files transfer

 We performed tests on big files for 50Hz and trend data. Each file is about 1 GB. We
had access to a backup copy in a local mount directory called /archive/50Hz and
/archive/trenddata, respectively. This transfer operation is normally a routine operation, and it
is interesting to automate it as much as possible. We first made manual transfers using Sput

command, and later on propose an automate script making use of the more adapted Srsync
command. The latter can be used to synchronize directories, similarly to the UNIX ”rsync”
one, and is a suitable candidate to incorporate it in a background automation script. Here is an
example of such an automate shell script :

#!/bin/sh

while [1 -eq 1]
do
 ls /archive/50Hz > list
 Srsync -Mvr /archive/50Hz s:/ccin2p3/virgo/DATA/50Hz/2008
 Srsync -rl /archive/50Hz s:/ccin2p3/virgo/DATA/50Hz/2008 > report.rsync
 sed -e 's%^%rm -f /archive/50Hz/%' list > rem_list.sh

Storage Resource Broker Toolkit

EGO-REP-COM-39 10

 chmod +x rem_list.sh
 ls -l report.rsync | awk '{if ($5 == 0) print "./rem_list.sh" | "/bin/sh"}'
 sleep 10000
done

 In a infinite loop, we save a local list of the files in /archive/50Hz, than perform a
recursive “Srsync” on /archive/50Hz, than perform a “Srsync –l” to check the integrity of the
transfer. If successful, we remove the source files given by the list by executing an on-the-fly
created rem_list.sh script from the given list. If not successful, the files are not deleted. Then
we wait more than two hours (the time necessary to receive new files to be transferred), and
starts again the sequence. The file transfer log is obtained by launching the script as follows:
> Srsync_50Hz.sh > & Srsync_50Hz.log &

3.3 Small data files transfer

 Small files introduce in our test an additional requirement. They need to be packed in
bigger files before storage on HPSS. Indeed it is not reasonable to write small files directly
onto HPSS media due to access time overload. This is an official recommendation from the CC

user-support. Moreover, having big files improves the data reading speed and as a result,
limiting the number of File I/O is a major concern for data analysis on large amount of files.
For very small data files (< 1Mb), SRB offers the possibility to pack them transparently to the
user in HPSS using the bulk load option. However, this option was not used here since we
decided to adopt the more appropriated custom packaging solution which is the Virgo FrCopy

command. This was made possible in a very convenient manner, by using the Spcommand
command client. This command allows encapsulating whatever custom command. A FrCopy
binary was compiled on the devoted cache server ccsrb06.in2p3.fr (Solaris), and a
Spcommand was added in the transfer sequence in the script. The sequence of transfer resulted
in:

1) Transfer a bunch of small files using Sput or Srsync (in the LigoDisk cache disk
resource)

2) Check integrity of the set using Srsync –l
3) If success, perform a Spcommand to merge in HPSS resource.

The Spcommand line reads:

Spcommand -c -H ccsrb06.in2p3.fr \"mergeLigoFiles -cin

/ccin2p3/virgo/DATA/ligo/mdc/GHLV-HSG1_S5_R2 -cout

/ccin2p3/virgo/DATA/ligo/mdc/GHLV-HSG1_S5_R2/pack -i ''GHLV-HSG1_S5_R2-8769*'' -o

GHLV-HSG1_S5_R2-876900814-100000.gwf\""

Where :
-“ccsrb06.in2p3.fr” stands for the machine address of the cache server
-“mergeLigoFiles” stands for the calling script (that holds the FrCopy command),
-“/ccin2p3/virgo/DATA/ligo/mdc/GHLV-HSG1_S5_R2” stands for the small files resource
directory
-“/ccin2p3/virgo/DATA/ligo/mdc/GHLV-HSG1_S5_R2/pack” stands for the final destination
directory
-''GHLV-HSG1_S5_R2-8769*” stands for the file list (using wild cards)

Storage Resource Broker Toolkit

EGO-REP-COM-39 11

-“GHLV-HSG1_S5_R2-876900814-100000.gwf” stands for the final packed file name.
This operation was implemented with the help of the user-support, who took care of the
“mergeLigoFiles” script implementation and its installation. This script contains mainly the
directive to export the final file onto HPSS, excluding the small files would not be kept after
transfer completion.
In this way we were able to automate the transfer of Ligo files in a sequence of
transfer/merging operations. Note that the same can be applied to making the ffl files by
encapsulating the FrDump command in a transfer sequence.

3.4 Transfer performances

 The speed of the data transfer is closely dependent of the level of cross-checks that is
included in the sequence. However we observed a maximum average speed of about 7.5 MB/s
for big files (with 6 threads), while a maximum of 4 .5MB/s for small files (with 4 threads).
We interpret this difference due to the difference of thread used that was auto-managed by
SRB. When using double checksum, the overall performance is reduced significantly for big
files down to about 3 MB/s, while it remains equivalent for small files. However, for small
files speed performance was significantly reduced when using the “Srsync –l” list cross-check
in between mergings for small files. At the end we found that an average speed of about 3MB/s
could be achieve for small or big files indifferently, using the maximum cross-check sequence
(double checksum + “Srsync –l”). Note that for small files we have to consider also the file
merging action in the sequence, which results not to influence significantly the average speed.
 Concerning the robustness of the Scommands, we did not observe major problem in
general, except when the transfer occurred in the context of a saturated bandwidth. In this
stressed situation, we observed a certain amount of core-dump for the Sput command, which
had no consequences on data loss. We observed generally failures leading to the following
logs:

connectPort() -- Connection Error from server: status=-2007
connectSvr: connectPort error. status =-2007
Srsync: Connection to srbMaster failed.
Srsync:
STATUS_BAD_PACKET:

Or :

connectPort(): Connect to srbServer: ccsrb02.in2p3.fr:20269 failed, errno=111
connectSvr: connectPort error. status =-1109
Srsync: Connection to srbMaster failed.
Srsync:
CLI_ERR_SOCK_CONN: socket connect error

Or:

connectPort() -- couldn't recv status1 packet: errno=104
Connection reset by peer

Storage Resource Broker Toolkit

EGO-REP-COM-39 12

connectSvr: connectPort error. status =-1107

They all concerned connection issues with the SRB server. The connection might have been
weaken by the saturation of the bandwidth. In case of failure as mentioned above, the
concerned operation was performed again. We found other situations where the Sput command
overcame a failure by itself when using the retry option.

4 Data Access

 In this section we focus on the data management tools of SRB, and the use of the SRB
API altogether with Virgo software. It should be noted that, similarly to Xrootd, SRB has its
own disk cache that allows efficient data I/O. Recently, data analysis users asked CC user-
support to pre-stage on XRootD cache the full VSR1 raw data to allow fast disk access. The
same can be done with SRB cache.

4.1 Use of SRB SCommands

 One of the key advantages of using SRB in HPSS environment is to make it as
transparent as a UNIX platform. To illustrate the difficulty of not having such a layer, we can
point the crucial problem of making a “ffl” file list out of a HPSS directory using the rfdir
command. If the directory holds too many files, a time-out will occur, and user-support help
will become mandatory. With SRB, there are no more limitations to navigate through heavy
directories, make simple operations like reorganizing directories, moving files etc…We just
navigate through the catalog using UNIX like commands. A simple Sls list the content of a
directory whatever its size, and making a “ffl” becomes easy as being at Cascina. This aspect is
very important in particular to cross-check the integrity of the transferred data. All the
command operations can be done remotely, so one is not obliged to log on the CC machines.
This is another key point to using SRB to manage data.

4.2 Use of the SRB API

 The SRB API offers the equivalent to build the Scommand binaries. One can imagine
to write a fully automated software for transfers for instance. This can be done in many
different languages, including C, C++, Java, Python or Perl. In addition, the API provides file
I/O operations, similarly to the UNIX open, read, write, seek operations. The FrameLib
library, or Fr package is the base library used by data analysis users. We evaluated a variation
of the FrameLib based on the SRB API, and tested it on some key Virgo software. A Srb
package has been created in /virgoDev/Srb/v0r1 which contains all the SRB APIs and binaries,
and the cmt object link paths. It is the package to link on when compiling new software to
work with SRB.

4.2.1 Fr

 A modified version of the Fr package v20r0 has been created for tests. Fr is linked to
Srb package v0r1. We tested the Fr binaries FrDump, FrCopy, FrCheck. FrDump has been
used to make ffl files of the test transfers, in a remote way. As a result, with SRB, the creation
of ffl at CC has became as simple as doing it at Cascina. One can find all the ffls created in the
$GROUP_DIR/BKDB directory at CC. Two types of ffl correspond to the same data. The

Storage Resource Broker Toolkit

EGO-REP-COM-39 13

default one pointing to the HPSS real resource /hpss/in2p3.fr/group/virgo directory and the
SRB one pointing to the simplified SRB logical path /ccin2p3/virgo. The sub-directories
coincide between the HPSS resource and SRB. So making a default ffl from the SRB one is
direct. FrCopy and FrCheck were tested remotely as well with success.

4.2.2 DataDisplay

 A version of the Dy package v20r0 has been created for tests. It is a slightly modified
version of datadisplay v9r11p5, compiled with Fr v20r0. The dataDisplay was tested remotely
with a local SRB “ffl”. No use of Cm/dataSender is necessary in this case, and the access is not
IP domain restricted by CC as is the custom Cm/dataSender. The visualization of data was
tested from Cascina and the US by Marie-Anne Bizouard with success. No crash of the
application was observed, and the SRB I/O seems to work very well. We noted however that
the data flow is twice slower than using the Cm/dataSender method. Moreover, extra load time
occurs when data files are staged from HPSS. This is normal for a long term storage system,
and this drawback may be overcame by adopting a cache strategy, deciding the quantity of
cache available, and by performing pre-staging operation of big data sets.

4.2.3 Vega

 It was noted by Nicolas Leroy that Vega was not working well using XRootd as an
interface to HPSS repository. As SRB could offer an alternative, we decided to compile a Vega
SRB version on 32 and 64 bit machines. Vega then showed no more I/O problems with data
access.

4.2.4 Data book-keeping

 SRB can behave as a proxy for other relational databases, which provides an elegant
way to enrich SRB software for data analysis. We tested the use of this feature and give an
example how to filter science segment in a code application, by querying the MysQL book-
keeping developed by Leone Bosi. The example can be found in the Fr v20r0 package. To
make it possible, we simply created what is called a SRB “hidden object” pointing to the
external database address. The latter is then accessible as would be a common file. Instead of
the file name, a statement is put that contains a query to the relational database. This can be
achieved using the SRB commands Scat or the SRB API function srbObjOpen inside the
code.
For example the following command line:
>Scat
"virgoMySQL&SHADOW=<TEMPLATETYPE>XMLREL</TEMPLATETYPE>select
timestart,timestop-timestart as elapsedtime from SEGMENTS where id_session=(select
id_session from REGISTRY_SESSIONS where classname LIKE '%SCIENCE%' and
isstable=1) and timestart > 863658170 and timestop < 863793073"
Where :
-virgoMySQL is the name of the hidden object
-<TEMPLATETYPE>XMLREL</TEMPLATETYPE> is the desired output format

Which gives the following XML output :

Storage Resource Broker Toolkit

EGO-REP-COM-39 14

<?xml version="1.0"?>
<TABLE_RESULT>
<TABLE_NAME>
segments
</TABLE_NAME>
<TABLE_DATA>
<ROW ROWNUM="1">
<COLUMN COLNAME="timestart" COLTYPE="SMALLINT" MAXSIZE="22"
PRECISION="31" SCALE="0">863671684</COLUMN>
<COLUMN COLNAME="elapsedtime" COLTYPE="SMALLINT" MAXSIZE="23"
PRECISION="31" SCALE="0">7032</COLUMN>
</ROW>
<ROW ROWNUM="2">
<COLUMN COLNAME="timestart" COLTYPE="SMALLINT" MAXSIZE="22"
PRECISION="31" SCALE="0">863680497</COLUMN>
<COLUMN COLNAME="elapsedtime" COLTYPE="SMALLINT" MAXSIZE="23"
PRECISION="31" SCALE="0">21627</COLUMN>
</ROW>
<ROW ROWNUM="3">
<COLUMN COLNAME="timestart" COLTYPE="SMALLINT" MAXSIZE="22"
PRECISION="31" SCALE="0">863702298</COLUMN>
<COLUMN COLNAME="elapsedtime" COLTYPE="SMALLINT" MAXSIZE="23"
PRECISION="31" SCALE="0">42572</COLUMN>
</ROW>
<ROW ROWNUM="4">
<COLUMN COLNAME="timestart" COLTYPE="SMALLINT" MAXSIZE="22"
PRECISION="31" SCALE="0">863745155</COLUMN>
<COLUMN COLNAME="elapsedtime" COLTYPE="SMALLINT" MAXSIZE="23"
PRECISION="31" SCALE="0">45576</COLUMN>
</ROW>
<ROW ROWNUM="5">
<COLUMN COLNAME="timestart" COLTYPE="SMALLINT" MAXSIZE="22"
PRECISION="31" SCALE="0">863790875</COLUMN>
<COLUMN COLNAME="elapsedtime" COLTYPE="SMALLINT" MAXSIZE="23"
PRECISION="31" SCALE="0">1960</COLUMN>
</ROW>
</TABLE_DATA>
</TABLE_RESULT>

The same can be achieved inside a code using the function srbObjOpen :

srbObjOpen
(conn,"virgoMySQL&SHADOW=<TEMPLATETYPE>XMLREL</TEMPLATETYPE>selec
t timestart,timestop-timestart as elapsedtime from SEGMENTS where id_session=(select
id_session from REGISTRY_SESSIONS where classname LIKE \"%SCIENCE%\" and

Storage Resource Broker Toolkit

EGO-REP-COM-39 15

isstable=1) and timestart>863658170 and timestop<863793073", O_RDONLY,
"/ccin2p3/home/virgdata.cascina")
Where:
-“/ccin2p3/home/virgdata.cascina” is the path location of the hidden object.

Note that access rights can be managed on the hidden objects as for a file. With this technique
it becomes possible to enrich easily the SRB FrameLib with filters functions.

5 Conclusion
 We have investigated the properties and performances of the SRB toolkit, by
implementing several data transfer tests, and data access tests. We appreciated the easiness to
work into the SRB environment, by setting up the “.MdasEnv” file to get started, by using the
highly accessible set of APIs and binaries clients. We found good performances for the
transfers to HPSS up to about 60MBits/s without checksums that makes it comparable to bbftp.
We enjoyed the plethora of UNIX like Scommands that we could easily embed in classical
shell scripts to make transfers, ffl files or simply to manage remotely the data repository. The
SRB API library has proven to be stable and robust, and has made realistic in a short term the
use of a SRB version of the Common Virgo Software. We already can provide a set of SRB
versions of a dataDisplay, Vega, and Fr binaries, like FrDump, FrCopy, FrCheck that can be
used remotely. We benefit a lot from the help of CC user-support (Jean-Yves Nief for SRB and
Andrei Moskalenko for HPSS), while giving feedback on the ongoing tests, in collaboration
with M-A Bizouard and N. Leroy. We understood clearly that the aim of SRB is to allow
sharing various storage media transparently in a friendly UNIX way, altogether with allowing
remote data access, and appears to be the best solution so far to handle data in HPSS storage
media. We can conclude that we are convinced that this tool is reaching its goal without
problems, and is a good compromise solution to the Virgo community at CC.

___oOo___

