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1 Introduction

Gravitational wave detectors like the Virgo interferometer are brought from their uncontrolled state to their
working point in a long sequence of actions called the lock-acquisition. One of the critical steps at the beginning
of this sequence is the lock-acquisition of the high-finesse arm-cavities. For Advanced Virgo, several parameters
will change that will make this lock-acquisition more difficult:

• The finesse of the arm-cavities will increase from 150 today to around 443, which will make resonant
optical transients more pronounced.

• The mass of the mirrors will increase from around 21 kg today to around 40 kg, so the same actuation
force will only cause half the effect.

• The payloads will be redesigned completely and will probably no longer feature a recoil mass. Instead, both
the marionetta and the mirror will be actuated from Filter 7. This might complicate the controllability
of the mechanics.

• The strength of the magnets used for the actuation of the mirrors will likely be reduced, which limits the
available actuation force. This might be done for several reasons:

– Magnets with a lower strength will have a lower coupling to environmental magnetic fields.

– Less powerful magnets are generally smaller. Since the magnets have to be glued to the main mirrors,
this lowers the risk that they spoil the high quality factor of the mechanical resonances of the mirrors.
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– Smaller magnets will cause less problems with eddy-current damping, which spoil the quality factor
of the pendulum mode [1]. This effect was however never observed in Virgo. It can be solved by
using a dielectric recoil mass.

– A lock acquisition that uses less force will cause less disturbances in the payload. This might be
important for the new design of the payload, which will probably feature a high coupling from the
actuation on the mirror to the tx degree-of-freedom of Filter 7. It is also important to reduce any
shocks that could excite the violin modes. Their quality factor should be very high, so it might take
days to calm down in case of excitation.

One possibility would be to first lock the cavity with an auxiliary laser at a different wavelength, after which
the lock is handed over to the main laser [2, 3]. In this note, such systems will not be discussed. Instead, we will
focus on the limits of the current method of locking the cavities and will see what can be gained by improving
the locking algorithm only.

2 Theory

2.1 Threshold-velocity

Due to various physical limits, it is not possible to lock a cavity with a linear controller when the mirror is
passing a resonance with arbitrary large speed. Some of these limits can be calculated [4]. These formulas are
not exact, but they should give a good idea how the threshold velocity scales with various parameters. The
time it takes to cross a resonance tres is

tres =
λ

2vF
, (1)

where λ is the wavelength, v the velocity of the mirror and F is the finesse of the cavity. The first limit vmax1

follows from the response time of the feedback loop, which is roughly tloop = 1/2πB. Equating this to Eq. 1
and solving for the velocity yields

vmax1 =
πλB

F
, (2)

with B is the bandwidth of the control loop in Hz. If the resonance is passed with a larger velocity, the loop
will not be fast enough to acquire the lock.

A second limit comes from the impulse of the mirror mv, which can be stopped by applying the maximum
available force Fmax for a time tpulse = mv/Fmax If the required time is longer than the time to cross the
resonance, the cavity cannot be locked. This gives a threshold velocity

vmax2 =

√
Fmaxλ

2Fm
. (3)

A final requirement comes from the resonant behavior of the cavity, which makes that the field inside the cavity
takes a finite time to build up. Requiring that the time to pass resonance is longer than the storage time
tst = 2FL/(πc) yields

vmax3 =
λπc

4F2L
, (4)

with c the speed of light and L the cavity length. Passing the resonance with a higher speed will lead to ringing
effects in the signals in reflection and transmission of the cavity, which could spoil the signal that is used to
lock the cavity [5].

Filling in some typical values for the Virgo, Virgo+ and Advanced Virgo interferometers, the threshold velocities
can be calculated, see Table 1. Lacking a design of the new payload, it is assumed that the maximum available
force per actuator will not change. Up to now, the lock was always performed using a single coil-pair (up &
down coils of the end-mirror). It is assumed that for Advanced Virgo, all 4 coil-pairs per cavity will be used



Lock acquisition with reduced force

VIR-0019A-12
issue : 1
date : May 4, 2012
page : 3 of 18

(both up-down and left-right coils of both the input and end-mirrors). Furthermore, it is assumed that due to
upgrades in the control system, a factor two in bandwidth can be gained.

Table 1: Calculated maximum velocities

Property Symbol Unit Virgo Virgo+ Adv. Virgo
mirror mass m kg 20 20 40
arm cavity finesse F - 50 150 445
loop bandwidth B Hz 100 100 200
maximum force per coil-pair Fmax mN 2.9 2.9 2.9
number of coil pairs - - 1 1 4
threshold-velocity due to finite bandwidth vmax1 um/s 6.7 2.2 1.5
threshold-velocity due to finite force vmax2 um/s 1.2 0.7 0.6
threshold-velocity due to ringing effects vmax3 um/s 33.4 3.7 0.4

As shown in the table, the threshold velocity due to the bandwidth will not decrease a lot for Advanced Virgo,
since we assumed that the effect of the increasing finesse can be partly compensated with an increase of the
control bandwidth. The threshold velocity due to the maximum force can be partly recovered by using more
than 1 coil-pair. This limit will however get more critical if it is decided to reduce the strength of the magnets.
The decrease of the threshold velocity due to the ringing effect seems to be the most most critical for Advanced
Virgo, especially since it scales inversely with the square of the finesse.

2.2 Signal linearization

The signal used to lock a cavity is usually a Pound-Drever-Hall (PDH) signal, which is obtained by phase-
modulating the laser field and demodulating the signals in reflection or transmission of the cavity. This signal is
linear over a range of the cavity length that is roughly equal to its linewidth, so λ/(2F). It is possible to increase
this range by normalizing the PDH signal with the transmitted power of the cavity [4]. When the cavity is
almost out-of-resonance, this method requires dividing by a small number that is affected by shot or electronic
noise. The increase of the linear range is therefor only a small factor (∼ 3). This works well to somewhat relax
the requirements due to the bandwidth and the maximum force. It does however not help for the threshold due
to the ringing effects, since both the PDH-signal and the transmission are affected in a different way.

2.3 Guided lock (single impulse)

The typical speed of a free-swinging mirror, after being damped by the local control system, is on the order of 1
um/s. According to the values of Table 1, it should thus be possible to lock the cavities for Virgo and Virgo+
without much problems. This is confirmed by the experience that it until now, it was always easy to lock the
arm-cavities. The change of parameters for Advanced Virgo, however, might just be enough to change this from
an easy to a hard (or even impossible) task.

It thus becomes important to reduce the velocity of the mirrors before the actual lock acquisition is attempted.
A solution to this problem, sometimes called guided locking, has been studied many years ago at LIGO and
TAMA [6, 7]. The method consists in estimating the velocity when the uncontrolled cavity crosses a resonance,
after which a single, long impulse is applied to the actuators. The length of the impulse is chosen so that it
is enough to completely stop the mirror and accelerate it back towards resonance with reduced velocity. The
controller then waits for the mirror to drift back to another crossing of the resonance. If the new velocity is
low enough, a feedback loop with a standard linear controller can be engaged. If the velocity is still too high,
another pulse can be applied. How to calculate the pulse length based on the measured velocity is explained in
Appendix A.1.
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2.4 Guided lock (double impulse)

During the time it takes for the mirror to return back to resonance, it can be disturbed by the restoring force of
the pendulum and the residual seismic noise. To limit this effect, this time should be kept as short as possible.
We therefore investigated a slightly modified algorithm. The idea is to apply both a positive and a negative
pulse, so that nominally, the mirror arrives at resonance with velocity close to zero. Instead of simply waiting
for it to drift back to resonance after the first pulse, the pulse is extended to accelerate it further. To finally
arrive at low speed, a second pulse with opposite sign is applied to brake the mirror just at the right moment.
How to calculate the length of the two pulses based on the measured velocity is explained in Appendix A.2. The
double-pulse method does indeed seem slightly faster, but it is not sure if this justifies the increase in complexity
of the algorithm.

3 Velocity estimation during a resonance crossing

As described in section 2.3, the guided-lock algorithm needs an accurate measurement of the velocity of the
mirror when it passes through a resonance. Ideally, such a measurement gives a value that is linear to the
velocity, but any function that gives a value that depends in a smooth way on the velocity would be sufficient,
since this could be corrected with e.g. a calibration table. Other requirements to the measurement are that it
should be fast to calculate (within a few samples of passing the resonance), it should be robust against noisy
signals and it should be able to measure velocities that are larger than the velocity to which the system can be
pre-damped using the local controls.

One complex method of measuring the velocity based on the ringing effect was given by Matone [8]. This
method requires finding the minima and maxima of the ringing signal, after which a polynomial fit has to be
done, which is non-trivial to implement.

An alternative method uses only the derivative of the linearized error signal described in section 2.2. At a
velocity that is low enough to not cause ringing effects, this error signal is linear to the position, so its derivative
is proportional to the velocity. It was found that the same method can be used to accurately measure higher
speeds, if a simple correction by a power-law is applied [7]. The measured value vmeas is thus calculated as

vmeas = C

(
∂

∂t

SPDH

SDC

)P

, (5)

where SPDH and SDC are the PDH and transmission signals from the photodiodes, C is a calibration constant
and P is a power. This calculation can be implemented easily in real-time by using a high-pass filter.

At high speeds, the calculated velocity is only valid during a few samples around the crossing of the resonance.
Care must thus be taken to extract the velocity in a robust way. Trail-and-error, both in experiment and
simulation showed that the best moment to sample this velocity is at the moment that the PDH-signal crosses
zero. A threshold on the transmitted power of the cavity should be used to discriminate a zero-crossing due to
the resonance crossing of the carrier from a zero-crossing due to a sideband or due to noise. As an alternative
sample time, one could choose the maximum of the transmitted power. This proved to be less reliable, probably
since it occurs slightly later in time and is thus closer to the moment the ringing effect starts to spoil the signal.

3.1 Experimental calibration with Virgo+

To demonstrate the velocity estimation using the normalized error signal, some data of a free swinging arm-
cavity of Virgo+ was analyzed. To get data at higher speeds than normal, one of the mirrors was excited by a
kick to make it oscillate at its main pendulum mode.

If the mirror oscillates by more than a few wavelengths, the velocity can be easily calibrated. Every time the
cavity passes a resonance (as seen by the transmission of the cavity), the length of the cavity should be an
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exact integer number of half-wavelengths. By looking at the derivative of the PDH error signal, the sign of
the velocity can be obtained, so the mode number of the resonance can be obtained by counting up and down
[12]. The position of the mirror when it is between two resonances can then be estimated using a cubic-spline
interpolation, from which the velocity can be obtained using simple derivation, see Fig. 1.

For every resonance crossing, the velocity is calculated using the algorithm described in the previous section.
The obtained values are plotted versus the calibrated velocity obtained with the interpolation method. As
shown in Fig. 2, the obtained relation is slightly non-linear. This can be corrected by applying a simple power
law, as suggested in [7]. Some trial-and-error shows that P ≈ 1.1 works best. After correction, the signal is
linear up to 10 um/s, with a standard deviation of the relative error of around 2 percent.

3.2 Simulation using E2E for Advanced Virgo

Performing an accurate measurement of the velocity will become more difficult for Advanced Virgo, since the
ringing effect will be bigger due the increase of the finesse. To see if such a measurement is still possible in the
future can be checked using a simulation. A simple Fabry-Perot cavity was simulated using E2E [13], with all
the optical parameters set as in Advanced Virgo. The length of the cavity was changed at constant velocity, see
Fig. 3 for an example of the simulated signals during a resonance crossing.

The simulation was performed for a range of velocities up to 10 um/s. In each case, the velocity was calculated
using the algorithm of section 3 and then plotted versus the true velocity, see Fig. 4. As with the measurements
on Virgo+, the obtained relation is slightly non-linear, but this can again be corrected by raising the obtained
value to the power 1.1.

Note that the simulation did not include any electronic, ADC or shot-noise. Only the discretization in the time
domain is simulated at 10 kHz. The small steps seen in the calibration curve might be due to the sampling point
jumping by 1 sample. Around 9 um/s, the algorithm breaks down, probably due to the finite sample rate. The
maximum speed at which the speed can be measured will probably be much lower if the real noise is considered.

4 Non-linear lock acquisition

4.1 Experiment with Virgo+ using a DSP

A first experimental test of a non-linear locking algorithm similar to guided locking was implemented using one
of the DSPs, just before the shutdown of Virgo+. Global Control was modified to simply forward the signals
Pr_B5_ACq and Pr_B7_DC to the North-End DSP. The algorithm in the DSP was modified to calculate the
normalized error signal and take its derivative, which should be proportional to the speed. A correction to the
mirror was then sent to the mirror proportional to this value, causing more or less a viscous damping. Since the
goal of this test was to see with how small forces we could still lock, the correction was clipped to low values.
Due to this clipping, the correction was saturating, so the resulting correction resembles a bit the rectangular
pulses used in the guided lock algorithm. The correction is switched off when the transmission of the cavity
drops below a certain, very low threshold. If the velocity is low enough, a standard linear lock is engaged.

Even though this method is not an exact implementation of the guided-lock algorithm, it was able to reliably
lock the cavity with a limit on the actuator voltage as low as Vmax = 0.02 V (corresponding to a force of the
actuator Fmax = 0.073 mN). The maximum value for a single coil-pair is Vmax = 0.8 V (Fmax = 2.9 mN), so
40 times less than is used normally with the up-down coils of the end-mirror. Since up to 4 coil-pairs can be
used for the lock (both up-down and left-right for both the input and end-mirror) the total force used for the
lock was thus a factor 160 lower than the maximum available force. Fig. 5 shows an example of such a lock
acquisition, see [9, 10] for more details.

One problem that was discovered was that with such low force, the cavity usually unlocks after a few seconds
due to low-frequency disturbances which saturate the actuator, as seen at the end of Fig. 5. This has been
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Figure 1: Calibration of velocity by interpolating signals from a free-swinging cavity.
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Figure 2: Speed measured with the Pound-Drever-Hall signal vs calibrated speed obtained by fringe-
interpolation, using data shown in Fig. 1. The slight non-linearity can be corrected by raising the measured
value to the power 1.1.
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of the cavity is less than 1/10th of the maximum value and a usable signal for the speed measurement is only
available for a few samples. The red dotted line indicates the moment the velocity is calculated.
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Figure 5: Demonstration of lock with the DSP. After 2 seconds, the lock is lost due to an artificial saturation
of the actuator. The zCorr signal has been rescaled, it was limited to 0.01 V in this experiment.

solved by an almost immediate reallocation of the low-frequency part of the correction to the marionetta, see
Fig. 6. The marionetta, which is located one stage higher in the suspension chain, has a much larger dynamic
range at low frequencies. In Virgo, the reallocation was only done at later steps of the lock acquisition.

4.2 Experiment with Virgo+ using Global Control

In a second experimental test, a guided-lock algorithm was implemented in Global Control, using the 2-
pulse method described in section 2.4. As with the test with the DSP, the error signal is calculated as
Pr_B5_ACq/Pr_B7_DC and the velocity as the derivative of this. Two pulses with opposite sign are then sent
to the North-End mirror, with the length of the pulses proportional to the measured velocity. After sending
the two pulses, the algorithm waits until the transmission of the cavity is above a certain threshold and then
engages a linear feedback loop. If the resonance is not found within a certain timeout period, the algorithm
starts all over. The logic of the algorithm is implemented in C as a simple state machine, see Appendix B.
Further details are given in [11].

For the algorithm to work well, both the velocity measurement and the force of the actuator should be calibrated.
In practice, since the length of the pulses is calculated using the product of these two calibration values, only a
single value has to be tuned until the algorithm could lock the cavity. This value was easily found with a bit
of trial-and-error, see Fig. 7 for an example of a successful lock acquisition. Once the cavity could be locked
reliably, the maximum force was reduced (which means that the length of the pulses will become longer), until
it was impossible to lock.

The minimum force with which the lock could be easily acquired was with a limit on the actuator voltage of
Vmax = 0.05 V (corresponding to a force of the actuator Fmax = 0.18 mN). The maximum value for a single
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Figure 6: Demonstration of a lock with the DSP, in which the low-frequency part of the correction is reallocated
to the marionetta after 1 second. The zCorr signal has been rescaled, it was limited to 0.02 V in this experiment.
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Figure 7: Demonstration of lock with Global Control. Using the length of the pulse and the known force of the
actuator, the velocity of the first resonance crossing can be estimated to be around 0.3µm/s.

coil-pair is Vmax = 0.8 V (Fmax = 2.9 mN), so 16 times less than normally used. It is possible to use 4 coil-pairs
per cavity, which means a factor of 64 lower than possible. Note that not as much time was spent fine-tuning
the algorithm and no reallocation to the marionetta was used, as were done for the experiment with the DSP.

4.3 Simulations using E2E for Advanced Virgo

The experimental tests described in the last two sections were performed using the Virgo+ interferometer,
so the obtained results are not directly applicable to Advanced Virgo. To make any quantitative statement
about Advanced Virgo, we must rely on simulations. A model of a simple cavity with simplified suspensions
was therefore implemented in E2E [13]. Since E2E allows the inclusion of blocks written in C, the two-pulse
algorithm used in Global Control could be used without modification. Various tests were done with both the
1-pulse and 2-pulse algorithm. See Fig. 8 for an example of a simulated lock using the 1-pulse algorithm.

The mechanics of the mirror were simulated using a simulation block that is based on a model of the Initial
LIGO suspensions. Its parameters were modified to resemble a mirror of Advanced Virgo, but this is still far
from realistic. For the moment, we can thus not make any quantitative conclusions. This simulation must just
be seen as a proof-of-principle. Once more details about the mechanics of the future payloads are available, we
should be able to obtain quantitative results in a short time.

5 Conclusion

In this note, we discussed how the lock of a high-finesse cavity can be acquired with minimal force. We discussed
some theoretical limits to the maximum velocity of a mirror in case a linear feedback is used. These limits were
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not violated for Virgo and Virgo+, which is confirmed by our experience that it was always easy to lock. Some
of these limits will probably be exceeded for Advanced Virgo, so it might become difficult or even impossible to
lock with a conventional feedback loop.

One solution to this problem is guided locking, in which the velocity of the free-swinging mirror is measured
during a resonance crossing. A long pulse is then sent using the actuators to bring it back at resonance back
with reduced velocity. When the velocity is reduced enough, the lock can be acquired using a standard linear
controller. This method has been tested by LIGO and TAMA in the past. As described in this note, we have
experimentally tested a similar method using the Virgo+ interferometer and have implemented the algorithm
in simulation with the parameters of Advanced Virgo, both with great success. The guided-lock method is thus
extensively tested and easy to implement, so it can be used for Advanced Virgo without any problems.

In two different experiments, we showed that we could still acquire the lock while the maximum actuator force
was artificially limited by a factor 40 of what is normally used. We were only using one out of the four available
actuators, so we can claim that, in good weather conditions, we were operating with a safety margin of 160.

One crucial part of the method is to accurately measure the velocity when passing a resonance. We described
experimental tests with Virgo+, which showed that we can accurately calibrate the measurement up to velocities
of 10µm/s. Simulations using parameters of Advanced Virgo showed that the same measurement should still
work up to velocities that can be reached by pre-damping the mirrors with the local controls. What is still
missing in the simulation is an accurate model of the noise of the photodiodes, which might limit the maximum
velocity that can be measured and which might introduce larger errors in the measurement. Once more details
of the detection system are available, we will have to verify in simulation that this does not affect the robustness
of the guided lock algorithm.

The standard scheme in guided locking uses a single pulse. To reduce the time to lock, we investigated a
modification of the algorithm that uses two pulses of opposite sign. A detailed theoretical analysis showed that
the possible gain is small, so it is possibly not worth the effort. Anyhow, such variations are easy enough to
implement and test, so a possible optimization of the algorithm can probably be done during the commissioning
of the arm cavities.

For Advanced Virgo in power-recycled configuration, using the guided-lock algorithm is probably enough to
guarantee a successful lock-acquisition without the use of an auxiliary laser system. Such a system might still
be needed when we change to a double-recycled configuration.

5.1 Requirement on locking force

One of the parameters that should come out of this study is the maximum required locking force, which is
needed for the design of the coils and the strength of the magnets glued to the mirror. We can only answer
this question when an accurate model of the new payload is available. This model should include both the
transfer-functions of the mirror and the marionetta, since it might be required to immediately reallocate the
low-frequency part of the correction to the marionetta.

To determine the required force, requirements on the velocity due to the high finesse given in section 2 are no
longer very relevant, since they can be fulfilled by using the guided-lock algorithm. That does not mean that
we could lower the force of the actuators arbitrarily. One possible criterion might come from the total time to
lock in relation to the relevant time-constants of the disturbances of the system, which is probably dominated
by the 0.6 Hz pendulum mode and some low-frequency modes of the whole suspension chain. To not violate the
assumption that the mirror is a free-moving object, we can thus require that the total time to lock is a large
factor (> 10) smaller, so lets say ttotal < 1/(0.6 · 10) ≈ 0.1 sec. (Note that it would be OK if it takes 1 minute of
failed lock attempts, followed by a single successful lock within 0.1 second). As shown in section A.3, the total
time to reach a resonance with a 1-pulse algorithm is ttotal = 4v0/a = 4v0m/Fmax. Solving for the force and
using a typical velocity of 1µm/s gives

Fmin =
4v0m

tmax
=

4 · 10−6 · 40

0.1
= 1.6 mN. (6)
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This is probably an overestimate, since you could wait a bit for a very slow resonance crossing. The calculated
value has to be compared with the currently available force of 4 · 2.9 = 11.6 mN.

In experiments with Virgo+, a very large safety margin on the force was found. Some amount of safety margin
should be kept to account for bad weather conditions or problems like broken actuators. It is expected that
we could reduce the maximum force by a small factor (say 5-10) without major problems. This will have to be
confirmed using future simulations.

A Calculation of pulse lengths for the guided lock algorithm

In this section, we will calculate the length of the impulses needed to bring a mirror back to a resonance with
a given velocity, which is needed in the guided-lock algorithm. We will also calculate the total time required to
bring the mirror to a resonance with zero velocity, which is the parameter which we want to minimize.

It is assumed that the velocity of the mirror during a resonance crossing v0 can be accurately measured using
the method described in section 3. Furthermore, it is assumed that the mirror is a free-moving body, so that
the force of the pendulum and the seismic disturbances can be ignored. This is valid if the time to stop the
mirror is much smaller than the pendulum period. The mirror is only actuated at maximum force, which causes
an acceleration of a = Fmax/m. All times, velocities and distances are assumed to be positive.

A.1 Single impulse

In the original guided-lock algorithm [6, 7], a single rectangular pulse is applied after the mirror crosses a
resonance. To make the mirror come back with velocity vend = εv0 (with 0 ≤ ε ≤ 1), a pulse of length tpulse
should be applied

tpulse =
v0 + vend

a
=
v0
a

(1 + ε). (7)

At the end of this pulse, the mirror is away from the resonance by a distance xpulse

xpulse =
v20
2a
− v2end

2a
=
v20(1− ε2)

2a
. (8)

After this, one has to wait a time tdrift until the mirror drifts back to resonance

tdrift =
xpulse
vend

=
v20(1− ε2)

2aεv0
=
v0
a

(
1

2ε
− ε

2

)
. (9)

The total time to return to resonance treturn is thus

treturn = tpulse + tdrift =
v0
a

(
1 +

ε

2
+

1

2ε

)
. (10)

Note that if a small return velocity is chosen, the time to return back to resonance will become very long.

A.2 Double impulse

As shown in the previous section, when using only a single pulse and choosing a low return velocity, it can
take a long time before the mirror drifts back towards resonance. This time can be shortened by, after the
desired velocity is reached, continuing to accelerate towards the resonance at maximum force. After a while,
the actuation is changed to braking at maximum force, to arrive at resonance with the desired velocity.

This method can be divided in 3 periods: in the first part the mirror is slowed down to the desired target
velocity, this is exactly equal to tpulse of Eq. 7. In the second part, which lasts a time taccel, the mirror is
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accelerated further towards resonance, while in the last part that takes tbrake, the mirror is slowed down for the
second time to the target velocity. Since the accelerating and braking happens with the same force, it follows
that taccel = tbrake. During these last two periods, the mirror moves over a distance

xaccel+brake = taccel (vend + ataccel/2) + tbrake (vend + atbrake/2) = 2tbrakevend + t2brakea (11)

Equating this to Eq. 8 and solving for a positive solution of tbrake yields

taccel = tbrake =

√
v2
end

2 +
v2
0

2 − vend
a

=
v0
a

(√
ε2 + 1

2
− ε

)
. (12)

The first two periods are combined into one pulse of the same sign, which lasts

tpulse1 = tpulse + taccel =
v0
a

(√
ε2 + 1

2
+ 1

)
, (13)

followed by a second pulse of opposite sign that lasts tpulse2 = tbrake. The total time to return to resonance
treturn is finally

treturn = tpulse1 + tpulse2 =
v0
a

(√
2ε2 + 2 + 1− ε

)
. (14)

The difference between the two 1-pulse and 2-pulse algorithms is clearly illustrated in Fig. 9, in which the return
speed was chosen as ε = 0.2 in both cases.

A.3 Comparison

During the time that the mirror returns to resonance, the motion of the mirror will be disturbed by the restoring
force of the pendulum and by the residual seismic noise. It could thus return with a velocity that is totally
different than expected or even change direction and move towards the next resonance. To reduce this effect as
much as possible, we want to bring back the mirror to resonance as fast as possible.

To compare the single and double-pulse methods, the time to return to resonance is plotted as a function of ε,
see Fig. 10a. When the return velocity is chosen as zero, the time for the 1-pulse method goes to infinity, while
the double-pulse method reaches a minimum of treturn = (1 +

√
2)V0/a. It can be proven that this is the fastest

possible way to get back to resonance, given a limited force. The single pulse method reaches a minimum of
treturn = 2V0/a for ε = 1 (so the mirror returns with the original speed).

The time it takes to return to resonance is actually not very relevant, what is really important is the total time
to bring the mirror at resonance with speed zero so that the linear lock can be engaged. When the mirror
returns with reduced speed at resonance, the algorithm can be repeated so that the speed converges towards
zero. The total time ttotal can be calculated as

ttotal = (1 + ε+ ε2 + ε3 + . . .)treturn =
treturn
1− ε

, (15)

which is plotted in Fig. 10b. As before, the double pulse algorithm gives a minimum time of ttotal = (1+
√

2)v0/a
for ε = 0, while the single pulse method now shows a minimum of ttotal = 4v0/a for ε = 1/3.

The 2-pulse algorithm thus seems faster than the single pulse algorithm by a factor 1.65. In practice, due to
uncertainties in measuring the velocity v0 and due to disturbances, it is probably not desirable to give the
2-pulse algorithm a target velocity of zero. Because of these uncertainties, it is possible that the mirror stops
slightly before resonance and then starts moving away from the resonance, so it could take a long time before
it returns back to the same or the next resonance. To improve the robustness of the lock, the mirror should
therefore be brought back with a lower but nonzero velocity, which increases the total time and thus further
reduces the advantage with respect to the 1-pulse algorithm.
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Figure 9: Illustration of acceleration (a), velocity (b), position (c) and transmission (d), for the 1 and 2 pulse
algorithms. The return speed is chosen as ε = 0.2.
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B Guided-lock algorithm in Global Control

Below is an excerpt of the code of GcLocking that implements the state-machine for the 2-pulse algorithm.
The complete algorithm is implemented in CavityTestSensing that is part of GcLocking version v2r14p1.
All capitalized variables are parameters that can be changed on-fly. The only inputs to the algorithm are the
transmission of the cavity (signals[D7_DC]) and the Pound-Drever-Hall signal in reflection(signals[D5_P]),
while the only output is the correction sent to the north-end mirror (corr).

dc = signals[D7_DC] / DC_MAX; //calculate error signals

error_last = error;

if (dc > 1e-4) { //prevent divide by zero and insanely large values

error = signals[D5_P] / signals[D7_DC];

} else {

error = 0;

}

if (dc > TH_CALC) { //to not pollute filter

velocity = derivator.compute_output(error) * CALI;

derivator.update_registers();

} else {

velocity = 0;

derivator.reset_history();

}

switch(state) { //state machine for north-cavity lock

case 0: //uncontrolled, waiting for first resonance

corr = 0;

counter = 0;

if (dc > TH_NONLIN && (error_last > 0 ^ error > 0)) { //zero-crossing of error signal

V_save = velocity; //TODO: protect for too large values

counter = int(C1 * fabs(V_save));

state = 1;

}

break;

case 1: // impulse 1

corr = V_save > 0 ? CORR_MAX : -CORR_MAX;

counter -= 1;

if (counter <= 0) {

counter = int(C2 * fabs(V_save));

state = 2;

}

break;

case 2: // impulse 2

//corr = - CORR_MAX * sign(V_save);

corr = V_save > 0 ? -CORR_MAX : CORR_MAX;

counter -= 1;

if (counter <= 0) {

counter = TIMEOUT;

state = 3;

}

break;
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case 3: //wait for return to resonance

corr = 0;

counter -= 1;

if (dc > TH_LINEAR) {// or check velocity again?

state = 4;

} else if (counter <= 0) { //timeout

state = 0;

}

break;

case 4: //linear lock

corr = GAIN * controller.compute_output(error);

controller.update_registers();

corr = corr > CORR_MAX ? CORR_MAX : corr; //clip

corr = corr < -CORR_MAX ? -CORR_MAX : corr;

counter = 0;

if (dc < TH_UNLOCK) { //unlock

state = 0;

controller.reset_history();

}

break;

} //switch(state)
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