

2022, December 22

Contribution of the HR coatings to the thermal detuning of the Virgo FDS Filter Cavity

Michel LEQUIME, Myriam ZERRAD, and Claude AMRA

Introduction

Experimental measurement

M. Lequime, M. Zerrad et C. Amra

ISTITUT

FRESNE

Filter Cavity

Resonance conditions

$$\begin{cases} \varphi_{\text{EM}}(\lambda_1) + \frac{4\pi L}{\lambda_1} + \varphi_{\text{IM}}(\lambda_1) = 2p_1\pi \\ \varphi_{\text{EM}}(\lambda_2) + \frac{4\pi L}{\lambda_2} + \varphi_{\text{IM}}(\lambda_2) = 2p_2\pi \end{cases} \quad p_1, p_2 \in \mathbb{N}$$

- Theoretical data
 - λ_1 = 532 nm; $\varphi_{\text{EM}}(\lambda_1)$ = 0,6931 rads; $\varphi_{\text{IM}}(\lambda_1)$ = -0,7959 rads
 - λ_2 = 1064 nm ; $\varphi_{\text{EM}}(\lambda_2)$ = 0,1970 rads ; $\varphi_{\text{IM}}(\lambda_2)$ = -2,7323 rads
- Experimental measurement
 - $L = 284.8994(51) \pm 2.8 \times 10^{-5} \text{ m}$

M. Lequime, M. Zerrad et C. Amra

Filter Cavity HR coatings

- Effect of a temperature variation on the optical properties of a multilayer stack
 - Hypothesis: perfect adhesion between the layers (f) and the substrate (s)
 - Direct effects
 - ✓ Modification of the physical thickness of each layer (coefficient of thermal expansion CTE, α_f)
 - \checkmark Change in the refractive index of each of the layers (thermo-optic coefficient, β_f)
 - Indirect effects
 - ✓ Change in thickness of each layer due to the thermo-mechanical expansion of the substrate (coefficient of thermal expansion α_s , Poisson ratio v_f)
 - ✓ Change in the refractive index of each layer due to the thermo-mechanical expansion of the substrate (coefficient of thermal expansion α_s , Poisson ratio v_f , elasto-optic coefficients p_{11} et p_{12})

R. Parmentier and M. Lequime, "Substrate-Strain-Induced Tunability of Dense Wavelength-Division Multiplexing Thin-Film Filters," Opt. Letters **28**, 728-730 (2003) and **28**, 1279 (2003) M. Lequime, "Tunable Thin-Film Filters: Review and Perspectives," in *Advances in Optical Thin Films*, C. Amra, N. Kaiser, and H.A. Macleod, eds., Proc. SPIE **5250**, 302-311 (2003)

Filter Cavity HR coatings

Thermal sensitivity: general formula applicable to each layer

R. Parmentier and M. Lequime, "Substrate-Strain-Induced Tunability of Dense Wavelength-Division Multiplexing Thin-Film Filters," Opt. Letters **28**, 728-730 (2003) and **28**, 1279 (2003) M. Lequime, "Tunable Thin-Film Filters: Review and Perspectives," in *Advances in Optical Thin Films*, C. Amra, N. Kaiser, and H.A. Macleod, eds., Proc. SPIE **5250**, 302-311 (2003)

M. Lequime, M. Zerrad et C. Amra

Thin-Film properties

Quantity	S. Michel	E. Çetinörgü	G. H. Ogin	GWINC	Model
α_f SiO2 (°C ⁻¹)		2.1×10^{-6}	5.5×10^{-6}	5.1×10^{-7}	2.1×10^{-6}
v_f SiO2	0.17	0.11		0.17	0.11
β_f SiO2 (°C ⁻¹)	6.9×10^{-6}		1.9×10^{-6}	5.9×10^{-6}	3.9×10^{-6}
p_{11}/p_{12} SiO2	0.121/0.270				0.121/0.270
$α_f$ Ta2O5 (°C ⁻¹)	2.4×10^{-6}	4.4×10^{-6}	8.9×10^{-6}	3.6×10^{-6}	3.4×10^{-6}
ν _f Ta2O5	0.23	0.27		0.23	0.24
$β_f$ Ta2O5 (°C ⁻¹)	1.1×10^{-6}		5.8×10^{-5}	6.8×10^{-6}	4.0×10^{-6}
p_{11}/p_{12} Ta2O5	0.068/0.164				0.068/0.164

S. Michel, "Vers une determination optique directe des coefficients opto-mécaniques et thermo-optiques des couches minces optiques, Thèse de Doctorat, Université Aix-Marseille (2008) E. Çetinörgü, et al., "Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering," Appl. Opt. 48, 4536-4544 (2009)

G. H. Ogin, "Measurement of Thermo-Optic Properties of Thin Film Dielectric Coatings," PhD Thesis, California Institute of Technology (2013)

LIGO's Gravitational Wave Interferometer Noise Calculator – GWINC Version 3

M. Evans, et al., "Thermo-optic noise in coated mirrors for high-precision optical measurements," Phys. Rev. D 78, 102003 (2008)

C.-L. Tien, et al., "Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using PSI," J. Modern Optics 47, 1681-1691 (2000)

A. K. Chu, et al., "Temperature dependence of refractive index of Ta2O5 Dielectric Films," J. Electro. Mater. 26, 889-892 (1997)

M. Lequime, M. Zerrad et C. Amra

Thin-Film properties

Three important remarks

- The properties of thin film materials are highly dependent on the deposition process and the machine parameters
- It is not clear whether the elasto-optical coefficients have to be taken into account separately or whether they are already included in the thermo-optical coefficients
- The thermal sensitivity can be almost cancelled out by an appropriate choice of the thermal expansion coefficient of the substrate (DWDM application)

H. Takashashi, "Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition," Appl. Opt. **34**, 667-675 (1995) M. Lequime, "Tunable Thin-Film Filters: Review and Perspectives," in *Advances in Optical Thin Films*, C. Amra, N. Kaiser, and H.A. Macleod, eds., Proc. SPIE **5250**, 302-311 (2003)

M. Lequime, M. Zerrad et C. Amra

Filter Cavity HR coatings

- Application to FC EM and FC IM mirrors
 - Silica substrate (Suprasil): $\alpha_s = 5.1 \times 10^{-7} \text{ °C}^{-1}$

• SiO2 layers:
$$\frac{1}{\Delta T} \cdot \frac{\Delta(ne)}{ne} = 6.4 \times 10^{-6} \, {}^{\circ}\mathrm{C}^{-1} \, (7.5 \times 10^{-6} \, {}^{\circ}\mathrm{C}^{-1})$$

• Ta2O5 layers:
$$\frac{1}{\Delta T} \cdot \frac{\Delta(ne)}{ne} = 9.2 \times 10^{-6} \,^{\circ}\text{C}^{-1} \, (10.8 \times 10^{-6} \,^{\circ}\text{C}^{-1})$$

Material	Thermo- mechanical effect	Thermo-optic effect	Elastic effect	Elasto-optic effect
SiO2	2.1×10^{-6}	3.9×10^{-6}	0.4×10^{-6}	1.1×10^{-6}
Ta2O5	3.4×10^{-6}	4.0×10^{-6}	1.8×10^{-6}	1.6×10^{-6}

M. Lequime, M. Zerrad et C. Amra

Filter Cavity

- Application to FC EM and FC IM mirrors
 - Thermal sensitivity of reflection phase shifts

 $\frac{\partial \varphi_{\rm IM}}{\partial T}(\lambda_1) = 1.2 \times 10^{-3} \text{ rads/°C} \qquad \frac{\partial \varphi_{\rm IM}}{\partial T}(\lambda_2) = 4.9 \times 10^{-5} \text{ rads/°C}$ $\frac{\partial \varphi_{\rm EM}}{\partial T}(\lambda_1) = 2.7 \times 10^{-3} \text{ rads/°C} \qquad \frac{\partial \varphi_{\rm EM}}{\partial T}(\lambda_2) = 1.3 \times 10^{-4} \text{ rads/°C}$

- IM mirror kept at a constant temperature
- Resonance condition at λ_1 maintained by a cavity length adjustment

$$\frac{4\pi f_1}{c} \frac{\partial L}{\partial T} = -\frac{\partial \varphi_{\rm EM}}{\partial T} \bigg|_{f_1}$$

M. Lequime, M. Zerrad et C. Amra

Filter Cavity

Consequence

$$\frac{4\pi}{c} \left\{ L \frac{\partial f_2}{\partial T} + f_2 \frac{\partial L}{\partial T} \right\} = -\frac{\partial \varphi_{\text{EM}}}{\partial T} \bigg|_{f_2}$$

$$\frac{\partial f_2}{\partial T} = \frac{c}{4\pi L} \left\{ \frac{1}{2} \frac{\partial \varphi_{\rm EM}}{\partial T} \right|_{f_1} - \frac{\partial \varphi_{\rm EM}}{\partial T} \right|_{f_2} \right\}$$

• FC thermal detuning

$$\frac{\partial f_2}{\partial T} = 102 \text{ Hz/°C}$$

$$\frac{\partial f_2}{\partial T} = 121 \text{ Hz/°C}$$

[[[

M. Lequime, M. Zerrad et C. Amra