Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, ${ }^{1}$ R. Abbott, ${ }^{1}$ T. D. Abbott, ${ }^{2}$ M. R. Abernathy, ${ }^{1}$ F. Acernese,,${ }^{3,4}$ K. Ackley,,${ }^{5}$ C. Adams, ${ }^{6}$ T. Adams, ${ }^{7}$ P. Addesso, ${ }^{8}$ R. X. Adhikari, ${ }^{1}$ V. B. Adya, ${ }^{9}$ C. Affeldt, ${ }^{9}$ M. Agathos, ${ }^{10}$ K. Agatsuma, ${ }^{10}$ N. Aggarwal, ${ }^{11}$ O. D. Aguiar, ${ }^{12}$ L. Aiello, ${ }^{13,14}$ A. Ain, ${ }^{15}$ P. Ajith, ${ }^{16}$ B. Allen, ${ }^{9,17,18}$ A. Allocca, ${ }^{19,20}$ P. A. Altin, ${ }^{21}$ D. V. Amariutei, ${ }^{5}$ S. B. Anderson, ${ }^{1}$ W. G. Anderson, ${ }^{17}$ K. Arai, ${ }^{1}$ M. A. Arain, ${ }^{5}$ M. C. Araya, ${ }^{1}$ C. C. Arceneaux,,${ }^{22}$ J. S. Areeda, ${ }^{23}$ N. Arnaud, ${ }^{24}$ K. G. Arun, ${ }^{25}$ S. Ascenzi, ${ }^{26,14}$ G. Ashton, ${ }^{27}$ M. Ast, ${ }^{28}$ S. M. Aston, ${ }^{6}$ P. Astone, ${ }^{29}$ P. Aufmuth, ${ }^{18}$ C. Aulbert, ${ }^{9}$ S. Babak, ${ }^{30}$ P. Bacon, ${ }^{31}$ M. K. M. Bader, ${ }^{10}$ P. T. Baker, ${ }^{32}$ F. Baldaccini, ${ }^{33,34}$ G. Ballardin, ${ }^{35}$ S. W. Ballmer, ${ }^{36}$ J. C. Barayoga, ${ }^{1}$ S. E. Barclay, ${ }^{37}$ B. C. Barish, ${ }^{1}$ D. Barker, ${ }^{38}$ F. Barone,,${ }^{3,4}$ B. Barr, ${ }^{37}$ L. Barsotti, ${ }^{11}$ M. Barsuglia, ${ }^{31}$ D. Barta, ${ }^{39}$ J. Bartlett,,38 M. A. Barton, ${ }^{38}$ I. Bartos, ${ }^{40}$ R. Bassiri, ${ }^{41}$ A. Basti, ${ }^{19,20}$ J. C. Batch,,${ }^{38}$ C. Baune, ${ }^{9}$ V. Bavigadda, ${ }^{35}$ M. Bazzan, ${ }^{42,43}$ B. Behnke, ${ }^{30}$ M. Bejger, ${ }^{44}$ C. Belczynski, ${ }^{45}$ A. S. Bell, ${ }^{37}$ C. J. Bell, ${ }^{37}$ B. K. Berger, ${ }^{1}$ J. Bergman, ${ }^{38}$ G. Bergmann, ${ }^{9}$ C. P. L. Berry, ${ }^{46}$ D. Bersanetti, ${ }^{47,48}$ A. Bertolini, ${ }^{10}$ J. Betzwieser, ${ }^{6}$ S. Bhagwat, ${ }^{36}$ R. Bhandare, ${ }^{49}$ I. A. Bilenko, ${ }^{50}$ G. Billingsley, ${ }^{1}$ J. Birch, ${ }^{6}$ R. Birney, ${ }^{51}$ O. Birnholtz, ${ }^{9}$ S. Biscans, ${ }^{11}$ A. Bisht, ${ }^{9}, 18$ M. Bitossi, ${ }^{35}$ C. Biwer, ${ }^{36}$ M. A. Bizouard, ${ }^{24}$ J. K. Blackburn, ${ }^{1}$ C. D. Blair, ${ }^{52}$ D. Blair, ${ }^{52}$ R. M. Blair, ${ }^{38}$ S. Bloemen, ${ }^{53}$ O. Bock, ${ }^{9}$ T. P. Bodiya, ${ }^{11}$ M. Boer, ${ }^{54}$ G. Bogaert, ${ }^{54}$ C. Bogan, ${ }^{9}$ A. Bohe, ${ }^{30}$ P. Bojtos, ${ }^{55}$ C. Bond, ${ }^{46}$ F. Bondu, ${ }^{56}$ R. Bonnand, ${ }^{7}$ B. A. Boom, ${ }^{10}$ R. Bork, ${ }^{1}$ V. Boschi, ${ }^{19,20}$ S. Bose, ${ }^{57,15}$ Y. Bouffanais, ${ }^{31}$ A. Bozzi, ${ }^{35}$ C. Bradaschia, ${ }^{20}$ P. R. Brady, ${ }^{17}$ V. B. Braginsky, ${ }^{50}$ M. Branchesi, ${ }^{58,59}$ J. E. Brau, ${ }^{60}$ T. Briant, ${ }^{61}$ A. Brillet, ${ }^{54}$ M. Brinkmann, ${ }^{9}$ V. Brisson, ${ }^{24}$ P. Brockill, ${ }^{17}$ A. F. Brooks, ${ }^{1}$ D. A. Brown, ${ }^{36}$ D. D. Brown, ${ }^{46}$ N. M. Brown, ${ }^{11}$ C. C. Buchanan, ${ }^{2}$ A. Buikema, ${ }^{11}$ T. Bulik, ${ }^{45}$ H. J. Bulten, ${ }^{62,10}$ A. Buonanno, ${ }^{30,63}$ D. Buskulic, ${ }^{7}$ C. Buy, ${ }^{31}$ R. L. Byer, ${ }^{41}$ M. Cabero, ${ }^{9}$ L. Cadonati, ${ }^{64}$ G. Cagnoli, ${ }^{65,66}$ C. Cahillane, ${ }^{1}$ J. Calderón Bustillo, ${ }^{67,64}$ T. Callister, ${ }^{1}$ E. Calloni, ${ }^{68,4}$ J. B. Camp, ${ }^{69}$ K. C. Cannon, ${ }^{70}$ J. Cao, ${ }^{71}$ C. D. Capano, ${ }^{9}$ E. Capocasa, ${ }^{31}$ F. Carbognani, ${ }^{35}$ S. Caride, ${ }^{72}$ J. Casanueva Diaz, ${ }^{24}$ C. Casentini, ${ }^{26,14}$ S. Caudill, ${ }^{17}$ M. Cavaglià, ${ }^{22}$ F. Cavalier, ${ }^{24}$ R. Cavalieri, ${ }^{35}$ G. Cella, ${ }^{20}$ C. Cepeda, ${ }^{1}$ L. Cerboni Baiardi, ${ }^{58,59}$ G. Cerretani, ${ }^{19,20}$ E. Cesarini, ${ }^{26,14}$ R. Chakraborty, ${ }^{1}$ T. Chalermsongsak, ${ }^{1}$ S. J. Chamberlin, ${ }^{17}$ M. Chan, ${ }^{37}$ S. Chao, ${ }^{73}$ P. Charlton, ${ }^{74}$ E. Chassande-Mottin, ${ }^{31}$ H. Y. Chen, ${ }^{75}$ Y. Chen, ${ }^{76}$ C. Cheng, ${ }^{73}$ A. Chincarini, ${ }^{48}$ A. Chiummo, ${ }^{35}$ H. S. Cho, ${ }^{77}$ M. Cho, ${ }^{63}$ J. H. Chow, ${ }^{21}$ N. Christensen, ${ }^{78}$ Q. Chu, ${ }^{52}$ S. Chua, ${ }^{61}$ S. Chung, ${ }^{52}$ G. Ciani, ${ }^{5}$ F. Clara, ${ }^{38}$ J. A. Clark, ${ }^{64}$ F. Cleva, ${ }^{54}$ E. Coccia, ${ }^{26,13,14}$ P.-F. Cohadon, ${ }^{61}$ A. Colla, ${ }^{79,29}$ C. G. Collette, ${ }^{80}$ M. Constancio Jr., ${ }^{12}$ A. Conte ${ }^{79,29}$ L. Conti, ${ }^{43}$ D. Cook,,38 T. R. Corbitt, ${ }^{2}$ N. Cornish, ${ }^{32}$ A. Corsi, ${ }^{81}$ S. Cortese, ${ }^{35}$ C. A. Costa, ${ }^{12}$ M. W. Coughlin, ${ }^{78}$ S. B. Coughlin, ${ }^{82}$ J.-P. Coulon, ${ }^{54}$ S. T. Countryman, ${ }^{40}$ P. Couvares, ${ }^{1}$ D. M. Coward, ${ }^{52}$ M. J. Cowart, ${ }^{6}$ D. C. Coyne, ${ }^{1}$ R. Coyne,,${ }^{81}$ K. Craig, ${ }^{37}$ J. D. E. Creighton, ${ }^{17}$ J. Cripe, ${ }^{2}$ S. G. Crowder, ${ }^{83}$ A. M. Cruise, ${ }^{46}$ A. Cumming, ${ }^{37}$ L. Cunningham, ${ }^{37}$ E. Cuoco, ${ }^{35}$ T. Dal Canton, ${ }^{9}$ S. L. Danilishin, ${ }^{37}$ S.D'Antonio, ${ }^{14}$ K. Danzmann, ${ }^{18,9}$ N. S. Darman, ${ }^{84}$ C. F. Da Silva Costa, ${ }^{5}$ V. Dattilo, ${ }^{35}$ I. Dave, ${ }^{49}$ H. P. Daveloza, ${ }^{85}$ M. Davier, ${ }^{24}$ G. S. Davies, ${ }^{37}$ E. J. Daw, ${ }^{86}$ R. Day, ${ }^{35}$ S. De, ${ }^{36}$ D. DeBra, ${ }^{41}$ G. Debreczeni, ${ }^{39}$ J. Degallaix, ${ }^{66}$ M. De Laurentis, ${ }^{68,4}$ S. Deléglise, ${ }^{61}$ W. Del Pozzo, ${ }^{46}$ T. Denker, ${ }^{9,18}$ T. Dent, ${ }^{9}$ H. Dereli, ${ }^{54}$ V. Dergachev, ${ }^{1}$ R. DeRosa, ${ }^{6}$ R. De Rosa, ${ }^{68,4}$ R. DeSalvo, ${ }^{8}$ S. Dhurandhar, ${ }^{15}$ M. C. Díaz, ${ }^{85}$ L. Di Fiore, ${ }^{4}$ M. Di Giovanni, ${ }^{79,29}$ A. Di Lieto, ${ }^{19,20}$ S. Di Pace, ${ }^{79,29}$ I. Di Palma, ${ }^{30,9}$ A. Di Virgilio, ${ }^{20}$ G. Dojcinoski, ${ }^{87}$ V. Dolique, ${ }^{66}$ F. Donovan, ${ }^{11}$ K. L. Dooley, ${ }^{22}$ S. Doravari, ${ }^{6}$ R. Douglas, ${ }^{37}$ T. P. Downes, ${ }^{17}$ M. Drago,,${ }^{9,88,89}$ R. W. P. Drever, ${ }^{1}$ J. C. Driggers, ${ }^{38}$ Z. Du, ${ }^{71}$ M. Ducrot, ${ }^{7}$ S. E. Dwyer, ${ }^{38}$ T. B. Edo, ${ }^{86}$ M. C. Edwards, ${ }^{78}$ A. Effler, ${ }^{6}$ H.-B. Eggenstein, ${ }^{9}$ P. Ehrens, ${ }^{1}$ J. M. Eichholz, ${ }^{5}$ S. S. Eikenberry, ${ }^{5}$ W. Engels, ${ }^{76}$ R. C. Essick, ${ }^{11}$ T. Etzel, ${ }^{1}$ M. Evans, ${ }^{11}$ T. M. Evans, ${ }^{6}$ R. Everett, ${ }^{90}$ M. Factourovich, ${ }^{40}$ V. Fafone, ${ }^{26,14,13}$ H. Fair, ${ }^{36}$ S. Fairhurst, ${ }^{82}$ X. Fan, ${ }^{71}$ Q. Fang, ${ }^{52}$ S. Farinon, ${ }^{48}$ B. Farr, ${ }^{75}$ W. M. Farr, ${ }^{46}$ M. Favata, ${ }^{87}$ M. Fays, ${ }^{82}$ H. Fehrmann, ${ }^{9}$ M. M. Fejer, ${ }^{41}$ D. Feldbaum, ${ }^{5}$ I. Ferrante, ${ }^{19,20}$ E. C. Ferreira, ${ }^{12}$ F. Ferrini, ${ }^{35}$ F. Fidecaro, ${ }^{19,20}$ L. S. Finn, ${ }^{90}$ I. Fiori, ${ }^{35}$ D. Fiorucci, ${ }^{31}$ R. P. Fisher, ${ }^{36}$ R. Flaminio ${ }^{\S},{ }^{66}$ M. Fletcher, ${ }^{37}$ H. Fong, ${ }^{70}$ J.-D. Fournier, ${ }^{54}$ S. Franco, ${ }^{24}$ S. Frasca, ${ }^{79,29}$ F. Frasconi, ${ }^{20}$ M. Frede, ${ }^{9}$ Z. Frei, ${ }^{55}$ A. Freise, ${ }^{46}$ R. Frey, ${ }^{60}$ V. Frey, ${ }^{24}$ T. T. Fricke, ${ }^{9}$ P. Fritschel, ${ }^{11}$ V. V. Frolov, ${ }^{6}$ P. Fulda, ${ }^{5}$ M. Fyffe, ${ }^{6}$ H. A. G. Gabbard, ${ }^{22}$ J. R. Gair, ${ }^{91}$ L. Gammaitoni, ${ }^{33,34}$ S. G. Gaonkar, ${ }^{15}$ F. Garufi, ${ }^{68,4}$ A. Gatto, ${ }^{31}$ G. Gaur, ${ }^{92,93}$ N. Gehrels, ${ }^{69}$ G. Gemme, ${ }^{48}$ B. Gendre, ${ }^{54}$ E. Genin, ${ }^{35}$ A. Gennai, ${ }^{20}$ J. George, ${ }^{49}$ L. Gergely, ${ }^{94}$ V. Germain, ${ }^{7}$ A. Ghosh, ${ }^{16}$ A. Ghosh, ${ }^{16}$ S. Ghosh, ${ }^{53,10}$ J. A. Giaime,,${ }^{2,6}$ K. D. Giardina, ${ }^{6}$ A. Giazotto, ${ }^{20}$ K. Gill, ${ }^{95}$ A. Glaefke, ${ }^{37}$ J. R. Gleason, ${ }^{5}$ E. Goetz, ${ }^{72}$ R. Goetz, ${ }^{5}$ L. Gondan, ${ }^{55}$ G. González, ${ }^{2}$ J. M. Gonzalez Castro, ${ }^{19,20}$ A. Gopakumar, ${ }^{96}$ N. A. Gordon, ${ }^{37}$ M. L. Gorodetsky, ${ }^{50}$ S. E. Gossan, ${ }^{1}$ M. Gosselin, ${ }^{35}$ R. Gouaty, ${ }^{7}$ C. Graef, ${ }^{37}$ P. B. Graff, $,{ }^{69}, 63$ M. Granata, ${ }^{66}$ A. Grant, ${ }^{37}$ S. Gras, ${ }^{11}$ C. Gray, ${ }^{38}$ G. Greco, ${ }^{58,59}$ A. C. Green, ${ }^{46}$ R. J. S. Greenhalgh, ${ }^{97}$ P. Groot, ${ }^{53}$ H. Grote, ${ }^{9}$ S. Grunewald, ${ }^{30}$ G. M. Guidi, ${ }^{58,59}$ X. Guo, ${ }^{71}$ A. Gupta, ${ }^{15}$ M. K. Gupta, ${ }^{93}$ K. E. Gushwa, ${ }^{1}$ E. K. Gustafson, ${ }^{1}$ R. Gustafson, ${ }^{72}$ J. J. Hacker, ${ }^{23}$ B. R. Hall, ${ }^{57}$ E. D. Hall, ${ }^{1}$ G. Hammond, ${ }^{37}$ M. Haney, ${ }^{96}$ M. M. Hanke, ${ }^{9}$ J. Hanks, ${ }^{38}$ C. Hanna, ${ }^{90}$ M. D. Hannam, ${ }^{82}$ J. Hanson, ${ }^{6}$ T. Hardwick, ${ }^{2}$ J. Harms, ${ }^{58,59}$ G. M. Harry, ${ }^{98}$ I. W. Harry, ${ }^{30}$ M. J. Hart, ${ }^{37}$ M. T. Hartman, ${ }^{5}$ C.-J. Haster, ${ }^{46}$ K. Haughian, ${ }^{37}$ J. Healy, ${ }^{99}$ J. Heefner ${ }^{*},{ }^{1}$ A. Heidmann, ${ }^{61}$ M. C. Heintze, ${ }^{5,6}$ H. Heitmann, ${ }^{54}$ P. Hello, ${ }^{24}$ G. Hemming, ${ }^{35}$ M. Hendry, ${ }^{37}$
I. S. Heng, ${ }^{37}$ J. Hennig, ${ }^{37}$ A. W. Heptonstall, ${ }^{1}$ M. Heurs, ${ }^{9,18}$ S. Hild, ${ }^{37}$ D. Hoak, ${ }^{100}$ K. A. Hodge, ${ }^{1}$ D. Hofman, ${ }^{66}$ S. E. Hollitt, ${ }^{101}$ K. Holt, ${ }^{6}$ D. E. Holz, ${ }^{75}$ P. Hopkins, ${ }^{82}$ D. J. Hosken, ${ }^{101}$ J. Hough, ${ }^{37}$ E. A. Houston, ${ }^{37}$ E. J. Howell, ${ }^{52}$
Y. M. Hu, ${ }^{37}$ S. Huang, ${ }^{73}$ E. A. Huerta, ${ }^{102}$ D. Huet, ${ }^{24}$ B. Hughey, ${ }^{95}$ S. Husa, ${ }^{67}$ S. H. Huttner, ${ }^{37}$ T. Huynh-Dinh, ${ }^{6}$ A. Idrisy, ${ }^{90}$ N. Indik, ${ }^{9}$ D. R. Ingram, ${ }^{38}$ R. Inta, ${ }^{81}$ H. N. Isa, ${ }^{37}$ J.-M. Isac, ${ }^{61}$ M. Isi, ${ }^{1}$ G. Islas, ${ }^{23}$ T. Isogai, ${ }^{11}$ B. R. Iyer, ${ }^{16}$ K. Izumi, ${ }^{38}$ M. B. Jacobson, ${ }^{1}$ T. Jacqmin, ${ }^{61}$ H. Jang, ${ }^{77}$ K. Jani, ${ }^{64}$ P. Jaranowski, ${ }^{103}$ S. Jawahar, ${ }^{104}$ F. Jiménez-Forteza, ${ }^{67}$ W. W. Johnson, ${ }^{2}$ N. K. Johnson-McDaniel, ${ }^{16}$ D. I. Jones, ${ }^{27}$ R. Jones,,${ }^{37}$ R. J. G. Jonker, ${ }^{10}$ L. Ju, ${ }^{52}$ Haris K, ${ }^{105}$ C. V. Kalaghatgi, ${ }^{25}$ V. Kalogera, ${ }^{106}$ S. Kandhasamy, ${ }^{22}$ G. Kang, ${ }^{77}$ J. B. Kanner, ${ }^{1}$ S. Karki, ${ }^{60}$ M. Kasprzack, ${ }^{2,24,35}$ E. Katsavounidis, ${ }^{11}$ W. Katzman, ${ }^{6}$ S. Kaufer, ${ }^{18}$ T. Kaur, ${ }^{52}$ K. Kawabe, ${ }^{38}$ F. Kawazoe, ${ }^{9}$ F. Kéfélian, ${ }^{54}$ M. S. Kehl, ${ }^{70}$ D. Keitel, ${ }^{9}$ D. B. Kelley, ${ }^{36}$ W. Kells, ${ }^{1}$ R. Kennedy, ${ }^{86}$ D. G. Keppel, ${ }^{9}$ J. S. Key, ${ }^{85}$ A. Khalaidovski, ${ }^{9}$ F. Y. Khalili, ${ }^{50}$ I. Khan, ${ }^{13}$ S. Khan, ${ }^{82}$ Z. Khan, ${ }^{93}$ E. A. Khazanov, ${ }^{107}$ N. Kijbunchoo, ${ }^{38}$ C. Kim, ${ }^{77}$ J. Kim, ${ }^{108}$ K. Kim, ${ }^{109}$ N. Kim, ${ }^{77}$ N. Kim, ${ }^{41}$ Y.-M. Kim, ${ }^{108}$ E. J. King, ${ }^{101}$ P. J. King, ${ }^{38}$ D. L. Kinzel, ${ }^{6}$ J. S. Kissel, ${ }^{38}$ L. Kleybolte, ${ }^{28}$ S. Klimenko, ${ }^{5}$
S. M. Koehlenbeck, ${ }^{9}$ K. Kokeyama, ${ }^{2}$ S. Koley, ${ }^{10}$ V. Kondrashov, ${ }^{1}$ A. Kontos, ${ }^{11}$ S. Koranda, ${ }^{17}$ M. Korobko, ${ }^{28}$ W. Z. Korth, ${ }^{1}$ I. Kowalska, ${ }^{45}$ D. B. Kozak, ${ }^{1}$ V. Kringel, ${ }^{9}$ B. Krishnan, ${ }^{9}$ A. Królak, ${ }^{110,111}$ C. Krueger, ${ }^{18}$ G. Kuehn, ${ }^{9}$ P. Kumar, ${ }^{70}$ R. Kumar, ${ }^{37}$ L. Kuo, ${ }^{73}$ A. Kutynia, ${ }^{110}$ P. Kwee, ${ }^{11}$ B. D. Lackey, ${ }^{36}$ M. Landry, ${ }^{38}$ J. Lange, ${ }^{99}$ B. Lantz, ${ }^{41}$
P. D. Lasky, ${ }^{112}$ A. Lazzarini, ${ }^{1}$ C. Lazzaro,,${ }^{64,43}$ P. Leaci, ${ }^{30,79,29}$ S. Leavey, ${ }^{37}$ E. O. Lebigot, ${ }^{31,71}$ C. H. Lee, ${ }^{108}$ H. K. Lee, ${ }^{109}$ H. M. Lee, ${ }^{113}$ K. Lee, ${ }^{37}$ A. Lenon, ${ }^{36}$ M. Leonardi, ${ }^{88,89}$ J. R. Leong, ${ }^{9}$ N. Leroy, ${ }^{24}$ N. Letendre, ${ }^{7}$ Y. Levin, ${ }^{112}$ B. M. Levine, ${ }^{38}$ T. G. F. Li, ${ }^{1}$ A. Libson, ${ }^{11}$ T. B. Littenberg, ${ }^{106}$ N. A. Lockerbie, ${ }^{104}$ J. Logue, ${ }^{37}$ A. L. Lombardi, ${ }^{100}$ L. T. London, ${ }^{82}$ J. E. Lord, ${ }^{36}$ M. Lorenzini, ${ }^{13,14}$ V. Loriette, ${ }^{114}$ M. Lormand, ${ }^{6}$ G. Losurdo, ${ }^{59}$ J. D. Lough, ${ }^{9,18}$ C. O. Lousto, ${ }^{99}$ G. Lovelace, ${ }^{23}$ H. Lück,,${ }^{18,9}$ A. P. Lundgren, ${ }^{9}$ J. Luo, ${ }^{78}$ R. Lynch, ${ }^{11}$ Y. Ma, ${ }^{52}$ T. MacDonald, ${ }^{41}$ B. Machenschalk, ${ }^{9}$ M. MacInnis, ${ }^{11}$ D. M. Macleod, ${ }^{2}$ F. Magaña-Sandoval, ${ }^{36}$ R. M. Magee, ${ }^{57}$ M. Mageswaran, ${ }^{1}$ E. Majorana, ${ }^{29}$ I. Maksimovic, ${ }^{114}$ V. Malvezzi, ${ }^{26,14}$ N. Man, ${ }^{54}$ I. Mandel, ${ }^{46}$ V. Mandic, ${ }^{83}$ V. Mangano, ${ }^{37}$ G. L. Mansell, ${ }^{21}$ M. Manske, ${ }^{17}$ M. Mantovani, ${ }^{35}$ F. Marchesoni, ${ }^{115,34}$ F. Marion, ${ }^{7}$ S. Márka, ${ }^{40}$ Z. Márka, ${ }^{40}$ A. S. Markosyan, ${ }^{41}$ E. Maros, ${ }^{1}$ F. Martelli, ${ }^{58,59}$ L. Martellini, ${ }^{54}$ I. W. Martin, ${ }^{37}$ R. M. Martin, ${ }^{5}$ D. V. Martynov, ${ }^{1}$ J. N. Marx, ${ }^{1}$ K. Mason, ${ }^{11}$ A. Masserot, ${ }^{7}$ T. J. Massinger,,${ }^{36}$ M. Masso-Reid, ${ }^{37}$ F. Matichard, ${ }^{11}$ L. Matone, ${ }^{40}$ N. Mavalvala, ${ }^{11}$ N. Mazumder, ${ }^{57}$ G. Mazzolo, ${ }^{9}$ R. McCarthy, ${ }^{38}$ D. E. McClelland, ${ }^{21}$ S. McCormick, ${ }^{6}$ S. C. McGuire, ${ }^{116}$ G. McIntyre, ${ }^{1}$ J. McIver, ${ }^{100}$ D. J. McManus, ${ }^{21}$ S. T. McWilliams, ${ }^{102}$ D. Meacher, ${ }^{54}$ G. D. Meadors, ${ }^{30,9}$ J. Meidam, ${ }^{10}$ A. Melatos, ${ }^{84}$ G. Mendell, ${ }^{38}$ D. Mendoza-Gandara, ${ }^{9}$ R. A. Mercer, ${ }^{17}$ E. Merilh, ${ }^{38}$ M. Merzougui, ${ }^{54}$ S. Meshkov, ${ }^{1}$ C. Messenger, ${ }^{37}$ C. Messick, ${ }^{90}$ P. M. Meyers, ${ }^{83}$ F. Mezzani, ${ }^{29,79}$ H. Miao, ${ }^{46}$ C. Michel, ${ }^{66}$ H. Middleton, ${ }^{46}$ E. E. Mikhailov, ${ }^{117}$ L. Milano, ${ }^{68,4}$ J. Miller, ${ }^{11}$ M. Millhouse, ${ }^{32}$ Y. Minenkov, ${ }^{14}$ J. Ming, ${ }^{30,9}$ S. Mirshekari, ${ }^{118}$ C. Mishra, ${ }^{16}$ S. Mitra, ${ }^{15}$ V. P. Mitrofanov, ${ }^{50}$ G. Mitselmakher, ${ }^{5}$ R. Mittleman, ${ }^{11}$ A. Moggi, ${ }^{20}$ M. Mohan, ${ }^{35}$ S. R. P. Mohapatra, ${ }^{11}$ M. Montani, ${ }^{58,59}$ B. C. Moore, ${ }^{87}$ C. J. Moore, ${ }^{119}$ D. Moraru, ${ }^{38}$ G. Moreno, ${ }^{38}$ S. R. Morriss, ${ }^{85}$ K. Mossavi, ${ }^{9}$ B. Mours, ${ }^{7}$ C. M. Mow-Lowry, ${ }^{46}$ C. L. Mueller, ${ }^{5}$ G. Mueller, ${ }^{5}$ A. W. Muir, ${ }^{82}$ Arunava Mukherjee, ${ }^{16}$ D. Mukherjee, ${ }^{17}$ S. Mukherjee, ${ }^{85}$ A. Mullavey, ${ }^{6}$ J. Munch, ${ }^{101}$ D. J. Murphy, ${ }^{40}$ P. G. Murray, ${ }^{37}$ A. Mytidis, ${ }^{5}$ I. Nardecchia, ${ }^{26,14}$ L. Naticchioni, ${ }^{79,29}$ R. K. Nayak, ${ }^{120}$ V. Necula, ${ }^{5}$ K. Nedkova, ${ }^{100}$ G. Nelemans, ${ }^{53,10}$ M. Neri, ${ }^{47,48}$ A. Neunzert, ${ }^{72}$ G. Newton, ${ }^{37}$ T. T. Nguyen, ${ }^{21}$ A. B. Nielsen, ${ }^{9}$ S. Nissanke, ${ }^{53,10}$ A. Nitz, ${ }^{9}$ F. Nocera, ${ }^{35}$ D. Nolting, ${ }^{6}$ M. E. N. Normandin, ${ }^{85}$ L. K. Nuttall, ${ }^{36}$ J. Oberling, ${ }^{38}$ E. Ochsner, ${ }^{17}$ J. O’Dell, ${ }^{97}$ E. Oelker, ${ }^{11}$ G. H. Ogin, ${ }^{121}$ J. J. Oh, ${ }^{122}$ S. H. Oh, ${ }^{122}$ F. Ohme, ${ }^{82}$ M. Oliver, ${ }^{67}$ P. Oppermann, ${ }^{9}$ Richard J. Oram, ${ }^{6}$ B. O'Reilly, ${ }^{6}$ R. O’Shaughnessy, ${ }^{99}$ C. D. Ott, ${ }^{76}$ D. J. Ottaway, ${ }^{101}$ R. S. Ottens, ${ }^{5}$ H. Overmier, ${ }^{6}$ B. J. Owen, ${ }^{81}$ A. Pai, ${ }^{105}$ S. A. Pai, ${ }^{49}$ J. R. Palamos, ${ }^{60}$ O. Palashov, ${ }^{107}$ C. Palomba, ${ }^{29}$ A. Pal-Singh, ${ }^{28}$ H. Pan, ${ }^{73}$ Y. Pan, ${ }^{63}$ C. Pankow, ${ }^{17,106}$ F. Pannarale, ${ }^{82}$ B. C. Pant, ${ }^{49}$ F. Paoletti, ${ }^{35,20}$ A. Paoli, ${ }^{35}$ M. A. Papa, ${ }^{30,17,9}$ H. R. Paris, ${ }^{41}$ W. Parker, ${ }^{6}$ D. Pascucci, ${ }^{37}$ A. Pasqualetti, ${ }^{35}$ R. Passaquieti,,${ }^{19,20}$ D. Passuello, ${ }^{20}$ B. Patricelli, ${ }^{19,20}$ Z. Patrick, ${ }^{41}$ B. L. Pearlstone, ${ }^{37}$ M. Pedraza, ${ }^{1}$ R. Pedurand, ${ }^{66}$ L. Pekowsky, ${ }^{36}$ A. Pele, ${ }^{6}$ S. Penn, ${ }^{123}$ R. Pereira, ${ }^{40}$ A. Perreca, ${ }^{1}$ H. P. Pfeiffer, ${ }^{70,9}$ M. Phelps, ${ }^{37}$ O. Piccinni, ${ }^{79,29}$ M. Pichot, ${ }^{54}$ M. Pickenpack, ${ }^{9}$ F. Piergiovanni, ${ }^{58,59}$ V. Pierro, ${ }^{8}$ G. Pillant, ${ }^{35}$ L. Pinard, ${ }^{66}$ I. M. Pinto, ${ }^{8}$ M. Pitkin, ${ }^{37}$ J. H. Poeld, ${ }^{9}$ R. Poggiani, ${ }^{19,20}$ P. Popolizio, ${ }^{35}$ A. Post, ${ }^{9}$ J. Powell,,${ }^{37}$ J. Prasad, ${ }^{15}$ V. Predoi, ${ }^{82}$ S. S. Premachandra, ${ }^{112}$ T. Prestegard, ${ }^{83}$ L. R. Price, ${ }^{1}$ M. Prijatelj, ${ }^{35}$ M. Principe, ${ }^{8}$ S. Privitera, ${ }^{30}$ R. Prix, ${ }^{9}$ G. A. Prodi, ${ }^{88,89}$ L. Prokhorov, ${ }^{50}$ O. Puncken, ${ }^{9}$ M. Punturo, ${ }^{34}$ P. Puppo, ${ }^{29}$ M. Pürrer, ${ }^{82}$ H. Qi, ${ }^{17}$ J. Qin, ${ }^{52}$ V. Quetschke, ${ }^{85}$ E. A. Quintero, ${ }^{1}$ R. Quitzow-James, ${ }^{60}$ F. J. Raab, ${ }^{38}$ D. S. Rabeling, ${ }^{21}$ H. Radkins, ${ }^{38}$ P. Raffai, ${ }^{55}$ S. Raja, ${ }^{49}$ M. Rakhmanov, ${ }^{85}$ C. R. Ramet, ${ }^{6}$ P. Rapagnani, ${ }^{79,29}$ V. Raymond, ${ }^{30}$ M. Razzano, ${ }^{19,20}$ V. Re, ${ }^{26}$ J. Read, ${ }^{23}$ C. M. Reed, ${ }^{38}$ T. Regimbau, ${ }^{54}$ L. Rei, ${ }^{48}$ S. Reid, ${ }^{51}$ D. H. Reitze,,${ }^{1,5}$ H. Rew, ${ }^{117}$ S. D. Reyes, ${ }^{36}$ F. Ricci, ${ }^{79,29}$ K. Riles, ${ }^{72}$ N. A. Robertson, ${ }^{1,37}$ R. Robie, ${ }^{37}$ F. Robinet, ${ }^{24}$ A. Rocchi, ${ }^{14}$ L. Rolland, ${ }^{7}$ J. G. Rollins, ${ }^{1}$ V. J. Roma, ${ }^{60}$ J. D. Romano, ${ }^{85}$ R. Romano, ${ }^{3,4}$ G. Romanov, ${ }^{117}$ J. H. Romie, ${ }^{6}$ D. Rosińska, ${ }^{124,44}$ S. Rowan, ${ }^{37}$ A. Rüdiger, ${ }^{9}$ P. Ruggi, ${ }^{35}$ K. Ryan, ${ }^{38}$ S. Sachdev, ${ }^{1}$ T. Sadecki, ${ }^{38}$ L. Sadeghian,,${ }^{17}$ L. Salconi, ${ }^{35}$ M. Saleem, ${ }^{105}$ F. Salemi, ${ }^{9}$
A. Samajdar, ${ }^{120}$ L. Sammut, ${ }^{84}$ E. J. Sanchez, ${ }^{1}$ V. Sandberg, ${ }^{38}$ B. Sandeen, ${ }^{106}$ G. H. Sanders, ${ }^{1}$ J. R. Sanders, ${ }^{72}$ B. Sassolas, ${ }^{66}$ B. S. Sathyaprakash, ${ }^{82}$ P. R. Saulson, ${ }^{36}$ O. Sauter, ${ }^{72}$ R. L. Savage, ${ }^{38}$ A. Sawadsky, ${ }^{18}$ P. Schale, ${ }^{60}$ R. Schilling ${ }^{\dagger},{ }^{9}$ J. Schmidt, ${ }^{9}$ P. Schmidt, ${ }^{1,76}$ R. Schnabel, ${ }^{28}$ R. M. S. Schofield, ${ }^{60}$ A. Schönbeck, ${ }^{28}$ E. Schreiber, ${ }^{9}$ D. Schuette, ${ }^{9,18}$ B. F. Schutz, ${ }^{82}$ J. Scott, ${ }^{37}$ S. M. Scott, ${ }^{21}$ D. Sellers, ${ }^{6}$ D. Sentenac, ${ }^{35}$ V. Sequino, ${ }^{26,14}$ A. Sergeev, ${ }^{107}$ G. Serna, ${ }^{23}$ Y. Setyawati, ${ }^{53,10}$ A. Sevigny, ${ }^{38}$ D. A. Shaddock, ${ }^{21}$ S. Shah, ${ }^{53,10}$ M. S. Shahriar, ${ }^{106}$ M. Shaltev, ${ }^{9}$ Z. Shao, ${ }^{1}$ B. Shapiro, ${ }^{41}$ P. Shawhan, ${ }^{63}$ A. Sheperd, ${ }^{17}$ D. H. Shoemaker, ${ }^{11}$ D. M. Shoemaker, ${ }^{64}$ K. Siellez, ${ }^{54}$ X. Siemens, ${ }^{17}$ D. Sigg, ${ }^{38}$ A. D. Silva, ${ }^{12}$ D. Simakov, ${ }^{9}$ A. Singer, ${ }^{1}$ L. P. Singer, ${ }^{69}$ A. Singh,,30,9 R. Singh, ${ }^{2}$ A. Singhal, ${ }^{13}$ A. M. Sintes, ${ }^{67}$ B. J. J. Slagmolen, ${ }^{21}$ J. R. Smith, ${ }^{23}$ M. R. Smith, ${ }^{1}$ N. D. Smith, ${ }^{1}$ R. J. E. Smith, ${ }^{1}$ E. J. Son, ${ }^{122}$ B. Sorazu, ${ }^{37}$ F. Sorrentino, ${ }^{48}$ T. Souradeep, ${ }^{15}$ A. K. Srivastava, ${ }^{93}$ A. Staley, ${ }^{40}$ M. Steinke, ${ }^{9}$ J. Steinlechner, ${ }^{37}$ S. Steinlechner, ${ }^{37}$ D. Steinmeyer, ${ }^{9,18}$ B. C. Stephens, ${ }^{17}$ S. P. Stevenson, ${ }^{46}$ R. Stone, ${ }^{85}$ K. A. Strain, ${ }^{37}$ N. Straniero, ${ }^{66}$ G. Stratta, ${ }^{58,59}$ N. A. Strauss, ${ }^{78}$ S. Strigin, ${ }^{50}$ R. Sturani, ${ }^{118}$ A. L. Stuver, ${ }^{6}$ T. Z. Summerscales, ${ }^{125}$ L. Sun, ${ }^{84}$ P. J. Sutton, ${ }^{82}$ B. L. Swinkels, ${ }^{35}$ M. J. Szczepanczyk, ${ }^{95}$ M. Tacca, ${ }^{31}$ D. Talukder, ${ }^{60}$ D. B. Tanner, ${ }^{5}$ M. Tápai, ${ }^{94}$ S. P. Tarabrin, ${ }^{9}$ A. Taracchini, ${ }^{30}$ R. Taylor, ${ }^{1}$ T. Theeg, ${ }^{9}$ M. P. Thirugnanasambandam, ${ }^{1}$ E. G. Thomas, ${ }^{46}$ M. Thomas, ${ }^{6}$ P. Thomas, ${ }^{38}$ K. A. Thorne, ${ }^{6}$ K. S. Thorne, ${ }^{76}$ E. Thrane, ${ }^{112}$ S. Tiwari, ${ }^{13}$ V. Tiwari, ${ }^{82}$ K. V. Tokmakov, ${ }^{104}$ C. Tomlinson, ${ }^{86}$ M. Tonelli,,19,20 C. V. Torres ${ }^{\ddagger},{ }^{85}$ C. I. Torrie, ${ }^{1}$ D. Töyrä, ${ }^{46}$ F. Travasso, ${ }^{33,34}$ G. Traylor, ${ }^{6}$ D. Trifirò,${ }^{22}$ M. C. Tringali, ${ }^{88,89}$ L. Trozzo, ${ }^{126,20}$ M. Tse, ${ }^{11}$ M. Turconi, ${ }^{54}$ D. Tuyenbayev, ${ }^{85}$ D. Ugolini, ${ }^{127}$ C. S. Unnikrishnan, ${ }^{96}$ A. L. Urban, ${ }^{17}$ S. A. Usman, ${ }^{36}$ H. Vahlbruch, ${ }^{18}$ G. Vajente, ${ }^{1}$ G. Valdes, ${ }^{85}$ M. Vallisneri, ${ }^{76}$ N. van Bakel, ${ }^{10}$ M. van Beuzekom, ${ }^{10}$ J. F. J. van den Brand, ${ }^{62,10}$ C. Van Den Broeck, ${ }^{10}$ D. C. Vander-Hyde, ${ }^{36,23}$ L. van der Schaaf, ${ }^{10}$ J. V. van Heijningen, ${ }^{10}$ A. A. van Veggel, ${ }^{37}$ M. Vardaro, ${ }^{42,43}$ S. Vass, ${ }^{1}$ M. Vasúth, ${ }^{39}$ R. Vaulin, ${ }^{11}$ A. Vecchio, ${ }^{46}$ G. Vedovato, ${ }^{43}$ J. Veitch, ${ }^{46}$ P. J. Veitch, ${ }^{101}$ K. Venkateswara, ${ }^{128}$ D. Verkindt, ${ }^{7}$ F. Vetrano,,${ }^{58,59}$ A. Viceré, ${ }^{58,59}$ S. Vinciguerra, ${ }^{46}$ D. J. Vine, ${ }^{51}$ J.-Y. Vinet, ${ }^{54}$ S. Vitale, ${ }^{11}$ T. Vo, ${ }^{36}$ H. Vocca, ${ }^{33,34}$ C. Vorvick, ${ }^{38}$ W. D. Vousden, ${ }^{46}$ S. P. Vyatchanin, ${ }^{50}$ A. R. Wade, ${ }^{21}$ L. E. Wade, ${ }^{17}$ M. Wade, ${ }^{17}$ S. J. Waldman, ${ }^{11}$ M. Walker, ${ }^{2}$ L. Wallace, ${ }^{1}$ S. Walsh, ${ }^{17}$ G. Wang, ${ }^{13}$ H. Wang, ${ }^{46}$ M. Wang, ${ }^{46}$ X. Wang, ${ }^{71}$ Y. Wang, ${ }^{52}$ H. Ward, ${ }^{37}$ R. L. Ward, ${ }^{21}$ J. Warner, ${ }^{38}$ M. Was, ${ }^{7}$ B. Weaver, ${ }^{38}$ L.-W. Wei, ${ }^{54}$ M. Weinert, ${ }^{9}$ A. J. Weinstein, ${ }^{1}$ R. Weiss, ${ }^{11}$ T. Welborn, ${ }^{6}$ L. Wen, ${ }^{52}$ P. Weßels, ${ }^{9}$ T. Westphal, ${ }^{9}$ K. Wette, ${ }^{9}$ J. T. Whelan, ${ }^{99,9}$ S. E. Whitcomb, ${ }^{1}$ D. J. White, ${ }^{86}$ B. F. Whiting, ${ }^{5}$ K. Wiesner, ${ }^{9}$ C. Wilkinson, ${ }^{38}$ P. A. Willems, ${ }^{1}$ L. Williams, ${ }^{5}$ R. D. Williams, ${ }^{1}$ A. R. Williamson, ${ }^{82}$ J. L. Willis,,${ }^{129}$ B. Willke, ${ }^{18,9}$ M. H. Wimmer, ${ }^{9,18}$ L. Winkelmann, ${ }^{9}$ W. Winkler, ${ }^{9}$ C. C. Wipf, ${ }^{1}$ A. G. Wiseman, ${ }^{17}$ H. Wittel, ${ }^{9,18}$ G. Woan, ${ }^{37}$ J. Worden, ${ }^{38}$ J. L. Wright, ${ }^{37}$ G. Wu, ${ }^{6}$ J. Yablon, ${ }^{106}$ I. Yakushin, ${ }^{6}$ W. Yam, ${ }^{11}$ H. Yamamoto, ${ }^{1}$ C. C. Yancey, ${ }^{63}$ M. J. Yap, ${ }^{21}$ H. Yu, ${ }^{11}$ M. Yvert, ${ }^{7}$ A. Zadrożny, ${ }^{110}$ L. Zangrando, ${ }^{43}$ M. Zanolin, ${ }^{95}$ J.-P. Zendri, ${ }^{43}$ M. Zevin, ${ }^{106}$ F. Zhang, ${ }^{11}$ L. Zhang, ${ }^{1}$ M. Zhang, ${ }^{117}$ Y. Zhang, ${ }^{99}$ C. Zhao, ${ }^{52}$ M. Zhou, ${ }^{106}$ Z. Zhou, ${ }^{106}$ X. J. Zhu, ${ }^{52}$ M. E. Zucker,,${ }^{1,11}$ S. E. Zuraw, ${ }^{100}$ and J. Zweizig ${ }^{1}$ *Deceased, April 2012. ${ }^{\dagger}$ Deceased, May 2015. ${ }^{\ddagger}$ Deceased, March 2015.
${ }^{\S}$ Present address: National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan.
${ }^{1}$ LIGO, California Institute of Technology, Pasadena, CA 91125, USA
${ }^{2}$ Louisiana State University, Baton Rouge, LA 70803, USA
${ }^{3}$ Università di Salerno, Fisciano, I-84084 Salerno, Italy
${ }^{4}$ INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy ${ }^{5}$ University of Florida, Gainesville, FL 32611, USA
${ }^{6}$ LIGO Livingston Observatory, Livingston, LA 70754, USA
${ }^{7}$ Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP),
Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France
${ }^{8}$ University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
${ }^{9}$ Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany
${ }^{10}$ Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands
${ }^{11}$ LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{12}$ Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, SP, Brazil
${ }^{13}$ INFN, Gran Sasso Science Institute, I-67100 L'Aquila, Italy
${ }^{14}$ INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{15}$ Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
${ }^{16}$ International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India
${ }^{17}$ University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
${ }^{18}$ Leibniz Universität Hannover, D-30167 Hannover, Germany
${ }^{19}$ Università di Pisa, I-56127 Pisa, Italy
${ }^{20}$ INFN, Sezione di Pisa, I-56127 Pisa, Italy
${ }^{21}$ Australian National University, Canberra, Australian Capital Territory 0200, Australia
${ }^{22}$ The University of Mississippi, University, MS 38677, USA
${ }^{23}$ California State University Fullerton, Fullerton, CA 92831, USA
${ }^{24}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
${ }^{25}$ Chennai Mathematical Institute, Chennai, India
${ }^{26}$ Università di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{27}$ University of Southampton, Southampton SO17 1BJ, United Kingdom
${ }^{28}$ Universität Hamburg, D-22761 Hamburg, Germany
${ }^{29}$ INFN, Sezione di Roma, I-00185 Roma, Italy
${ }^{30}$ Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany
${ }^{31}$ APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
${ }^{32}$ Montana State University, Bozeman, MT 59717, USA
${ }^{33}$ Università di Perugia, I-06123 Perugia, Italy
${ }^{34}$ INFN, Sezione di Perugia, I-06123 Perugia, Italy
${ }^{35}$ European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
${ }^{36}$ Syracuse University, Syracuse, NY 13244, USA
${ }^{37}$ SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
${ }^{38}$ LIGO Hanford Observatory, Richland, WA 99352, USA
${ }^{39}$ Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
${ }^{40}$ Columbia University, New York, NY 10027, USA
${ }^{41}$ Stanford University, Stanford, CA 94305, USA
${ }^{42}$ Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
${ }^{43}$ INFN, Sezione di Padova, I-35131 Padova, Italy
${ }^{44}$ CAMK-PAN, 00-716 Warsaw, Poland
${ }^{45}$ Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
${ }^{46}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
${ }^{47}$ Università degli Studi di Genova, I-16146 Genova, Italy
${ }^{48}$ INFN, Sezione di Genova, I-16146 Genova, Italy
${ }^{49}$ RRCAT, Indore MP 452013, India
${ }^{50}$ Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
${ }^{51}$ SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
${ }^{52}$ University of Western Australia, Crawley, Western Australia 6009, Australia
${ }^{53}$ Department of Astrophysics/IMAPP, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
${ }^{54}$ Artemis, Université Cote d'Azur, CNRS, Observatoire Cote d'Azur, CS 34229 , Nice cedex 4, France
${ }^{55}$ MTA Eötvös University, "Lendulet" Astrophysics Research Group, Budapest 1117, Hungary
${ }^{56}$ Institut de Physique de Rennes, CNRS, Université de Rennes 1, F-35042 Rennes, France
${ }^{57}$ Washington State University, Pullman, WA 99164, USA
${ }^{58}$ Università degli Studi di Urbino 'Carlo Bo', I-61029 Urbino, Italy
${ }^{59}$ INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
${ }^{60}$ University of Oregon, Eugene, OR 97403, USA
${ }^{61}$ Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS,
ENS-PSL Research University, Collège de France, F-75005 Paris, France
${ }^{62}$ VU University Amsterdam, 1081 HV Amsterdam, The Netherlands ${ }^{63}$ University of Maryland, College Park, MD 20742, USA
${ }^{64}$ Center for Relativistic Astrophysics and School of Physics,
Georgia Institute of Technology, Atlanta, GA 30332, USA
${ }^{65}$ Institut Lumieere Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, 69622 Villeurbanne, France
${ }^{66}$ Laboratoire des Matériaux Avancés (LMA), IN2P3/CNRS,
Université de Lyon, F-69622 Villeurbanne, Lyon, France
${ }^{67}$ Universitat de les Illes Balears, IAC3-IEEC, E-07122 Palma de Mallorca, Spain
${ }^{68}$ Università di Napoli 'Federico II', Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
${ }^{69}$ NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada
${ }^{71}$ Tsinghua University, Beijing 100084, China
${ }^{72}$ University of Michigan, Ann Arbor, MI 48109, USA
${ }^{73}$ National Tsing Hua University, Hsinchu City, Taiwan 30013, R.O.C.
${ }^{74}$ Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
${ }^{75}$ University of Chicago, Chicago, IL 60637, USA
${ }^{76}$ Caltech CaRT, Pasadena, CA 91125, USA
${ }^{77}$ Korea Institute of Science and Technology Information, Daejeon 305-806, Korea
${ }^{78}$ Carleton College, Northfield, MN 55057, USA
${ }^{79}$ Università di Roma 'La Sapienza', I-00185 Roma, Italy
${ }^{80}$ University of Brussels, Brussels 1050, Belgium
${ }^{81}$ Texas Tech University, Lubbock, TX 79409, USA
${ }^{82}$ Cardiff University, Cardiff CF24 3AA, United Kingdom
${ }^{83}$ University of Minnesota, Minneapolis, MN 55455, USA
${ }^{84}$ The University of Melbourne, Parkville, Victoria 3010, Australia
${ }^{85}$ The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
${ }^{86}$ The University of Sheffield, Sheffield S10 2TN, United Kingdom
${ }^{87}$ Montclair State University, Montclair, NJ 07043, USA
${ }^{88}$ Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
${ }^{89}$ INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
${ }^{90}$ The Pennsylvania State University, University Park, PA 16802, USA
${ }^{91}$ School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
${ }^{92}$ Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
${ }^{93}$ Institute for Plasma Research, Bhat, Gandhinagar 382428, India
${ }^{94}$ University of Szeged, Dóm tér 9, Szeged 6720, Hungary
${ }^{95}$ Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
${ }^{96}$ Tata Institute of Fundamental Research, Mumbai 400005, India
${ }^{97}$ Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 OQX, United Kingdom
${ }^{98}$ American University, Washington, D.C. 20016, USA
${ }^{99}$ Rochester Institute of Technology, Rochester, NY 14623, USA
${ }^{100}$ University of Massachusetts-Amherst, Amherst,, MA 01003, USA
${ }^{101}$ University of Adelaide, Adelaide, South Australia 5005, Australia
${ }^{102}$ West Virginia University, Morgantown, WV 26506, USA
${ }^{103}$ University of Biatystok, 15-424 Biatystok, Poland
${ }^{104}$ SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
${ }^{105}$ IISER-TVM, CET Campus, Trivandrum Kerala 695016, India
${ }^{106}$ Northwestern University, Evanston, IL 60208, USA
${ }^{107}$ Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
${ }^{108}$ Pusan National University, Busan 609-735, Korea
${ }^{109}$ Hanyang University, Seoul 133-791, Korea
${ }^{110}$ NCBJ, 05-400 Swierk-Otwock, Poland
${ }^{111}$ IM-PAN, 00-956 Warsaw, Poland
${ }^{112}$ Monash University, Victoria 3800, Australia
${ }^{113}$ Seoul National University, Seoul 151-742, Korea
${ }^{114}$ ESPCI, CNRS, F-75005 Paris, France
${ }^{115}$ Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
${ }^{116}$ Southern University and A\&M College, Baton Rouge, LA 70813, USA
117 College of William and Mary, Williamsburg, VA 23187, USA
${ }^{118}$ Instituto de Física Teórica, University Estadual Paulista/ICTP South
American Institute for Fundamental Research, São Paulo SP 01140-070, Brazil
${ }^{119}$ University of Cambridge, Cambridge CB2 1TN, United Kingdom
${ }^{120}$ IISER-Kolkata, Mohanpur, West Bengal 741252, India
${ }^{121}$ Whitman College, 280 Boyer Ave, Walla Walla, WA 9936, USA
${ }^{122}$ National Institute for Mathematical Sciences, Daejeon 305-390, Korea
${ }^{123}$ Hobart and William Smith Colleges, Geneva, NY 14456, USA
${ }^{124}$ Institute of Astronomy, 65-265 Zielona Góra, Poland
${ }^{125}$ Andrews University, Berrien Springs, MI 49104, USA
${ }^{126}$ Università di Siena, I-53100 Siena, Italy
${ }^{127}$ Trinity University, San Antonio, TX 78212, USA
${ }^{128}$ University of Washington, Seattle, WA 98195, USA
${ }^{129}$ Abilene Christian University, Abilene, TX 79699, USA

Abstract

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitationalwave Observatory (LIGO) simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 Hz to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21}. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 200000 years, equivalent to a significance of greater than 5.1σ. The source lies at a luminosity distance of $410_{-180}^{+160} \mathrm{Mpc}$ corresponding to a redshift $z=0.09_{-0.04}^{+0.03}$. In the source frame, the initial black hole masses are $36_{-4}^{+5} \mathrm{M}_{\odot}$ and $29_{-4}^{+4} \mathrm{M}_{\odot}$, and the final black hole mass is $62_{-4}^{+4} \mathrm{M}_{\odot}$, with $3.0_{-0.5}^{+0.5} \mathrm{M}_{\odot} c^{2}$ radiated in gravitational waves at a peak luminosity of $3.6_{-0.4}^{+0.5} \times 10^{56} \mathrm{erg} / \mathrm{s}$. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

PACS numbers: $04.80 . \mathrm{Nn}, 04.25 . \mathrm{dg}, 95.85 . \mathrm{Sz}, 97.80 .-\mathrm{d}$

Introduction - In 1916, the year after the final formula- ${ }_{32}$ tion of the field equations of general relativity, Albert Ein- 327 stein predicted the existence of gravitational waves. He ${ }_{328}$ found that the linearized weak-field equations had wave ${ }_{32}$ solutions: transverse waves of spatial strain that travel at ${ }_{330}$ the speed of light, generated by time variations of the mass ${ }_{33}$ quadrupole moment of the source [1, 2]. Einstein under- 332 stood that gravitational-wave amplitudes would be remark- ${ }^{33}$ ably small and expected that they would have no practical importance for physics.

That same year Schwarzschild published a solution for the field equations [3] that was later understood to describe a black hole [4, 5], and in 1963 Kerr generalized the solution to rotating black holes [6]. In the 1970s theoretical work led to the understanding of black hole quasi-normal modes [7--9]. In the past decade, breakthroughs in numerical relativity have produced accurate simulations of binary black hole mergers [10-12]. While numerous black hole candidates have now been identified through electromagnetic observations [13-15], black hole mergers have not previously been observed.
The discovery of the binary pulsar system PSR B1913+16 by Hulse and Taylor [16] and subsequent observations of its energy loss by Taylor and Weisberg [17] demonstrated the existence of gravitational waves. This discovery, along with emerging astrophysical understanding [18], led to the recognition that direct observations of gravitational waves would enable studies of additional relativistic systems and provide new tests of general relativity, especially in the dynamic strong-field regime. Numerical relativity simulations, together with advances in analytical relativity [19, 20], have led to the development of gravitational waveforms for a wide range of such systems.
Prior to the discovery of radio pulsars, experiments to detect gravitational waves began with Weber and his resonant mass detectors in the 1960s [21], followed by an international network of cryogenic resonant detectors [22]. Interferometric detectors were first suggested in the early ${ }_{363}$ 1960s [23] and the 1970s [24]. A study of the noise and ${ }_{364}$ performance of such detectors [25], and further concepts
to improve them [26], led to proposals for long-baseline broadband laser interferometers with the potential for significantly increased sensitivity [27-29]. By 2000 a network of initial detectors had been constructed, including the Laser Interferometer Gravitational-wave Observatory (LIGO) in the United States, GEO 600 in Germany, and Virgo in Italy. This network made joint observations from 2005 through 2011, setting upper limits on a wide variety of gravitational-wave sources. In 2015 Advanced LIGO 35 became the first of a significantly more sensitive network of advanced detectors to begin observations [30--33].

A century after the fundamental predictions of Einstein, Schwarzschild and Kerr, we report the first direct detection of gravitational waves and the first direct observation of a binary black hole system merging to form a single black hole. This confirms general relativity's prediction for the nonlinear dynamics of highly disturbed black holes and provides the first view of general relativity in the strongfield, high-velocity regime.

345 Observation - On September 14, 2015 at 09:50:45 UTC the LIGO Hanford, WA, and Livingston, LA, observatories detected the coincident signal, referred to as GW150914, shown in Fig. 1] [40]. The initial detection was made by a real-time search for generic gravitational wave transients [41] within three minutes of data acquisition. Subsequently, a matched-filter analysis that uses relativistic models of compact binary waveforms [42] recovered GW150914 as the most significant trigger from each detector. These two triggers occurred within the 10 ms inter-site propagation time and have a combined signal-to-noise ratio (SNR) of 24.

A back-of-the-envelope analysis of the basic features of ${ }_{58}$ GW150914 points to it being produced by the coalescence of two black holes - i.e., their orbital inspiral and merger, and subsequent final black hole ringdown. Over 0.2 s , the signal increases in frequency and amplitude in about 8 cy2 cles from 35 to 150 Hz . The most plausible explanation for this evolution is the inspiral of two orbiting masses m_{1} and m_{2} due to gravitational-wave emission. At the lower 35 frequencies, such evolution is characterized by the chirp

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered with a $35-350 \mathrm{~Hz}$ band-pass filter to suppress large fluctuations outside the detectors' most sensitive frequency band, and band-reject filters to remove the strong instrumental spectral lines seen in the Fig. 3 3spectra. Top row, left: H1 strain. Top row, right: L1 strain. GW150914 arrived first at L1 and $6.9_{-0.4}^{+0.5} \mathrm{~ms}$ later at H1; for a visual comparison the H1 data are also shown, shifted in time by this amount and inverted'(to account for the detectors' relative orientations). Second row: Gravitational-wave strain projected onto each detector in the $35-350 \mathrm{~Hz}$ band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those recovered from GW150914 [34, 35] confirmed by an independent calculation based on [11]. Shaded areas show 90% credible regions for two waveform reconstructions: one that models the signal as a set of sine-Gaussian wavelets [36, 37] and one that models the signal using binary-black-hole template waveforms [38]. These reconstructions have a 95% overlap, as shjown in [38]. Third row: Residuals after subtracting the filtered numerical relativity waveform from the filtered detector time series. Bottom row: A timefrequency decomposition [39] of the signal power associated with GW150914. Both plots show a signal with frequency increasing over time.

$$
\mathcal{M}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}}=\frac{c^{3}}{G}\left[\frac{5}{96} \pi^{-8 / 3} f^{-11 / 3} \dot{f}\right]^{3 / 5}
$$

mass [43]

where f and f are the observed frequency and its time derivative and G and c are the gravitational constant and speed of light. Estimating f and \dot{f} from the Fig. 1 data we
${ }_{370}$ obtain a chirp mass of $\mathcal{M} \simeq 30 \mathrm{M}_{\odot}$, implying that the to${ }_{371}$ tal mass $M=m_{1}+m_{2}$ must be at least $\simeq 70 \mathrm{M}_{\odot}$. This ${ }_{372}$ bounds the sum of the Schwarzschild radii of the binary ${ }^{373}$ components to $2 G M / c^{2} \gtrsim 210 \mathrm{~km}$. To reach the high 374 orbital frequency of 75 Hz (half the gravitational-wave fre5 quency) the objects must have been very close, and hence 6 very compact. (Equal Newtonian point masses orbiting at

FIG. 2. Top: Estimated gravitational-wave strain amplitude from GW150914 projected onto H1. This shows the full bandwidth of the waveforms, without the filtering used for Fig. 1 The inset images show numerical-relativity models of the black-hole horizons as the holes coalesce. Bottom: The Keplerian effective black hole separation in units of Schwarzschild radii $\left(R_{S}=2 G M / c^{2}\right)$ and the effective relative velocity given by the Post-Newtonian parameter $v / c=\left(G M \pi f / c^{3}\right)^{1 / 3}$, where f is the gravitationalwave frequency calculated with numerical relativity and M is the total mass.
this frequency would have been only $\simeq 350 \mathrm{~km}$ apart.) A pair of neutron stars, while compact, would not have the required mass, while a black hole-neutron star binary with the deduced chirp mass would have a very large total mass, and would thus merge at much lower frequency. This leaves black holes as the only known star types compact enough to reach 75 Hz orbital frequencies without contact. Furthermore, the decay of the waveform after it peaks is consistent with the damped oscillations of a final black hole relaxing to a stationary Kerr configuration. Below, we present a general-relativistic analysis of GW150914; Fig. 2 shows the calculated wayeform using the resulting source parameters.

Detectors - Gravitational-wave astronomy exploits multiple, widely separated detectors to distinguish gravitational waves from local instrumental and environmental noise, to provide source sky localization from relative arrival times, and to measure wave polarizations. The LIGO sites each operate a single Advanced LIGO detector [30], a modified Michelson interferometer that measures gravitationalwave strain as a difference in length of its orthogonal arms. Each arm is formed by two mirrors, acting as test masses, separated by $L_{x}=L_{y}=L=4 \mathrm{~km}$, as shown in

$$
416
$$

FIG. 3. Simplified diagram of an Advanced LIGO detector (not to scale). A gravitational wave propagating orthogonally to the detector plane and linearly polarized parallel to the $4-\mathrm{km}$ optical cavities will have the effect of lengthening one $4-\mathrm{km}$ arm and shortening the other during one half-cycle of the wave; these length changes are reversed during the other half-cycle. The output photodetector records these differential cavity length variations. While a detector's directional response is maximal for this case, it is still significant for most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth). Inset a : Location and orientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset b : The instrument noise for each detector near the time of the signal detection; this is an amplitude spectral density, expressed in terms of equivalent gravitational-wave strain amplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz , and by a superposition of technical noise sources at lower frequencies [44]. Narrowband features include calibration lines ($33-38 \mathrm{~Hz}, 330 \mathrm{~Hz}$, and 1080 Hz), vibrational modes of suspension fibers $(500 \mathrm{~Hz}$ and harmonics), and 60 Hz electric power grid harmonics.

469

certainty of less than 10% in amplitude and 10 degrees in phase, and is continuously monitored with calibration laser excitations at selected frequencies. Two alternative methods are used to validate the absolute calibration, one referenced to the main laser wavelength and the other to a radio-frequency oscillator [60]. Additionally, the detector response to gravitational waves is tested by injecting simulated waveforms with the calibration laser.

To monitor environmental disturbances and their influence on the detectors, each observatory site is equipped with an array of sensors: seismometers, accelerometers, microphones, magnetometers, radio receivers, weather sensors, AC-power line monitors, and a cosmic-ray detector [61]. Another $\sim 10^{5}$ channels record the interferometer's operating point and the state of the control systems. Data collection is synchronized to Global Positioning System (GPS) time to better than $10 \mu \mathrm{~s}$ [62]. Timing accuracy is verified with an atomic clock and a secondary GPS re-

74 ceiver at each observatory site.
In their most sensitive band, $100-300 \mathrm{~Hz}$, the current LIGO detectors are 3 to 5 times more sensitive to strain 47 than initial LIGO [63]; at lower frequencies, the improve48 ment is even greater, with more than ten times better 49 sensitivity below 60 Hz . Because the detectors respond ${ }_{480}$ proportionally to gravitational-wave amplitude, for small
ity to environmental disturbances was quantified by mea- ${ }_{546}$ suring their response to specially generated magnetic, ra- ${ }_{547}$ dio frequency, acoustic, and vibration excitations. These 548 tests indicated that any external disturbance large enough ${ }_{549}$ to have caused the observed signal would have been clearly 550 recorded by the array of environmental sensors. None of 551 the environmental sensors recorded any disturbances that 552 evolved in time and frequency like GW150914, and all environmental fluctuations during the second that contained 554 GW150914 were at least 17 times too small to account for ${ }_{55}$ its amplitude. Special care was taken to search for any pos- 556 sible long-range correlated disturbances which might pro- ${ }_{557}$ duce near simultaneous signals at the two sites; none were found.

The detector strain data exhibit non-Gaussian noise transients that arise from a variety of instrumental mechanisms. Many have distinct signatures, visible in auxiliary 56 data channels that are not sensitive to gravitational waves; 56 such instrumental transients are removed from our analy- ${ }_{56}$ ses. Any instrumental transients that remain in the data are 565 accounted for in the estimated detector backgrounds de- 566 scribed below. There is no evidence for instrumental transients that are temporally correlated between the two detectors.

Searches - We present the analysis of 16 d of coincident observations between the two LIGO detectors from September 12 to October 20. This is a subset of the 5 data from Advanced LIGO's first observational period that ended on January 12, 2016.

GW150914 is confidently detected by two different 5 types of searches. One aims at recovering signals from the ${ }_{57}$ coalescence of compact objects, using optimal matched fil- 57 tering with waveforms predicted by general relativity. The other search targets a broad range of generic transient sig- 57 nals, with minimal assumptions about waveforms. These 580 searches use independent methods and their response to ${ }_{58}$ detector noise consists of different, uncorrelated, events. ${ }^{58}$ However, strong signals from binary black hole mergers ${ }_{58}$ are expected to be detected by both searches.
Each search identifies candidate events that are de- ${ }_{58}$ tected at both observatories consistent with the inter-site propagation time. They are assigned a detection-statistic value that ranks their signal likelihood. The signifi- ${ }_{58}$ cance of a candidate event is determined by the search ${ }_{589}$ background - the rate at which detector noise produces 590 events with a detection-statistic value equal to or higher ${ }_{59}$ than the candidate event. Estimating this background is 592 challenging for two reasons: the detector noise is non- 593 stationary and non-Gaussian, so its properties must be em- 594 pirically determined; and it is not possible to shield the 595 detector from gravitational waves to directly measure a ${ }_{596}$ signal-free background. Though the specific procedure ${ }_{597}$ used to estimate the background is slightly different for the ${ }_{598}$ two searches, both use a time-shift technique: the times- 599
offset that is large compared to the inter-site propagation time, and a new set of events is produced based on this time-shifted data set. For instrumental noise that is uncorrelated between detectors this is an effective way to estimate the background. In this process a gravitational-wave signal in one detector may coincide with time-shifted noise transients in the other detector, thereby contributing to the background estimate. This leads to an overestimate of the noise background and therefore to a more conservative assessment of the significance of candidate events.

Non-Gaussian detector noise occurs in different timefrequency regions. This means that the search background is not uniform across the parameter space being searched. To maximize sensitivity and provide a better estimate of event significance, the searches sort both their background estimates and their event candidates into different classes according to their time-frequency morphology. The significance of a candidate event is measured against the background of its class. To account for having searched multiple classes, this significance is decreased by a trials factor equal to the number of classes [66].

Generic-transients search - Designed to operate without a specific waveform model, this search identifies coinciector strain data [41, 67], for signal frequencies up to 1 kHz and durations up to a few seconds.
Using a multi-detector maximum likelihood method, this séarch reconstructs signal waveforms consistent with 54 a common gravitational wave signal in both detectors. Each event is ranked according to the detection-statistic $\eta_{c}=\sqrt{2 E_{c} /\left(1+E_{n} / E_{c}\right)}$, where E_{c} is the dimensionless coherent signal energy obtained by cross-correlating the two reconstructed waveforms, and E_{n} is the dimensionless residual noise energy after the reconstructed signal is subtracted from the data. The statistic η_{c} thus quantifies the consistency of the data between the two detectors.

Based on their time-frequency morphology, the events are divided into three mutually exclusive search classes, as described in [37]: events with frequency increasing with time and not similar to known populations of noise transients (class C3), events not similar to populations of noise transients but whose frequency does not increase with time (class C 2), and the remaining events (class C 1).

Detected with $\eta_{c}=20.0$, GW150914 is the strongest event of the entire search. Consistently with its coalescence signal signature it is found in the search class C3 of events with increasing time-frequency evolution. Measured on a background equivalent to over 67400 years of data and including a trials factor of 3 to account for the search classes, its false alarm rate is lower than 1 in 22500 years. This corresponds to a probability $<2 \times 10^{-6}$ of observing at least one noise event during the analysis time as strong as GW150914, equivalent to 4.6σ.

The selection criteria that defines the search class C3 where GW150914 was found reduces the background by

FIG. 4. The search results from the generic-transients search (left) and the binary coalescence search (right). These histograms show the number of candidate events (orange markers) and the number of background events in the search class where GW150914 was found (black lines) as a function of the search detection-statistic and with a bin width of 0.2 . The significance of GW150914 is greater than 5.1σ and 4.6σ for the binary coalescence and the generic-transients searches, respectively. In the left panel we also show the results (markers in yellow) and the background (green curve) for the search class where GW150914 was found in a generic-transients search with no increasing frequency class (no C3 class). As explained in the text, in this search the GW150914 search class is the C2+C3 class. The tail in the black-line background of the binary coalescence search is due to random coincidences of GW150914 in one detector with noise in the other detector. (This type of event is practically absent in the generic-transients search background because they do not pass the time-frequency consistency requirements used in that search.) The blue curve is the background excluding coincidences involving GW150914 and it is the background to be used to assess the significance of the second strongest event. The scales immediately above the histogram give the significance of an event based on the corresponding color noise backgrounds in Gaussian standard deviations as a function of the detection-statistic.
introducing a constraint on the signal morphology. In order to illustrate the significance of GW150914 against a background of events consistent in both detectors but with arbitrary shapes, we present the results of a search comprising only the two search classes C 1 and $\mathrm{C} 2+\mathrm{C} 3$. This is a search that does not have a specific class for events with increasing frequency. As expected, GW150914 is found in the $\mathrm{C} 2+\mathrm{C} 3$ class. In the background of this class there are four events with $\eta_{c} \geq 32.1$, yielding a false alarm rate for GW150914 of 1 in 8400 years. This corresponds to a false alarm probability of 5×10^{-6} equivalent to 4.4σ.

For robustness and validation, we also use other generictransient search algorithms [37]. A different search [68] and a parameter estimation follow-up [69] detected GW150914 with consistent significance and signal parameters.

Binary coalescence search - This search targets gravitational-wave emission from binary systems with individual masses from $1 \mathrm{M}_{\odot}$ to $99 \mathrm{M}_{\odot}$ with total mass less than $100 \mathrm{M}_{\odot}$ and dimensionless spins up to 0.99 [70]. To ${ }^{64}$ model such systems, we use the effective-one-body (EOB) formalism [71], which combines results from the Post- 647 Newtonian approach [72, 73] with results from black hole ${ }_{648}$ perturbation theory and numerical relativity. The wave- 649
form model [74, 75] assumes that the spins of the merging objects are aligned with the orbital angular momentum, but the resulting templates can nonetheless effectively recover systems with misaligned spins in the parameter region of GW150914 [70]. Approximately 250,000 template waveforms are used to cover this parameter space.

The search calculates the matched-filter signal-to-noise ${ }_{32}$ ratio $\rho(t)$ for each template in each detector, and iden${ }_{33}$ tifies maxima of $\rho(t)$ with respect to the time of arrival of the signal [76-78]. For each maximum we calculate a chi-squared statistic χ_{r}^{2} to test whether the data in several different frequency bands are consistent with the matching template [79]. Values of χ_{r}^{2} near unity indicate that the signal is consistent with a coalescence. If χ_{r}^{2} is ${ }^{39}$ greater than unity, $\rho(t)$ is re-weighted as $\hat{\rho}=\rho /[(1+$ $\left.\left.{ }_{640}\left(\chi_{r}^{2}\right)^{3}\right) / 2\right]^{1 / 6}$ [80, 81]. The final step enforces coincidence 641 between detectors by selecting event pairs that occur within a 15 ms window and have the same matching template. The 15 ms window is determined by the maximum travel time between detectors and uncertainty in the measurement of the arrival time. We rank coincident events based on the quadrature sum $\hat{\rho}_{c}$ of the $\hat{\rho}$ from both detectors [42].
To produce background data for this search the SNR maxima of one detector are time-shifted by a multiple of 0.1 s and a new set of coincident events is computed. Re-

TABLE I. Estimated source parameters for GW150914. We report the median value as well as the range of the 90% credible interval. Masses are measured in the source frame; to convert masses to detector frame, multiply by $(1+z)$ [84]. The source redshift assumes standard cosmology [85].

Primary black hole mass	$36_{-4}^{+5} \mathrm{M}_{\odot}$
Secondary black hole mass	$29_{-4}^{+4} \mathrm{M}_{\odot}$
Final black hole mass	$62_{-4}^{+4} \mathrm{M}_{\odot}$
Final black hole spin	$0.67_{-0.07}^{+0.05}$
Luminosity distance	$410_{-180}^{+160} \mathrm{Mpc}$
Source redshift, z	$0.09_{-0.04}^{+0.03}$

peating this procedure 1.4×10^{7} times produces a noise background analysis time equivalent to 607800 years. More time slides could be afforded for this search compared to the generic transients search because the time-shift analysis of the latter is more computationally intensive.

To account for the search background noise varying across the target signal space, candidate and background events are divided into three search-classes based on template length. The right panel of Fig. 4 shows the background for the search class of GW150914. The GW150914 detection-statistic value of $\hat{\rho}_{c}=23.6$ is larger than any background event, so only an upper bound can be placed on its false alarm rate. Across the three search classes this bound is 1 in 200000 yrs. This translates to a false alarm probability $<2 \times 10^{-7}$, corresponding to 5.1σ.

A second, independent matched-filter analysis that uses a different method for estimating the significance of its events [82, 83], also detected GW150914 with identical signal parameters and consistent significance.

When an event is confidently identified as a real gravitational wave signal, as for GW150914, the background used to determine the significance of other events is re-estimated without the contribution of this event. This is the background distribution shown as a blue line in the right panel of Fig. 4 . Based on this, the second most significant event has a false alarm rate of 1 per 2.3 years and corresponding Poissonian false alarm probability of 0.02 .

Source Discussion - The matched filter search is optimized for detecting signals, but it provides only approximate estimates of the source parameters. To refine them, we use the most accurate, general relativity-based models available [74, 75, 86, 87], and perform a coherent Bayesian analysis of the data to derive posterior distributions of the source parameters [88]. These results are summarized in Table I and discussed in detail in [38]. The binary's orbital plane is only loosely constrained, with the total angular momentum most likely being roughly anti-aligned to the line of sight. With the loose constraint on the orbital orientation, and the short duration of the signal in the detectors sensitive band, only weak constraints can be placed on the
spins of the binary components; less than 0.7 and 0.9 at 90% confidence for the primary and secondary black hole, respectively. Numerical simulations of binary black-hole mergers provide estimates of the final mass and spin of the merger product, as well as the total energy radiated in gravitational waves and the peak gravitational-wave luminosity. We estimate the total energy radiated in gravitational waves was $3.0_{-0.5}^{+0.5} \mathrm{M}_{\odot} c^{2}$, where error bars incorporate both measurement uncertainty on the component masses and spins, and systematic uncertainty in fits to numerical simulations [89]. The system reached a peak luminosity of $3.6_{-0.4}^{+0.5} \times 10^{56} \mathrm{erg} / \mathrm{s}$ equivalent to $200_{-20}^{+30} \mathrm{M}_{\odot} c^{2} / \mathrm{s}$. This is the most energetic astronomical event ever observed.

Several analyses have been performed to determine whether GW150914 is consistent with a binary black hole in general relativity [90]. A first consistency check involves the mass and spin of the final black hole. In general relativity, the end product of a black hole binary coalescence is a Kerr black hole, which is fully described by its mass and spin. For quasicircular inspirals, these are predicted uniquely by Einstein's equations as a function of the masses and spins of the two progenitor black holes. Using fitting formulae calibrated to numerical relativity simulations [89], we verified that the remnant mass and spin deduced from the early stage of the coalescence and those inferred independently from the late stage are consistent with each other, with no evidence for disagreement from general relativity.
Within the Post-Newtonian formalism, the phase of the gravitational waveform during the inspiral can be expressed as a power-series in the $f^{1 / 3}$. The coefficients of this expansion can be computed in general relativity. So we can test for consistency with general relativity [91, 92] by allowing their values to deviate from the nominal values, and seeing if the resulting waveform is consistent with the data. In a second check [90] we place constraints on these deviations, finding no evidence for violations of general relativity.
Finally, assuming a modified dispersion relation for gravitational waves, the Compton wavelength of the graviton is constrained to be $\lambda_{g}>10^{13} \mathrm{~km}$ which corresponds to a bound on the graviton mass $m_{g}<$ $1.2 \times 10^{-22} \mathrm{eV} / \mathrm{c}^{2}$. This improves on Solar System and binary pulsar bounds [93-95] by one and three orders of magnitude, respectively, but does not improve the modeldependent bounds derived from dynamics of galaxy clusters [96] and weak lensing observations [97]. In summary, all three tests are consistent with the predictions of general relativity in the strong-field regime of gravity.

GW150914 demonstrates the existence of stellar-mass black holes more massive than $\gtrsim 25 \mathrm{M}_{\odot}$, and establishes that binary black holes can form in Nature and merge within a Hubble time. Binary black holes have been predicted to form both in isolated binaries [98-100] and in dense environments by dynamical interactions [101-103].

Formation of such massive black holes from stellar evolu- 800 tion requires weak massive-star winds, which are possible 80 in stellar environments with metallicity lower than $\simeq 1 / 2$ the solar value [104, 105]. Further astrophysical implications of this binary black hole discovery are discussed in [106].

By combining our observational results with an esti- 80 mate of the detection sensitivity for binary black hole 80 mergers, we can constrain the rate of stellar-mass binary 80 black hole mergers in the local universe. An optimally 80 oriented, optimally located binary system otherwise like 81 GW150914 will produce a SNR of 8 in a single detec- 81 tor with sensitivity like those shown in Fig. 3 at luminosity distance $2.4 \mathrm{Gpc}(z=0.42)$. Assuming that all binary black holes in the universe have the same masses and spins as GW150914 [107] and adopting a false alarm rate threshold of 1 per 100 years, we then infer a 90% credible range for the rate of $2-53 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ (in the comoving frame). When we incorporate the full set of binary coalescence search results, properly accounting for each event's probability of astrophysical or terrestrial origin [108], and make more reasonable assumptions about the mass distribution [109], we obtain a higher rate estimate ranging from $6-400 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$. These estimates are consistent with the broad range of rate predictions as reviewed in [109], with only the low end $\left(<1 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}\right)$ of rate predictions being excluded.

Binary black hole systems at larger distances contribute to a stochastic background of gravitational waves from the superposition of unresolved systems. Predictions for such a background are presented in [110], and, if the signal from such a population is detected, it would provide information into the evolution of such binary systems over the history of the universe.

Conclusion - The LIGO detectors have observed gravitational waves from the merger of two stellar-mass black holes. The detected waveform matches the predictions of general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

Efforts are underway to significantly enhance the global gravitational wave detector network [111]. These include further commissioning of the Advanced LIGO detectors to reach design sensitivity, which will allow detection of binaries like GW150914 with 3 times higher SNR. Additionally, Advanced Virgo, KAGRA, and a possible third LIGO detection in India [112] will extend the network and significantly improve the position reconstruction and parameter estimation of sources.

Further details about these results and associated data 799 events/GW150914
[1] A. Einstein, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 1, 688 (1916).
[2] A. Einstein, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 1, 154 (1918).
[3] K. Schwarzschild, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 1, 189 (1916).
[4] D. Finkelstein, Phys. Rev. 110, 965 (1958).
[5] M. D. Kruskal, Phys. Rev. 119, 1743 (1960).
[6] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[7] C. V. Vishveshwara, Nature 227, 936 (1970)
[8] W. H. Press, Astrophys. J. 170, L105 (1971)
[9] S. Chandrasekhar and S. L. Detweiler, Proc. Roy. Soc. Lond. A344, 441 (1975).

853
854

869 [18] W. Press and K. Thorne, Annu. Rev. Astron. Astrophys.

909 [37] B. Abbott et al., (2016), https://dcc.ligo.org/
$910 \quad$ LIGO-P1500229/public
911 [38] B. Abbott et al., (2016), https://dcc.ligo.org/
912 LIGO-P1500218/public
913 [39] S. Chatterji et al., Class. Quantum Grav. 21, S1809 (2004)
[19] L. Blanchet, Living Rev. Rel. 17, 2 (2014),arXiv:1310.1528 [gr-qc].
[25] R. Weiss, Electromagnetically coupled broadband gravitational antenna, Tech. Rep. (MIT, 1972) Quarterly report of the Research Laboratory for Electronics. https: //dcc.ligo.org/LIGO-P720002/public
[26] R. W. P. Drever, in Gravitational Radiation, edited by N. Deruelle and T. Piran (North-Holland, Amsterdam, 1983) p. 321.
[27] A. Abramovici et al., Science 256, 325 (1992)
[28] A. Brillet, A. Giazotto, et al., The Virgo Project, Tech. Rep. VIR-0517A-15 (Virgo Collaboration, 1989) ht tps : //tds.ego-gw.it/ql/?c=11247
[29] J. Hough et al., Proposal for a Joint German-British Interferometric Gravitational Wave Detector, Tech. Rep.
[30] J. Aasi et al., Class. Quantum Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc]
[31] F. Acernese et al., Class!. Quantum Grav. 32, 024001 (2015), arXiv: 1408.3978 [gr-qc].
[32] C. Affeldt et al., Class. Quantum Grav. 31, 224002 (2014).
[33] Y. Aso et al., Phys. Rev. D 88, 043007 (2013), arXiy:1306.6747 [gr-qc]
[34] Waveform shown is SXS:BBH:0305 available for 96 download at http://www.black-holes.org/
[40] Only the LIGO detectors were collecting data at this time. The Virgo detector was being upgraded to Advanced Virgo, and the GEO detector was in operation but not in observational mode on the day of the event.
[41] S. Klimenko et al., "Method for Detection and reconstruction of gravitational wave transients with networks of advanced detectors," (2015), arXiv:1511.05999 [gr-qc]
[42] S. A. Usman et al., "An improved pipeline to search for gravitational waves from compact binary coalescence,", (2015), arXiv:1508.02357 [gr-qc]
[43] P. C. Peters, Phys. Rev. 136, B1224 (1964)
[44] B. Abbott et al., (2016), https://dcc.ligo.org/ LIGO-P1500237/public.
[45] R. W. P. Drever, The Detection of Gravitational Waves. edited by D. G. Blair (Cambridge University Press, 1991).
[46] R. W. P. Drever et al., in Quantum Optics, Experimental Gravity, and Measurement Theory, NATO ASI Series B, Vol. 94, edited by P. Meystre and M. O. Scully (Plenum Press, New York, 1983) pp. 503-514.
[47] R. Schilling, unpublished (1983).
[48] B. J. Meers, Phys. Rev. D 38, 2317 (1988).
[49] J. Mizuno et al., Phys. Lett. A 175, 273 (1993)
[50] P. Kwee et al., Opt. Express 20, 10617 (2012).
[51] C. L. Mueller et al., To be published in Review of Scientific Instruments (2015).
[52] T. T. Fricke et al., Class. Quantum Grav. 29, 065005 (2012)
[53] S. M. Aston et al., Class. Quantum Grav. 29, 235004 (2012)
[54] F. Matichard et al., Class. Quantum Grav. 32, 185003 (2015)
[55] G. M. Harry et al., Class. Quantum Grav. 24, 405 (2007) arXiv:0610004 [gr-qc]
[56] A. V. Cumming et al., Class. Quantum Grav. 29, 035003 (2012)
[57] A. Staley et al., Class. Quantum Grav. 31, 245010 (2014).
[58] L. Barsotti, M. Evans, and P. Fritschel, Class. Quantum Grav. 27, 084026 (2010).
[59] B. Abbott et al., (2016), https://dcc.ligo.org/ LIGO-P1500248/public.
[60] E. Goetz et al., Gravitational waves. Proceedings, 8th Edoardo Amaldi Conference, Amaldi 8, New York, USA, June 22-26, 2009, Class. Quantum Grav. 27, 084024 (2010) arXiv:0911.0853 [gr-qc]
[61] A. Effler et al., Class. Quantum Grav. 32, 035017 (2015). arXiv:1409.5160 [astro-ph.IM]
[62] I. Bartos et al., Class. Quantum Grav. 27, 084025 (2010)
[63] J. Aasi et al., Class. Quantum Grav. 32, 115012 (2015). arXiv:1410.7764 [gr-qc]
[64] J. Aasi et al., Phys. Rev. D 87, 022002 (2013) arXiv:1209.6533 [gr-qc]
[65] B. Abbott et al., (2016), https://dcc.ligo.org/ LIGO-P1500227/public.
[66] L. Lyons, Ann. Appl. Stat. 2, 887 (2008)
[67] S. Klimenko et al., Class. Quantum Grav. 25, 114029 (2008).
[68] R. Lynch et al., "An information-theoretic approach to the gravitational wave burst detection problem," (2015), arXiv:1511.05955 [gr-qc].
[69] J. Kanner et al., "Leveraging waveform complexity for confident detection of gravitational waves," (2015),

975
976
977
978
979
980
981
982
983
984
985
986

988
989
990
991
992

1012
1013
1014
1014
1015

987 [77] B. Sathyaprakash and S. Dhurandhar, Phys. Rev. D 44

1009 [89] J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D 105
1010 90, 104004 (2014), arXiv:1406.7295 [gr-qc]. 105
1011 [90] B. Abbott et al., (2016), https://dcc.ligo.org/ 1052
arXiv:1509.06423.
[70] B. Abbott et al., (2016), https://dcc.ligo.org/ LIGO-P1500269/public
[71] A. Buonanno and T. Damour Phys. Rev, D 62, 064015
(2000) arXiv:gr-qc/0001013 [gr-qc]
[72] L. Bl
L. Blanchet et al., Phys. Rev. Lett. 74, 3515 (1995).
[73] L. Blanchet et al., Phys. Rev. Lett. 93, 091101 (2004), 1022 arXiv:gr-qc/0406012 [gr-qc]
[74] A. Taracchini et al., Phys. Rev. D 89, 061502 (2014).
1023
[75] M. Pürrer, Class. Quantum Grav. 31, 195010 (2014).
1025
[76] B. Allen et al., Phys. Rev. D 85, 122006 (2012) arXiv:gr- 1026 qc/0509116 [gr-qc]

1027
3819 (1991).
[78] B. J. Owen and B. S. Sathyaprakash, Phys. Rev. D 60, ${ }_{103}$ 022002 (1999), arXiv:gr-qc/9808076 [gr-qc]
[79] B. Allen, Phys. Rev. D 71, 062001 (2005) arXiv:0405045 [gr-qc].
[80] J. Abadie et al., Phys. Rev. D 85, 082002 (2012), arXiv: 1111.7314 [gr-qc].
[81] S. Babak et al., Phys. Rev. D 87, 024033 (2013).
[82] K. Cannon et al., Astrophys. J. 748, 136 (2012) arXiv:1107.2665 [astro-ph.IM]
[83] S. Privitera et al., Phys. Rev. D 89, 024003 (2014) arXiv:1310.5633 [gr-qc]
[84] A. Krolak and B. F. Schutz, Gen. Relativ. Gravit. 19, 1163 (1987).
[85] P. A. R. Ade et al., (2015), arXiv:1502.01589 [astroph.CO]
[86] M. Hannam et al., Phys. Rev. Lett. 113, 151101 (2014) arXiv:1308.3271 [gr-qc].
[87] S. Khan et al., Phys. Rev. D (2016), accepted for publication, arXiv:1508.07253 [gr-qc]
[88] J. Veitch et al., Phys. Rev. D 91, 042003 (2015)
1047
1048
1048

LIGO-P1500213/public
[91] C. K. Mishra et al., Phys. Rev. D 82, 064010 (2010), 1005.0304
[92] T. G. F. Li et al., Phys. Rev. D 85, 082003 (2012),
1110.0530
[93] C. Talmadge et al., Phys. Rev. Lett. 61, 1159 (1988)
[94] C. M. Will, Phys. Rev. D 57, 2061 (1998) arXiv:9709011 [gr-qc]
[95] L. S. Finn and P. J. Sutton, Phys. Rev. D 65, 044022 (2002) gr-qc/0109049
[96] A. S. Goldhaber and M. M. Nieto, Phys. Rev. D 9, 1119 (1974).
[97] S. Choudhury and S. SenGupta, Eur. Phys. J. C74, 3159 (2014).
[98] A. Tutukov and L. Yungelson, Nauchnye Informatsii 27, 70 (1973).
[99] V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Mon. Not. R. Astron Soc. 288, 245 (1997), astro-ph/9702060
[100] M. Dominik et al., Astrophys. J. 806, 263 (2015) arXiv:1405.7016 [astro-ph.HE]
[101] S. Sigurdsson and L. Hernquist, Nature 364, 423 (1993)
[102] S. F. Portegies Zwart and S. L. W. McMillan, Astrophys. J. Lett. 528, L17 (2000), astro-ph/9910061
[103] C. L. Rodriguez et al., Phys. Rev. Lett. 115, 051101 (2015) arXiv:1505.00792 [astro-ph.HE]
[104] K. Belczynski et al., Astrophys. J. 714, 1217 (2010).
[105] M. Spera, M. Mapelli, and A. Bressan, Mon. Not. R. Astron Soc. 451, 4086 (2015).
[106] B. Abbott et al., (2016), https://dcc.ligo.org/ LIGO-P1500262/public.
[107] C. Kim, V. Kalogera, and D. R. Lorimer, Astrophys. J. 584, 985 (2003) arXiv:0207408 [astro-ph]
[108] W. M. Farr et al., Phys. Rev. D 91, 023005 (2015). arXiv:1302.5341 [astro-ph.IM]
[109] B. Abbott et al., (2016), https://dcc.ligo.org/ LIGO-P1500217/public.
[110] B. Abbott et al., (2016), https://dcc.ligo.org/ LIGO-P1500222/public
[111] B. Abbott et al., "Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo," (2015), LIGO-P1200087, VIR-0288A12, arXiv:1304.0670v2 [gr-qc]
[112] B. Iyer et al., LIGO-India. Tech. Rep. LIGO-M1100296 (2011).

