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deformation of a BH by observing the ringdown modes?

Gravitational-wave observations of black holes offer the best 
possible tests of general relativity

v/c ~ 1 at merger of BBH
v/c ~ 10-4 in binary pulsars
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Two-parameter family of solutions - mass and spin

Reissner-Nordström solution
Two-parameter family of solutions - mass and electric charge

Kerr-Newman solution
Three-parameter family of solutions consisting of mass, charge and spin

In this talk we will only consider Schwarzschild and Kerr solutions
Isolated black holes are interesting in their own right

Their properties have been studied a great deal in literature
Perturbed black holes, on the other hand, are truly fascinating

They could be source of extremely luminous radiation, far exceeding the 
luminosity in light of all the stars in the Universe
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h(t) = A
M

r
exp(−t/τ) cos(ωt+ ϕ0)

† Amplitude A depends on the nature of perturbation

† r is the distance to the black hole

† ω and τ are the mode frequency and damping time
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For each (l, m) there are infinitely many modes, fundamental (i.e. least 
damped) and overtones
n = 0,1,2,3,... is overtone index; all but the n = 0 have short decay times

In general relativity, mode frequencies and decay times all 
depend only on the mass M and spin j of the black hole - 
statement of the no-hair theorem
Measuring a single mode could give BH mass and spin; 
measuring two or modes would constrain General Relativity or 
provide smoking gun evidence of black holes

Mode frequencies and decay times could depend on other parameters 
(e.g., the structure of the central object)

Absence of quasi-normal modes after merger might indicate 
failure of GR or existence of naked singularities
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f = 1.2Hz
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τ = 0.55ms
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�

Q =
1
2τω ∼ 2

f = 2.0 kHz and Q = 5 for j = 0.9

Typical Values of the Dominant Mode
Mode frequencies are inversely proportional to BH mass and decay 
times directly proportional to it
Gravitational waves being quadrupolar the most dominant mode 
excited is l = 2
The frequency and the decay time of the 22 mode (i.e. l=2, m=2) isClass. Quantum Grav. 26 (2009) 163001 Topical Review
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Figure 1. Four different physical processes leading to substantial quasinormal ringing (see text
for details). With the exception of the infalling-particle case (where M is the BH mass, µ is the
particle’s mass and ψ2 is the Zerilli wavefunction), "22 is the l = m = 2 multipolar component
of the Weyl scalar ψ4, M denotes the total mass of the system and r the extraction radius (see e.g.
[44]).

stars (NSs) with a polytropic equation of state, inspiraling and eventually collapsing to form a
single BH.

QNM frequencies for gravitational perturbations of Schwarzschild and Kerr BHs have
been computed by many authors. Rather than listing numerical tables of well-known results,
we have set up a web page providing tabulated values of the frequencies and fitting coefficients
for the QNMs that are most relevant in gravitational wave astronomy [47]. On this web page,
we also provide Mathematica notebooks to compute QNMs of Kerr and asymptotically AdS
BHs [47].

1.1. Milestones

QNM research has a 50 year long history. We find it helpful to provide the reader with
a ‘roadmap’ in the form of a chronological list of papers that, in our opinion, have been
instrumental in shaping the evolution of the field. Our summary is necessarily biased and
incomplete, and we apologize in advance for the inevitable omissions. A more complete set
of references can be found in the rest of this review.

• 1957—Regge and Wheeler [48] analyze a special class of gravitational perturbations of
the Schwarzschild geometry. This effectively marks the birth of BH perturbation theory,
a decade before the birth of the BH concept itself. The ‘one-way membrane’ nature of

6
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FIG. 2. Evolution of the first few dimensionless mode frequencies f�m = Mω�m as a function of the dimensionless time Mt, for
different values of the mass ratio q of the progenitor binary. Also shown in arbitrary units is the luminosity in the 22 mode.
All mode frequencies, especially f22 and f33, stop evolving and stabilise soon after the binary merges to form a single black
hole. The waveform is assumed to contain a superposition of only quasi-normal modes a duration 10M after the luminosity in
22 mode reaches its peak.

of increase itself being greater as the two black holes get

closer. When the two black holes merge, a common hori-

zon forms and the frequency of each mode stabalizes, fi-

nally reaching the quasi-normal mode value as predicted

by black hole perturbation theory. We shall identify the

beginning of the ringdown phase to be (approximately)

the epoch when the frequency of the various modes begin

to stabilize.

We can compute the frequency of each mode from

the evolution of its phase given by the second of the

equations in Eq. (14). Once the phase is known it is

straightforward to write down the (dimensionless) fre-

quency f�m = M ω�m = M dΦ�m(t)/d(Mt). The ring-

down phase can be assumed to begin when f�m com-

puted from our numerical simulations are close to those

obtianed from black hole perturbation theory. We will

first take a look at the predictions from black hole per-

turbation theory and then compare those predictions to

the results obtained from our numerical simulations and

plotted in Fig. 2.

There has been a lot of work on the computation of

the frequencies and time-constnats of various modes of

a perturbed Kerr black hole. Berti et al [16] have found

simple fits, as a function of the spin parameter j, to the

dimensionless mode frequencies1 f�m = M ω�m and qual-

ity factors 2Q�m = τ�m ω�m. The fitting functions for the

22, 21, and 33 modes are given by [16]

f22 = 1.5251− 1.1568(1− j)0.1292,

Q22 = 0.7000 + 1.4187(1− j)−0.4990
; (27)

f21 = 0.6000− 0.2339(1− j)0.4175,

Q21 = −0.3000 + 2.3561(1− j)−0.2277
; (28)

f33 = 1.8956− 1.3043(1− j)0.1818,

Q33 = 0.9000 + 2.3430(1− j)−0.4810. (29)

f44 = 2.3000− 1.5056(1− j)0.2244,

Q44 = 1.1929 + 3.1191(1− j)−0.4825. (30)

These fits are quite robust and they differ from the actual

values obtained for the frequencies and quality factors by

1 Note that we only consider here, the least damped n = 0 overtone
for each mode and have therefore dropped the overtone index
from mode frequencies, quality factors and time-constants.
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Can Quasi-normal Modes Reveal Their Perturber?  

If mode frequencies depend only on the black hole’s mass and 
spin how can they reveal what caused the perturbation?

 No-hair theorem really doesn’t apply to deformed BHs
Should be possible to measure not just BH mass and spin but also, for 
instance, the mass ratio of the progenitor binary from the QNMs produced 
in the aftermath of merger

They key is that the amplitude of the modes carry additional 
information

They depend on the nature of the perturber

If we have observe only one mode then the amplitude would be 
degenerate with other parameters - distance to the black hole, 
its location on the sky, etc.

Observing higher order modes should help break the degeneracy

h+
lm − ih×

lm =
AlmM

r
eiωlme−t/τlm
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No analytical approach is known to 
compute the relative amplitudes of 

modes excited during a merger

A complete model of the ringdown signal 
would require high-accuracy merger 

simulations

We carried out a large number of 
numerical simulations to understand the 
relation between progenitor parameters 

and ringdown amplitudes
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Waveform as seen by a detector

hAðtÞ ¼ FA
þð!; ’; c ÞhþðtÞ þ FA

%ð!; ’; c Þh%ðtÞ: (8)

Here, c is the polarization angle,

cosc ¼ e! & eRx ; (9)

and FA
þ;%ð!; ’; c Þ are the antenna pattern functions of the

detector given by

FA
þ ¼ DA

ije
ij
þ; FA

% ¼ DA
ije

ij
%; (10)

where DA is the detector tensor. If eA1;2 are unit vectors (not
necessarily orthogonal to each other) along the two arms of
an interferometer, then the detector tensor is given by

D A ¼ eA1 ' eA1 ( eA2 ' eA2 : (11)

For our purposes, it is most useful to express the radia-
tion from a source in the source frame, in terms of its
expansion in spin-weighted spherical harmonics of weight
(2, namely (2Y‘m:

hþ ( ih% ¼
X1

‘¼2

X‘

m¼(‘

h‘m(2Y
‘mð";#Þ: (12)

Here, ð";#Þ refer to the colatitude and the azimuth angle at
which the radiation is emitted from the source; " is also the
angle between the line of sight and the orbital (spin)
angular momentum of the binary (black hole). The com-
plex coefficients h‘m in the expansion are referred to as ‘m
modes. Explicit expressions for the first few modes in the
post-Newtonian approximation for the inspiral phase of a
binary’s evolution can be found in Kidder [48]. It is useful
to write the modes explicitly in terms of their real and
imaginary parts:

h‘m ¼ A‘me
(i!‘m ¼ h‘mþ ( ih‘m% : (13)

This helps in extracting the amplitude and phase of each
mode in terms of its plus and cross modes obtained in
numerical simulations:

A‘m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh‘mþ Þ2 þ ðh‘m% Þ2

q
; !‘m ¼ tan(1

"
(h‘m%
h‘mþ

#
:

(14)

Noting that (2Y‘mð";#Þ¼(2 Y
‘mð"; 0Þeim#, we can rear-

range the sums in Eq. (12) using Eq. (14) to get [40]

hþ ¼
X

‘;m>0

A‘mY
‘m
þ cosð!‘m (m#Þ; (15)

h% ¼ (
X

‘;m>0

A‘mY
‘m
% sinð!‘m (m#Þ; (16)

where we have dropped the ‘‘memory-effect’’ m ¼ 0
terms, for which the amplitude is low (see, e.g., a recent
numerical study [49]). Note that while these modes are
nonoscillatory during inspiral, they do exhibit ringdown,
which has been studied in some detail with numerical
codes in axial symmetry, where they are the only nonzero

modes (see, e.g., [50]). In the above expressions, the an-
gular functions Y‘m

þ;%ð"Þ are the following combinations of
the spin-weighted spherical harmonics:

Y‘m
þ ð"Þ )(2 Y

‘mð"; 0Þ þ ð(1Þ‘(2Y
‘(mð"; 0Þ;

Y‘m
% ð"Þ )(2 Y

‘mð"; 0Þ ( ð(1Þ‘(2Y
‘(mð"; 0Þ:

(17)

For the inspiral phase of a binary when the two compact
bodies are widely separated, post-Newtonian approxima-
tion gives the amplitudes A‘mðtÞ and phases !‘mðtÞ as
expansions in v=c, where v is the velocity of the bodies
(see, e.g., [48]). Numerical-relativity simulations can be
used to extract them when the post-Newtonian approxima-
tion breaks down. In the case of perturbed black holes,
which a binary will result in, black-hole perturbation the-
ory predicts that the modes are damped sinusoids with their
amplitudes and phases given by

A‘m ¼ $‘mM

DL
e(t=%‘m ; !‘mðtÞ ¼ !‘mt; (18)

where M is the mass of the black hole and DL is its
luminosity distance from Earth. Time constants %‘m and
frequencies !‘m can be computed from black-hole pertur-
bation theory (see, e.g., Ref. [18] for a recent comprehen-
sive listing of frequencies and time constants). However,
the amplitudes $‘m depend on the nature of the perturba-
tion and are not analytically accessible in the case of black
holes that form from the coalescence of a binary. We shall
‘‘measure’’ them later in this paper using results of our
numerical simulations.
Using the above equations, the output of the numerical

simulations for the plus and cross polarizations corre-
sponds to the following expressions:

hþðtÞ¼
X

‘;m>0

$‘mM

DL
Y‘m
þ ð"Þe(t=%‘m cosð!‘mt(m#Þ;

h%ðtÞ¼
X

‘;m>0

$‘mM

DL
Y‘m
% ð"Þe(t=%‘m sinð!‘mt(m#Þ:

(19)

We have dropped the overtone index n from all the relevant
quantities (amplitudes, frequencies, and time constants) of
quasinormal modes, as we are assuming that higher (i.e.,
n > 0) overtones, quickly become negligible in amplitude,
compared to the fundamental n ¼ 0 overtone. Only the
fundamental n ¼ 0 overtone of the various modes is con-
sidered in this paper.
The amplitudes A‘m of the various modes depend on the

nature of the perturbation. For ringdowns resulting from
the merger of two nonspinning black holes, A‘m depend
on the mass M of the final black hole and mass ratio
q ¼ m1=m2ðq * 1Þ of the progenitor binary.
In the next section, we will estimate the amplitude of

dominant modes by fitting the late time signal from a
numerical-relativity simulation to a superposition of ring-
down modes. For binaries with nonspinning black holes
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þð!; ’; c ÞhþðtÞ þ FA
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and FA
þ;%ð!; ’; c Þ are the antenna pattern functions of the
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%; (10)

where DA is the detector tensor. If eA1;2 are unit vectors (not
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expansion in spin-weighted spherical harmonics of weight
(2, namely (2Y‘m:

hþ ( ih% ¼
X1

‘¼2

X‘

m¼(‘

h‘m(2Y
‘mð";#Þ: (12)
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For the inspiral phase of a binary when the two compact
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frequencies !‘m can be computed from black-hole pertur-
bation theory (see, e.g., Ref. [18] for a recent comprehen-
sive listing of frequencies and time constants). However,
the amplitudes $‘m depend on the nature of the perturba-
tion and are not analytically accessible in the case of black
holes that form from the coalescence of a binary. We shall
‘‘measure’’ them later in this paper using results of our
numerical simulations.
Using the above equations, the output of the numerical
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We have dropped the overtone index n from all the relevant
quantities (amplitudes, frequencies, and time constants) of
quasinormal modes, as we are assuming that higher (i.e.,
n > 0) overtones, quickly become negligible in amplitude,
compared to the fundamental n ¼ 0 overtone. Only the
fundamental n ¼ 0 overtone of the various modes is con-
sidered in this paper.
The amplitudes A‘m of the various modes depend on the

nature of the perturbation. For ringdowns resulting from
the merger of two nonspinning black holes, A‘m depend
on the mass M of the final black hole and mass ratio
q ¼ m1=m2ðq * 1Þ of the progenitor binary.
In the next section, we will estimate the amplitude of

dominant modes by fitting the late time signal from a
numerical-relativity simulation to a superposition of ring-
down modes. For binaries with nonspinning black holes
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spins so as to produce exactly the same final black hole

In the case of spinning black hole binaries our model of ringdown 
waveforms will not be correct
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Parameter Space to Understand the Effect Spin

The full parameter space of binary black holes on 
quasi-circular orbits has seven dimensions

Six parameters for the spins of two black holes and one 
parameter for mass ratio

There is no absolute scale in general relativity and hence total mass is not a 
parameter to be considered except when we construct search templates

It is computationally expensive to carry out simulations in the 
full parameter space

Analytically modelling the full space of waveforms is 
not easy

Carry out a study of binaries with black holes whose spins are 
aligned with the orbital angular momentum
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Parameter 
space of 

Simulations

2

TABLE I. – Summary of all non-precessing simulations, with initial spins in the direction of orbital angular momentum. In this

table, pt and pr indicate the tangential and radial components of the initial momenta of the punctures, while D/M are their

initial separations, with M = m1 +m2. The duration of the inspiral phase in cycles is approximately NGW , which denotes the

number of cycles up to the time of peak amplitude value of the Ψ22
4 waveform. Also shown are the dimensionless frequencies

of mode (2, 2) in the ringdown epoch, Mω22 and the BH final mass. The last two columns are the spin values as determined

from the Mω22 values, χMω, as well as from using the apparent horizon, χAH , for those simulations that utilised the AHmod

apparent horizon tracker. The non-spinning cases were presented in [18] and are shown here for completeness.

q χ1 χ2 χeff pt/M −pr/M D/M NGW Mω22 Mf/M χMω χAH

equal initial χi

2 -0.7 -0.7 -0.233 0.106276 0.002306 8.065 2 0.438 - 0.328 -

2 -0.5 -0.5 -0.167 0.103648 0.002008 8.123 2.5 0.458 - 0.416 -

2 -0.3 -0.3 -0.100 0.105803 0.002204 7.713 3 0.481 - 0.504 0.507

2 0.0 0.0 0.000 0.085599 0.000795 10.00 12.5 0.522 0.962 0.623 -

2 0.3 0.3 0.100 0.115485 0.003802 6.391 4 0.573 - 0.726 0.734

2 0.5 0.5 0.167 0.100947 0.001979 7.507 6 0.615 - 0.792 -

2 0.7 0.7 0.233 0.100183 0.002011 7.437 7 0.677 - 0.860 -

4 -0.7 -0.7 -0.420 0.077746 0.001569 8.062 2 0.389 - 0.076 -

4 -0.5 -0.5 -0.300 0.079756 0.001747 7.615 2 0.408 - 0.188 -

4 -0.3 -0.3 -0.180 0.079417 0.001677 7.456 3 0.428 - 0.302 -

4 0.0 0.0 0.000 0.061883 0.000421 10.00 16 0.467 0.978 0.471 -

4 0.3 0.3 0.180 0.087987 0.008960 6.116 4.5 0.513 - 0.608 -

4 0.5 0.5 0.300 0.103213 0.011186 5.000 5 0.565 - 0.732 -

4 0.7 0.7 0.420 0.101485 0.011354 5.000 6 0.625 - 0.818 -

χMω(q,χ1,χ2)

� χMω(q, 0, 0)

2 0.16 -0.70 0.197 0.105236 0.002140 7.569 3.5 0.523 - 0.628 -

2 0.07 -0.40 0.102 0.105002 0.002138 7.571 4 0.519 - 0.618 -

2 -0.04 0.15 -0.045 0.103527 0.002049 7.649 4 0.514 - 0.616 -

2 -0.11 0.45 -0.130 0.102880 0.002016 7.685 4 0.517 - 0.614 -

2 -0.19 0.75 -0.220 0.102282 0.001989 7.726 4.5 0.513 - 0.601 -

3 0.00 0.00 0.000 0.072408 0.000580 10.00 14.5 0.489 0.972 0.540 -

3 -0.02 0.10 -0.025 0.102700 0.007425 6.285 3 0.484 - 0.516 -

3 -0.03 0.30 -0.056 0.102049 0.003669 6.316 3 0.487 - 0.532 -

3 -0.05 0.50 -0.094 0.101369 0.003613 6.356 3.5 0.486 - 0.528 -

3 -0.06 0.70 -0.125 0.088813 0.001749 7.490 4.5 0.484 - 0.519 -

4 -0.020 0.10 -0.024 0.090339 0.003821 6.151 3 0.464 - 0.458 -

4 -0.025 0.30 -0.047 0.089699 0.003740 6.189 3 0.464 - 0.459 -

4 -0.030 0.50 -0.071 0.077852 0.001568 7.324 4.5 0.465 - 0.455 -

4 -0.040 0.70 -0.098 0.133337 0.038531 4.000 2 0.468 - 0.480 0.486

additional

simulations

1 0.00 0.00 0.000 0.085035 0.000537 12.00 19 0.553 0.951 0.686 -

1 0.00 0.00 0.000 0.115830 0.002413 7.666 4 0.550 - 0.686 0.687

1 0.25 -0.25 -0.125 0.115800 0.002414 7.671 4 0.549 - 0.686 0.687

1 0.50 -0.50 -0.250 0.115714 0.002416 7.685 4 0.549 - 0.686 0.686

1 0.75 -0.75 -0.375 0.115578 0.002420 7.707 4 0.548 - 0.686 0.685

1.5 0.20 -0.70 0.220 - - - 4.5 0.530 - - -

2 0.75 -0.75 0.500 0.116978 0.003745 6.812 2.5 0.621 - 0.810 0.812

2 -0.75 0.75 -0.500 0.117466 0.004002 6.225 4.5 0.458 - 0.447 0.426

2 0.00 0.50 -0.083 - - - 4.5 0.530 - - 0.653

4 0.75 -0.75 0.600 0.088244 0.003509 6.816 2.5 0.631 - 0.832 -

4 -0.75 0.75 -0.600 0.075796 0.001395 7.153 8 0.392 - 0.103 0.084

2
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table, pt and pr indicate the tangential and radial components of the initial momenta of the punctures, while D/M are their

initial separations, with M = m1 +m2. The duration of the inspiral phase in cycles is approximately NGW , which denotes the

number of cycles up to the time of peak amplitude value of the Ψ22
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from the Mω22 values, χMω, as well as from using the apparent horizon, χAH , for those simulations that utilised the AHmod

apparent horizon tracker. The non-spinning cases were presented in [18] and are shown here for completeness.
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equal initial χi

2 -0.7 -0.7 -0.233 0.106276 0.002306 8.065 2 0.438 - 0.328 -
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3 0.00 0.00 0.000 0.072408 0.000580 10.00 14.5 0.489 0.972 0.540 -
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FIG. 1: Quasi-normal mode amplitudes of binaries with aligned spins and mass ratio q = 2 (or ν = 2/9, left panel) and q = 4
(or ν = 4/25, right panel). The values from the non-spinning binary simulations are at χ+ = 0. Also shown in the left panel,
with asterisks, are the results from the q = 2 equal initial χi precessing simulations. Note that for the 22 mode, the absolute
amplitudes are always shown, scaled according to the final black hole mass, that is (r/M)h22.

was the same as that for the corresponding non-spinning
binary for (q, χfin) = (2, 0.62), (3, 0.54), and (4, 0.47),
using the final-spin fits in [3, 9] and (3) four q = 2 pre-
cessing binaries having equal initial spins with (x, y, z)
components equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and
(0.2, 0.2, 0.1), where the orbital plane lies on xy. There
were a total of 40 configurations, not including addi-
tional tests to verify that the results were robust against
changes in the number of inspiral orbits.

All simulations were performed with the BAM
code [10]. As is standard, the error bars in the ampli-
tudes were estimated by varying the numerical resolu-
tion and GW extraction radius. The highest resolution
near the black holes was ∼ m/35, where m is the mass of
the smallest black hole, and the GW signal was typically
calculated at 140Min from the source. The ringdown
amplitudes A�m were computed by fitting an exponen-
tial decay function to the data from t = 10M after the
peak of the (2, 2) luminosity, until the point where the
signal was dominated by numerical noise. A22 and A21

are typically accurate to within 2%, and A33 and A32

to within 10%. The weaker modes are too noisy to be
measured accurately, and are shown only for qualitative
comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal-spin binaries. The amplitudes of the seven
strongest modes (A�m = A�−m for non-precessing bina-
ries) are plotted as a function of a total spin parameter
χ+ = (m1 χ1 +m2 χ2)/Min, where Min = m1 +m2 and
χ+ = χi for these cases. This is the same spin parameter
that has been used in recent phenomenological models of
binary waveforms [11, 12]. The amplitudes are all rel-
ative to the 22 mode, for which we show the absolute
amplitude.

We see immediately that A22 and A33 change with

mass ratio, but vary only weakly with respect to spin. In
contrast, A21 varies strongly with spin. Figure 1, there-
fore, suggests that the 22 and 33 modes carry information
about the progenitor mass ratio, and the 21 mode carries
information about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black-hole with different progenitor spin con-
figurations. The goal was to show that the mode ampli-
tudes carried a signature of the progenitor spins indepen-
dently of the final black hole spin. The mode amplitudes
for the q = 2 case are shown in the left panel of Fig.
2, as a function of χ+. As before, 22 and 33 show little
variation, but the 21 mode changes by nearly a factor of
five. This is strong evidence that the final black holes in
this set are not really degenerate: although their mode
frequencies and damping times will be identical, they will
differ from one another in the 21 mode amplitude. This
is consistent with studies of black-hole recoil: the recoil
is mostly due to the interplay of the (2,±2) and (2,±1)
modes [13], and both the recoil and (2,±1) mode ampli-
tudes depend strongly on the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of

that in Fig. 1 with respect to χ+, implying that the 21
mode amplitude is not determined by χ+. Consider in-
stead the effective spin parameter

χeff =
1

2
(
√
1− 4 ν χ1 + χ−), χ− =

m1 χ1 −m2 χ2

Min
,

The right panel of Fig. 2 shows the amplitude of 21 as
a function of χeff for all the simulations discussed so far.
In all cases they are well approximated by

Â21 ≡ A21/A22 = 0.43
�√

1− 4 ν − χeff

�
, (1)

which is shown by dashed lines in Fig. 2 for different val-
ues of q. The above equation is consistent with the expec-
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FIG. 1: Quasi-normal mode amplitudes of binaries with aligned spins and mass ratio q = 2 (or ν = 2/9, left panel) and q = 4
(or ν = 4/25, right panel). The values from the non-spinning binary simulations are at χ+ = 0. Also shown in the left panel,
with asterisks, are the results from the q = 2 equal initial χi precessing simulations. Note that for the 22 mode, the absolute
amplitudes are always shown, scaled according to the final black hole mass, that is (r/M)h22.

was the same as that for the corresponding non-spinning
binary for (q, χfin) = (2, 0.62), (3, 0.54), and (4, 0.47),
using the final-spin fits in [3, 9] and (3) four q = 2 pre-
cessing binaries having equal initial spins with (x, y, z)
components equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and
(0.2, 0.2, 0.1), where the orbital plane lies on xy. There
were a total of 40 configurations, not including addi-
tional tests to verify that the results were robust against
changes in the number of inspiral orbits.

All simulations were performed with the BAM
code [10]. As is standard, the error bars in the ampli-
tudes were estimated by varying the numerical resolu-
tion and GW extraction radius. The highest resolution
near the black holes was ∼ m/35, where m is the mass of
the smallest black hole, and the GW signal was typically
calculated at 140Min from the source. The ringdown
amplitudes A�m were computed by fitting an exponen-
tial decay function to the data from t = 10M after the
peak of the (2, 2) luminosity, until the point where the
signal was dominated by numerical noise. A22 and A21

are typically accurate to within 2%, and A33 and A32

to within 10%. The weaker modes are too noisy to be
measured accurately, and are shown only for qualitative
comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal-spin binaries. The amplitudes of the seven
strongest modes (A�m = A�−m for non-precessing bina-
ries) are plotted as a function of a total spin parameter
χ+ = (m1 χ1 +m2 χ2)/Min, where Min = m1 +m2 and
χ+ = χi for these cases. This is the same spin parameter
that has been used in recent phenomenological models of
binary waveforms [11, 12]. The amplitudes are all rel-
ative to the 22 mode, for which we show the absolute
amplitude.

We see immediately that A22 and A33 change with

mass ratio, but vary only weakly with respect to spin. In
contrast, A21 varies strongly with spin. Figure 1, there-
fore, suggests that the 22 and 33 modes carry information
about the progenitor mass ratio, and the 21 mode carries
information about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black-hole with different progenitor spin con-
figurations. The goal was to show that the mode ampli-
tudes carried a signature of the progenitor spins indepen-
dently of the final black hole spin. The mode amplitudes
for the q = 2 case are shown in the left panel of Fig.
2, as a function of χ+. As before, 22 and 33 show little
variation, but the 21 mode changes by nearly a factor of
five. This is strong evidence that the final black holes in
this set are not really degenerate: although their mode
frequencies and damping times will be identical, they will
differ from one another in the 21 mode amplitude. This
is consistent with studies of black-hole recoil: the recoil
is mostly due to the interplay of the (2,±2) and (2,±1)
modes [13], and both the recoil and (2,±1) mode ampli-
tudes depend strongly on the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of

that in Fig. 1 with respect to χ+, implying that the 21
mode amplitude is not determined by χ+. Consider in-
stead the effective spin parameter

χeff =
1

2
(
√
1− 4 ν χ1 + χ−), χ− =

m1 χ1 −m2 χ2

Min
,

The right panel of Fig. 2 shows the amplitude of 21 as
a function of χeff for all the simulations discussed so far.
In all cases they are well approximated by

Â21 ≡ A21/A22 = 0.43
�√

1− 4 ν − χeff

�
, (1)

which is shown by dashed lines in Fig. 2 for different val-
ues of q. The above equation is consistent with the expec-
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FIG. 1: Quasi-normal mode amplitudes of binaries with aligned spins and mass ratio q = 2 (or ν = 2/9, left panel) and q = 4
(or ν = 4/25, right panel). The values from the non-spinning binary simulations are at χ+ = 0. Also shown in the left panel,
with asterisks, are the results from the q = 2 equal initial χi precessing simulations. Note that for the 22 mode, the absolute
amplitudes are always shown, scaled according to the final black hole mass, that is (r/M)h22.

was the same as that for the corresponding non-spinning
binary for (q, χfin) = (2, 0.62), (3, 0.54), and (4, 0.47),
using the final-spin fits in [3, 9] and (3) four q = 2 pre-
cessing binaries having equal initial spins with (x, y, z)
components equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and
(0.2, 0.2, 0.1), where the orbital plane lies on xy. There
were a total of 40 configurations, not including addi-
tional tests to verify that the results were robust against
changes in the number of inspiral orbits.

All simulations were performed with the BAM
code [10]. As is standard, the error bars in the ampli-
tudes were estimated by varying the numerical resolu-
tion and GW extraction radius. The highest resolution
near the black holes was ∼ m/35, where m is the mass of
the smallest black hole, and the GW signal was typically
calculated at 140Min from the source. The ringdown
amplitudes A�m were computed by fitting an exponen-
tial decay function to the data from t = 10M after the
peak of the (2, 2) luminosity, until the point where the
signal was dominated by numerical noise. A22 and A21

are typically accurate to within 2%, and A33 and A32

to within 10%. The weaker modes are too noisy to be
measured accurately, and are shown only for qualitative
comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal-spin binaries. The amplitudes of the seven
strongest modes (A�m = A�−m for non-precessing bina-
ries) are plotted as a function of a total spin parameter
χ+ = (m1 χ1 +m2 χ2)/Min, where Min = m1 +m2 and
χ+ = χi for these cases. This is the same spin parameter
that has been used in recent phenomenological models of
binary waveforms [11, 12]. The amplitudes are all rel-
ative to the 22 mode, for which we show the absolute
amplitude.

We see immediately that A22 and A33 change with

mass ratio, but vary only weakly with respect to spin. In
contrast, A21 varies strongly with spin. Figure 1, there-
fore, suggests that the 22 and 33 modes carry information
about the progenitor mass ratio, and the 21 mode carries
information about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black-hole with different progenitor spin con-
figurations. The goal was to show that the mode ampli-
tudes carried a signature of the progenitor spins indepen-
dently of the final black hole spin. The mode amplitudes
for the q = 2 case are shown in the left panel of Fig.
2, as a function of χ+. As before, 22 and 33 show little
variation, but the 21 mode changes by nearly a factor of
five. This is strong evidence that the final black holes in
this set are not really degenerate: although their mode
frequencies and damping times will be identical, they will
differ from one another in the 21 mode amplitude. This
is consistent with studies of black-hole recoil: the recoil
is mostly due to the interplay of the (2,±2) and (2,±1)
modes [13], and both the recoil and (2,±1) mode ampli-
tudes depend strongly on the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of

that in Fig. 1 with respect to χ+, implying that the 21
mode amplitude is not determined by χ+. Consider in-
stead the effective spin parameter

χeff =
1

2
(
√
1− 4 ν χ1 + χ−), χ− =

m1 χ1 −m2 χ2

Min
,

The right panel of Fig. 2 shows the amplitude of 21 as
a function of χeff for all the simulations discussed so far.
In all cases they are well approximated by

Â21 ≡ A21/A22 = 0.43
�√

1− 4 ν − χeff

�
, (1)

which is shown by dashed lines in Fig. 2 for different val-
ues of q. The above equation is consistent with the expec-
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FIG. 1: Quasi-normal mode amplitudes of binaries with aligned spins and mass ratio q = 2 (or ν = 2/9, left panel) and q = 4
(or ν = 4/25, right panel). The values from the non-spinning binary simulations are at χ+ = 0. Also shown in the left panel,
with asterisks, are the results from the q = 2 equal initial χi precessing simulations. Note that for the 22 mode, the absolute
amplitudes are always shown, scaled according to the final black hole mass, that is (r/M)h22.

was the same as that for the corresponding non-spinning
binary for (q, χfin) = (2, 0.62), (3, 0.54), and (4, 0.47),
using the final-spin fits in [3, 9] and (3) four q = 2 pre-
cessing binaries having equal initial spins with (x, y, z)
components equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and
(0.2, 0.2, 0.1), where the orbital plane lies on xy. There
were a total of 40 configurations, not including addi-
tional tests to verify that the results were robust against
changes in the number of inspiral orbits.

All simulations were performed with the BAM
code [10]. As is standard, the error bars in the ampli-
tudes were estimated by varying the numerical resolu-
tion and GW extraction radius. The highest resolution
near the black holes was ∼ m/35, where m is the mass of
the smallest black hole, and the GW signal was typically
calculated at 140Min from the source. The ringdown
amplitudes A�m were computed by fitting an exponen-
tial decay function to the data from t = 10M after the
peak of the (2, 2) luminosity, until the point where the
signal was dominated by numerical noise. A22 and A21

are typically accurate to within 2%, and A33 and A32

to within 10%. The weaker modes are too noisy to be
measured accurately, and are shown only for qualitative
comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal-spin binaries. The amplitudes of the seven
strongest modes (A�m = A�−m for non-precessing bina-
ries) are plotted as a function of a total spin parameter
χ+ = (m1 χ1 +m2 χ2)/Min, where Min = m1 +m2 and
χ+ = χi for these cases. This is the same spin parameter
that has been used in recent phenomenological models of
binary waveforms [11, 12]. The amplitudes are all rel-
ative to the 22 mode, for which we show the absolute
amplitude.

We see immediately that A22 and A33 change with

mass ratio, but vary only weakly with respect to spin. In
contrast, A21 varies strongly with spin. Figure 1, there-
fore, suggests that the 22 and 33 modes carry information
about the progenitor mass ratio, and the 21 mode carries
information about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black-hole with different progenitor spin con-
figurations. The goal was to show that the mode ampli-
tudes carried a signature of the progenitor spins indepen-
dently of the final black hole spin. The mode amplitudes
for the q = 2 case are shown in the left panel of Fig.
2, as a function of χ+. As before, 22 and 33 show little
variation, but the 21 mode changes by nearly a factor of
five. This is strong evidence that the final black holes in
this set are not really degenerate: although their mode
frequencies and damping times will be identical, they will
differ from one another in the 21 mode amplitude. This
is consistent with studies of black-hole recoil: the recoil
is mostly due to the interplay of the (2,±2) and (2,±1)
modes [13], and both the recoil and (2,±1) mode ampli-
tudes depend strongly on the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of

that in Fig. 1 with respect to χ+, implying that the 21
mode amplitude is not determined by χ+. Consider in-
stead the effective spin parameter

χeff =
1

2
(
√
1− 4 ν χ1 + χ−), χ− =

m1 χ1 −m2 χ2

Min
,

The right panel of Fig. 2 shows the amplitude of 21 as
a function of χeff for all the simulations discussed so far.
In all cases they are well approximated by

Â21 ≡ A21/A22 = 0.43
�√

1− 4 ν − χeff

�
, (1)

which is shown by dashed lines in Fig. 2 for different val-
ues of q. The above equation is consistent with the expec-
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FIG. 1: Quasi-normal mode amplitudes of binaries with aligned spins and mass ratio q = 2 (or ν = 2/9, left panel) and q = 4
(or ν = 4/25, right panel). The values from the non-spinning binary simulations are at χ+ = 0. Also shown in the left panel,
with asterisks, are the results from the q = 2 equal initial χi precessing simulations. Note that for the 22 mode, the absolute
amplitudes are always shown, scaled according to the final black hole mass, that is (r/M)h22.

was the same as that for the corresponding non-spinning
binary for (q, χfin) = (2, 0.62), (3, 0.54), and (4, 0.47),
using the final-spin fits in [3, 9] and (3) four q = 2 pre-
cessing binaries having equal initial spins with (x, y, z)
components equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and
(0.2, 0.2, 0.1), where the orbital plane lies on xy. There
were a total of 40 configurations, not including addi-
tional tests to verify that the results were robust against
changes in the number of inspiral orbits.

All simulations were performed with the BAM
code [10]. As is standard, the error bars in the ampli-
tudes were estimated by varying the numerical resolu-
tion and GW extraction radius. The highest resolution
near the black holes was ∼ m/35, where m is the mass of
the smallest black hole, and the GW signal was typically
calculated at 140Min from the source. The ringdown
amplitudes A�m were computed by fitting an exponen-
tial decay function to the data from t = 10M after the
peak of the (2, 2) luminosity, until the point where the
signal was dominated by numerical noise. A22 and A21

are typically accurate to within 2%, and A33 and A32

to within 10%. The weaker modes are too noisy to be
measured accurately, and are shown only for qualitative
comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal-spin binaries. The amplitudes of the seven
strongest modes (A�m = A�−m for non-precessing bina-
ries) are plotted as a function of a total spin parameter
χ+ = (m1 χ1 +m2 χ2)/Min, where Min = m1 +m2 and
χ+ = χi for these cases. This is the same spin parameter
that has been used in recent phenomenological models of
binary waveforms [11, 12]. The amplitudes are all rel-
ative to the 22 mode, for which we show the absolute
amplitude.

We see immediately that A22 and A33 change with

mass ratio, but vary only weakly with respect to spin. In
contrast, A21 varies strongly with spin. Figure 1, there-
fore, suggests that the 22 and 33 modes carry information
about the progenitor mass ratio, and the 21 mode carries
information about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black-hole with different progenitor spin con-
figurations. The goal was to show that the mode ampli-
tudes carried a signature of the progenitor spins indepen-
dently of the final black hole spin. The mode amplitudes
for the q = 2 case are shown in the left panel of Fig.
2, as a function of χ+. As before, 22 and 33 show little
variation, but the 21 mode changes by nearly a factor of
five. This is strong evidence that the final black holes in
this set are not really degenerate: although their mode
frequencies and damping times will be identical, they will
differ from one another in the 21 mode amplitude. This
is consistent with studies of black-hole recoil: the recoil
is mostly due to the interplay of the (2,±2) and (2,±1)
modes [13], and both the recoil and (2,±1) mode ampli-
tudes depend strongly on the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of

that in Fig. 1 with respect to χ+, implying that the 21
mode amplitude is not determined by χ+. Consider in-
stead the effective spin parameter

χeff =
1

2
(
√
1− 4 ν χ1 + χ−), χ− =

m1 χ1 −m2 χ2

Min
,

The right panel of Fig. 2 shows the amplitude of 21 as
a function of χeff for all the simulations discussed so far.
In all cases they are well approximated by

Â21 ≡ A21/A22 = 0.43
�√

1− 4 ν − χeff

�
, (1)

which is shown by dashed lines in Fig. 2 for different val-
ues of q. The above equation is consistent with the expec-
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Progenitor binary parameters from ringdowns

Add a ringdown signal to noise background
The noise PSD is that expected in a detector

Use Bayesian parameter estimation to 
detect and measure parameters

 The outcome is posterior probability density 
function of various signal parameters
Provides estimates of accuracy with which 
parameters can be measured
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Conclusions and Future Perspectives
In the restricted parameter space of aligned spin binaries it is 
possible to extract progenitor parameters from ringdown 
signal alone

22 and 33 amplitudes depend only on the mass ratio, 21 depends on 
effective spin
Verified by test simulations of precessing binaries

Real systems are likely to be on a generic spherical orbits with 
spins in arbitrary directions

A signal model that describes the ringdown signal in the full parameter 
space will be required for application with real data

Confirm of these predictions with observations
Advanced LIGO will come on-line in 2015, full sensitivity likely by 2018; 
however, SNRs will not be large enough to disentangle different mode 
amplitudes
Einstein Telescope or LISA would be required for precise tests of these 
predictions
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