Vision talk on site studies

Jo van den Brand On behalf of the ET design study team

Einstein Telescope Meeting 2012 Hannover, Germany jo@nikhef.nl

December 4, 2012

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data
 - Geophysical issues
 - Available infrastructure
- GGN studies
 - GGN modeling, GGN subtraction techniques
 - Sizable activity, approaching consensus
- Infrastructure studies
 - Underground structures
 - Tunnels, caverns, shafts
 - Construction techniques
 - Surface structures
 - Buildings, roads, etc.
 - Vacuum system, cryogenics, safety systems
 - Costing

Future

See contribution by David Rabeling

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data: extensive studies in Europe

Mark Beker et al.

Seismic studies

- 15 sites in 11 countries
- Typically 1 2 weeks of data
- KNMI cross check
- Worldwide effort
 - Europe
 - Kagra, Japan
 - Homestake, USA

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data: also Japan and USA

- Kagra
 - Seismic studies
 - Many more issues
 - Horizontal access site
- Homestake
 - Permanent sensor array
 - Vertical access site

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data: also Particle Physics ILC

- Seismic studies
 - Accelerator sites: Cern, etc.

International Linear Collider

FIG. 6: (Color) Coherence spectra measured at different distances at DESY: 0 m, 10 m, 600 m, 740 m (diameter of PETRA ring) and 960 m in the HERA tunnel.

http://vibration.desy.de

Sicily, Oct. 14, 2009: talk by Heiko Ehrlichmann (Desy)

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data
 - Geophysical issues

- Geophysical community
 - Gran Sasso meeting: Feb. 9, 2009
 - KNMI collaboration
 - Common data taking
 - Analysis procedures

IASPEI GA 2013

- Goeteborg, Sweden
 - With Prof. Plastino, proposed: Session on "Gravitational, Nuclear and Solid Earth Physics for probing Earth's interior"

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data
 - Geophysical issues
 - Available infrastructure

Infrastructure

- Horizontal access
- Useful infrastructure

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data
 - Geophysical issues
 - Available infrastructure

Infrastructure

- Vertical/horizontal access
- Numurous issues

VISION: SEISMIC DATA

Seismic noise measurements

- Power spectral densities
- Correlations
 - Various sensor "grids"
- Long-term measurements
 - Over period of years
 - Few selected sites
 - Local teams

GRAVITY GRADIENT STUDIES

GRAVITY GRADIENT NOISE: ADV AND ET

- Past GGN studies
 - Noise from seismic ground waves
 - Saulson, Phys. Rev. D30, 732 (1984)
 - Hughes and Thorne, gr-gc/9806018
 - Beccaria et al, CQG 15, 3339 (1998)
 - People walking near tests masses
 - Thorne and Winstein, gr-gc/9810016
- Noise source for Advanced detectors
 - Limits sensitivity at low frequency
 - LIGO-T070192-00R (2007)
 - Jan Harms *et al.*
 - Advanced Virgo (Mark Beker)
 - No shielding possible
 - Subtraction schemes under investigation

GGN MODELING: IMPULSE EXCITATION

z = 0 m Model cultural noise (FEA) 4e-13 Acceleration [m/s²] 3e-13 Rayleigh wave arrives Time=0.06 Max: 3.40e-6 Boundary: Total displacement [m] ×10⁻⁶ at surface detector 2e-13 3 1e-13 2.5 0 2 -1e-13 1000 0 2 3 1 1.5 $z = 800 \text{ m} = \lambda_P$ -2000 2e-13 0.5 1.5e-13 Acceleration [m/s²] 2000 1000 0 1e-13 Min: 0 5e-14 0 S-wave arrives Ground displacement at mirror <u>x 1</u>0⁻⁶ -5e-14 1 at sub-detector Vertical 0.8 -1e-13 0.6 2 3 0 1

Horizontal -0.6 0 1 2 3 4 Time [s]

0.4

0.2 0

-0.2

-0.4

Reduction factor < 3, but Wiener filtering very effective for local "point" sources

Time [s]

5

5

Δ

Total

Bulk

Surface

6

6

ET modeling: Hungary site study

Accomplishments of WG1

- Site studies
 - First and quick scan
 - Seismic data
 - Geophysical issues
 - Available infrastructure

GGN studies

- GGN modeling "point" sources
 - Employ filtering with a few sensors
- Stochastic sources
 - Surface contributions
 - Cella's model
 - Use measured seismic PSD
 - Predict attenuation with depth
 - Bulk contributions
 - Hughes and Thorne's model
 - Use measured seismic PSD
- GGN prediction
 - Few hundred meters depth is sufficient to suppress surface contribution
 - Dominant contribution
 - Cultural noise
 - Bulk contribution remains
- GGN subtraction strategies

NEWTONIAN NOISE SUBTRACTION

- Seismic sensor (signal + noise) $X_I = s_I + \sigma_I$
- ITF output (GW signal + N. noise) Y = H + N
- Find $\alpha_{I}(\omega)$ to minimize "subtracted" signal $Y_{s}(\omega) = Y(\omega) + \int d\omega' \sum_{i=1}^{n} \alpha_{I}(\omega, \omega') X_{I}(\omega')$

Optimal filters $\frac{\delta \langle Y_s(\omega)^* Y_s(\omega) \rangle}{\delta \alpha_I(\omega, \omega')} = 0$

Sensor noise appears in diagonal elements of cross-correlation matrix

[G. Cella et. al., Gen. Rel. Grav. (2010)]

- Cella: simplified model $\alpha_I(\omega, \omega') = -\sum_{\kappa} \int d\omega' \langle X_I(\omega)^* X_K(\omega') \rangle^{-1} \langle X_K(\omega')^* Y(\omega) \rangle$
 - Exponential cross correlation function between sensors $\langle \rho(\omega, \mathbf{x})^* \rho(\omega', \mathbf{x}') \rangle = 2\pi \Gamma(\omega)^2 \delta(\omega - \omega') e^{-\frac{|\mathbf{x} - \mathbf{x}'|}{\xi(\omega)}}$
- Subtraction efficiency
 - 1 = no subtraction
 - 0 = 100% subtraction

$$(1 - \epsilon(\omega))^2 = 1 - \frac{C_{SN}^{\dagger}(\omega)C_{SS}(\omega)^{-1}C_{SN}(\omega)}{C_{NN}(\omega)}$$

NN SUBTRACTION SIMULATION

- Advanced Virgo
 - Seismic PSD data
 - Correlation data
- Seismic sensors
 - Sensitivity SNR = 25
- Sensor grid around test mass
 - Regular and optimized grids
- Sensor network
 - Large number of sensors

$$(1 - \epsilon(\omega))^2 = \frac{\langle E(\omega)^* E(\omega) \rangle}{\langle Y(\omega)^* Y(\omega) \rangle} = 1 - \frac{C_{SNi} [C_{SS}(\omega) + C_{\Sigma\Sigma}(\omega)]_{ij}^{-1} C_{SNj}}{C_{NN}}$$

NN SUBTRACTION SIMULATION

- Advanced Virgo
 - Seismic PSD data
 - Correlation data
- Seismic sensors
 - Sensitivity SNR = 25
- Sensor grid around test mass
 - Regular and optimized grids
- Sensor network
 - Large number of sensors

$$(1 - \epsilon(\omega))^2 = \frac{\langle E(\omega)^* E(\omega) \rangle}{\langle Y(\omega)^* Y(\omega) \rangle} = 1 - \frac{C_{SNi} [C_{SS}(\omega) + C_{\Sigma\Sigma}(\omega)]_{ij}^{-1} C_{SNj}}{C_{NN}}$$

ET INFRASTRUCTURE

ET INFRASTRUCTURE

Infrastructure: largest cost driver

- Tunnels, caverns, buildings
- Vacuum, cryogenics, safety systems
- Collaborate with industry
 - COB (Amsterdam, October 9, 2008), STUVA
 - Big Science for Industry (Amsterdam, September 21, 2011)
 - Saes Getters Italy
 - Demaco Netherlands
- Experience
 - Kagra!
 - LIGO, Virgo, GEO
 - Underground labs
 - Gran Sasso, Canfranc,
 - Dusel, etc.
 - Mines
 - Particle physics
 - ILC, Cern, Desy, FLNL
 - Seismology
 - KNMI, Orfeus
 - Geology

Research and development

Proposed R&D program for Einstein Telescope

Task 1: Studies at candidate sites

- Collect long term seismic data in Europe
- Information on attenuation, geology, coherence
- Collaboration with local groups, geophysicists
- Explore geophysical applications of Einstein Telescope

Task 2: Sensor and network development

- MEMS-based sensors
- Opto-mechanical sensors
- Network operation

Task 3: Modeling of seismic and GGN noise

- Analytical modeling of seismic and atmospheric systems
- Validation of (FEA) modeling
- Studies of subtraction problem
- Regular workshops

Coordination of activities

- Transnational coordination of site studies and assessments: dedicated workshops
- Database: administer and consolidate geophysical information
- Consolidation of technical information: tunneling, vacuum, cryogenics, safety

NEWTONIAN NOISE SUBTRACTION

- $X_I = s_I + \sigma_I$ Seismic sensor (signal + noise) ITF output (GW signal + N. noise) Y = H + NFind $\alpha_{l}(\omega)$ to minimize "subtracted" signal $Y_s(\omega) = Y(\omega) + \int d\omega' \sum_{i} \alpha_I(\omega, \omega') X_I(\omega')$ $\frac{\delta \langle Y_s(\omega)^* Y_s(\omega) \rangle}{\delta \alpha_I(\omega, \omega')} = 0$ Sensor noise appears in **Optimal filters** diagonal elements of cross-correlation matrix $\alpha_I(\omega,\omega') = -\sum_{\kappa} \int d\omega' \langle X_I(\omega)^* X_K(\omega') \rangle^{-1} \langle X_K(\omega')^* Y(\omega) \rangle$ $\langle \rho(\omega, \mathbf{x})^* \rho(\omega', \mathbf{x}') \rangle = 2\pi \Gamma(\omega)^2 \delta(\omega - \omega') e^{-\frac{|\mathbf{x} - \mathbf{x}'|}{\xi(\omega)}}$ Simplified model Exponential cross correlation function $\xi(\omega)$: Correlation length between sensors $(1 - \epsilon(\omega))^2 = 1 - \frac{C_{SN}^{\dagger}(\omega)C_{SS}(\omega)^{-1}C_{SN}(\omega)}{C_{NN}(\omega)}$ Subtraction efficiency
 - 1 = no subtraction
 - 0 = 100% subtraction

[G. Cella, et. al., Gen. Rel. Grav. (2010)]

NN SUBTRACTION SIMULATION

- Advanced Virgo
 - Seismic PSD data
 - Correlation data
- Seismic sensors
 - Sensitivity SNR = 25
- Sensor grid around test mass
 - Regular and optimized grids

50

[<u></u>]

-50

-50

- Sensor network
 - Large number of sensors
 - Subtraction efficiency $1 - \varepsilon(\omega)$

