

The Einstein Telescope Optical Design

Research and Development

Andreas Freise 04.12.2012

ET General Meeting

Reminder: the ET interferometers
Baseline design is done, why do we do further research on interferometry?

• Optics R+D towards ET

PER AD ARDUA ALTA

3

ET General Meeting 04.12.2012

ET interferometer design

- Each detectors has two Michelson interferometers in a Xylophone configuration. The interferometers are similar to Advanced Detectors (arm cavities, plus recycling)
- `Conservative' design with a bit of magic: thermal noise reduction and quantum noise reduction

5

ET G

- L-shaped form fits all types of interferometers
- long distances between central optics and arm cavities
- allows for `hot' and `cold' interferometers side by side
- room for extra tubes (filter cavities)

Flexible design, in minimal amount of space

A. Freise

Technology Concepts

- Baseline design is an extension of known techniques
- combines many flexible and compatible technologies
 - Michelson, power+signal recycling replace by Sagnac, other topology?
 - cryogenic silicon use sapphire, different temperature?
 - frequency dependent squeezed light adapt implementation to main topology
 - LG modes replace by Khalili cavities, waveguide coatings?

Required R+D

In the ET Design study report we explicitly list the following technologies to be studied:

- Thermal noise reduction: LG modes, Khalili cavities, coating research, waveguide mirrors
- Quantum noise reduction: Speedmeter technologies, Michelson based and Sagnac based

Ongoing work to study fundamental concepts as possible alternatives for baseline design and future upgrades.

Example: Signal Recycling

An incomplete, approximate history:

- 1980ies invented/proposed in Glasgow
- I990ies table-top experiments in Hannover, prototype demonstrations in Garching
- 2000+ implemented in GEO, large LSC effort on aLIGO design, from RSE to DC readout, optical spring
- 2010+ implemented in Advanced Detectors
- 2020+ Implemented for ET? (Control signals for very low bandwidth, very small detuning?)

From idea to implementation

Pushing the state of tha art!

10 to 30 years is a good time scale to go from idea to an implementation/application of a new concept or technology

Conclusion so far?

- Baseline design for ET interferometers is ready!
- Thermal noise and quantum noise reduction is something to work on (technical details!)
- Technical details are fun for researchers but take a lot of time (and money!) to eliminate.
- Two threads:
 - make it work!
 - find better ideas to replace parts of the current design

A. Freise

Overview of finished experiments:

Optical spring demonstration with 100g mirror

First Demonstration of a waveguide mirror in a suspended cavity

Injection of LG modes into a suspended 10m cavity (see talk by Ludovico)

Overview of ongoing experiments:

- Local Readout / Optical Bar experiment
- Dual Carrier Optical Springs and Quantum Control
- Waveguide mirror side motion noise
- Speedmeter proof of principle experiment (see talk be Stefan)

Waveguide demonstration in suspended

Collaboration between Jena, Hannover and Glasgow

GLASGOW

- First time that a waveguide mirror was used in a suspended high finesse cavity.
- New waveguide design (etch stop layer) yielded R=99.2%

IGR)

For details see: D.Friedrich et al Optics Express, Vol. 19, Issue 16, pp. 14955-14963 (2011) http://dx.doi.org/10.1364/OE.19.014955

UNIVERSITY

GLASGOW

Coupling of Waveguide Sidemotion into Longitudinal Signal?

Lateral displacement of waveguide mirrors introduces a phase change on the light inside the cavity. This experiment aims to set an **upper limit** on this phase change.

IGR

Currently investigating two different options: >Pushing the waveguide mirror (ITM) sideways

➢Moving beam on ITM by misaligning ETM

UNIVERSITY

GLASGOW

Local Readout Demonstration

LONGTERM AIM: Pinning down of optical spring features to refine models and simulations to provide deeper understanding of system dynamics and control while maintaining low noise performance. • Cavity Finesse = 11000

- Input Power = 700mW (Laser amplifier addition will give up to 4W)
- ETM (100g) coupled to ITM (3kg) with optical spring.
- ITM is then read out in local frame with an independent interferometer
- EUCLID local readout: 10⁻¹³m/sqrt(Hz) at 100Hz but poor dynamic range 633nm (limited to less than a micron)
- Beginning of Optical bar/Lever interferometer configurations

ÍGR

UNIVERSITY

GLASGOW

Dual Carrier Optical Spring

IGR

AEI 10m Prototype

AEI 10m Prototype sub-SQL Interferometer

- Goal: reach the SQL at 200 Hz
- Requires extremely large beam spots to bring down coating thermal noise

Preliminary configuration: Single arm test

- Cavity with continuously variable g-factor from "easy" initial configuration (g=0.8) to "challenging" target config. (g=0.998)
- To be installed in 2013!

Overview of Birmingham work

- Laguerre-Gauss modes, theory, numerical studies, experiments, see talk by Ludovico Carbone
- Mirror surface defects, numerical studies, table-top experiments, see talk by Charlotte Bond
- Quantum noise reduction, theoretical studies, see poster by Mengyao Wang
- Further development of Finesse, mirror maps, radiation pressure, see poster by Daniel Brown
- New work: Advanced LIGO commissioning, simulation support for on-site activities: validate Finesse, knowledge transfer from aLIGO to ET design
- New work: Noise cancellation in co-located interferometers

ASPERA R+D proposal

- Task I: Mitigation scheme for radiation pressure effects for the ET-HF interferometer.
- Task 2: Control scheme for the injection of frequency dependent squeezed light.
- Task 3: Low-frequency control scheme for the ET-LF interferometer.
- Task 4: Mitigation scheme for correlated noise in co-located interferometers.
- Task 5: Contamination of potential null stream signals by technical noises.

ASPERA 3rd common call

ET-R&D

- Networking and R&D for the Einstein Telescope -

R+D Summary

- Strong research activities in interferometry and advanced optics
- Numerical simulations, table top experiments and two versatile 10m prototypes
- Technology testing at advaned detectors (GEO HF, Advanced LIGO/Virgo, KAGRA)
- New work starting on looking into the details of control schemes and noise couplings

Summary

Baseline design for possible optical layout is done

- R+D towards the realisation of the optics needed for that design is in it's most interesting phase
- We need the lessons from Advanced Detectors and the results of dedicated R+D to make it work

ET `D' Parameters

Parameter	ET-D-HF	ET-D-LF
Arm length	10 km	10 km
Input power (after IMC)	$500 \mathrm{W}$	3 W
Arm power	$3\mathrm{MW}$	18 kW
Temperature	290 K	10 K
Mirror material	fused silica	silicon
Mirror diameter / thickness	$62 \mathrm{cm} / 30 \mathrm{cm}$	min $45 \mathrm{cm}/\mathrm{T}$
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	1550 nm
SR-phase	tuned (0.0)	detuned (0.6)
SR transmittance	10 %	20 %
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	$1 \times 10 \mathrm{km}$	$2 imes 10\mathrm{km}$
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	LG_{33}	TEM_{00}
Beam radius	$7.25\mathrm{cm}$	9 cm
Scatter loss per surface	37.5 ppm	$37.5\mathrm{ppm}$
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1 \mathrm{Hz}$)	$5\cdot 10^{-10}{ m m}/f^2$	$5\cdot 10^{-10}{ m m}/f^2$
Gravity gradient subtraction	none	none

ET General Meeting 04.12.2012

Noise budget of a gravitational wave detector

A. Freise

ET General Meeting 04.12.2012

[S. Hild]

Advanced Interferometry

Waveguide Coatings and other diffractive elements

- Theoretical and numerical work to investigate alignment induced phase noise on gratings (complete)
- Development of framework for numerical simulation of this effect (complete, to be published)
- Implemented own FDTD code to show that this noise does not appear with waveguide coatings (complete to be published)

