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1.1 Coating Noises

Random fluctuations in the optical length of the arm-cavities of Michelson inter-
ferometer based gravitational wave (GW) detectors may originate from several
thermal noise mechanisms (Rao, 2003), including1: Brownian noise in the mir-
ror substrates (Levin et al., 1998), and the mirror coatings (Crooks et al., 2002),
temperature-fluctuations driven noises, mediated by thermal expansion (ther-
moelastic noise) in the mirror substrates (Liu and Thorne, 2000) and coatings
(Braginsky and Vyatchanin, 2003), by the dependence on temperature of the
refractive index of the coating materials (coating thermorefractive noise (Bra-
ginsky et al., 2000)), and eventually by the thermal dependence of all material
constants involved (see Ch. 3 in (Harry et al, 2012) for a comprehensive re-
view). Temperature fluctuations include, in principle, both intrinsic (”thermo-
dynamic”), and exogenous (”photothermal”) components, due to fluctuations
in the power absorbed by lossy dielectrics (Braginsky et al., 1999).
The relative weight of the various noise terms in a typical advanced detector
(Advanced LIGO) using the standard quarter-wavelength coatings is illustrated
in Figure 0, for the specific case of Advanced LIGO based on presently available
estimates of the relevant material properties.
Coating Brownian noise represents to date the main contribution to the coat-
ing noise budget, and is expected to set the noise floor of present and next-
generation (advanced) interferometric detectors of GW.
The visibility distance of gravitational wave antennas is proportional to the re-
ciprocal square root of the noise power spectral density (henceforth PSD). Thus
a mere 10% reduction in the PSD level corresponds to a ∼ 17% increase in the
visibility volume, and hence in the observable event rate (under the simplest
assumption where potential gravitational wave sources are distributed homoge-
neously and isotropically).
This chapter is focused on design strategies for minimizing Brownian (and more
generally, thermal) noise in high-reflectivity optical coatings. It is organized
as follows: Brownian noise formulas are the subject of Sect. 1.2. Section 1.3
presents the key ideas of coating design optimization aimed at minimizing Brow-
nian noise for a prescribed reflectance. Extension to dichroic mirrors is worked
out in Sect. 1.4 . Thermo-optic and thermoelastic noises are reviewed in Sect.
1.5, with a discussion of pertinent minimization criteria. Section 1.6 collects the
needed formulas for describing the optical properties of dielectric coatings.

1.2 Coating Brownian Noise

For coatings using only two different materials (binary coatings), the (frequency
dependent) power spectral density (henceforth PSD) of Brownian noise induced
random fluctuations of the mirror front face in the normal (ẑ) direction was first

1Historically, these different noises entered the stage at different times, and were studied
separately. An appealing ab initio calculation of coating noise including all these terms (and
their possible correlations) has been recently proposed in (Gurkovski and Vyatchanin, 2010)
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deduced in (Harry et al., 2002) via the fluctuation-dissipation theorem (Kubo,
1966), and reads

S(B)
z (f) =

2kBT

π3/2f

1− σ2

wY
φc, (1.1)

where:

φc =
d1 + d2√

πw

1

Y⊥

{[
Y

1− σ2
−

2σ2
⊥Y Y‖

Y⊥(1− σ2)(1− σ‖)

]
φ⊥

+
Y‖σ⊥(1− 2σ)

(1− σ‖)(1− σ)
(φ‖ − φ⊥)

+
Y‖Y⊥(1 + σ)(1− 2σ)2

Y (1− σ2
‖)(1− σ)

φ‖

}
(1.2)

is the coating loss angle. In (1.1),(1.2) kB is Boltzmann’s constant, T the abso-
lute temperature, w the laser beam width2, d1 and d2 are the total thicknesses
of the two materials, φ, Y and σ the mechanical loss angle, Young modulus and
Poisson ratio, pertinent to the substrate (no suffix), and to the coating under
parallel (suffix ‖) and perpendicular (suffix ⊥) stresses3. The quantities in (1.2)
were computed in (Harry et al., 2004) as4.

Y⊥ =
d1 + d2

Y −1
1 d1 + Y −1

2 d2

Y‖ =
Y1d1 + Y2d2

d1 + d2

φ⊥ = Y⊥

(
Y −1

1 φ1d1 + Y −1
2 φ2d2

d1 + d2

)

φ‖ = Y −1
‖

(
Y1φ1d1 + Y2φ2d2

d1 + d2

)
,

. (1.3)

It is readily seen that letting

Ỹi = Yi(1− ıφi) (1.4)

2The normalized beam intensity profile for a Gaussian beam is

I(r) =
2

πw2
exp

(
−2r2

w2

)
.

Occasionally, the beam radius r0 = w/
√

2 is used in the Technical Literature.
3Note that the denominator in the first term in brackets multiplying φ⊥ in (1.2) appears

as 1− σ2
⊥ in (Harry et al., 2004, eq. (8)), and as 1− σ⊥ in (Harry et al., 2006, eq. (3)). The

correct formula used here is given in (Harry et al., 2002, eq. (2)), and is consistent with the
limiting form reported in (Harry et al., 2002, eq. (21)) for Y‖ = Y⊥ = Y .

4Note that the equation for φ‖ in (1.3) is mis-written in (Harry et al., 2006), where eq. (8)
entails an obvious dimensional error.
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where Ỹi is the complex Young modulus, Yi its real part, and φi the mechanical
loss angle (assumed � 1), eq.s (1.3) are obtained taking the real part and the
argument of

Ỹ⊥ = 〈Ỹi〉R, Ỹ‖ = 〈Ỹi〉V (1.5)

where 〈·〉R,V denote the Reuss (isostress) and Voigt (isostrain) mixture-averages,
respectively (see, e.g., Lakes, 2009).
The Poisson ratios, on the other hand, may be computed from (Harry et al.,
2004)

σ⊥ =
σ1Y1d1 + σ2Y2d2

Y1d1 + Y2d2
(1.6)

and taking the (only) positive root of the quadratic equation ((Harry et al.,
2004), eqs. (3) and (15)):

σ1Y1d1

(1+σ1)(1−2σ1)
+

σ2Y2d2

(1+σ2)(1−2σ2)
=−

Y‖(σ
2
⊥Y‖+σ‖Y⊥)(d1+d2)

(σ‖+1)[2σ2
⊥Y‖−(1−σ‖)Y⊥]

. (1.7)

The limiting form of eqs. (1.2) for vanishingly small Poisson ratios is remarkably
simple 5:

φc =
d1 + d2√

πw

(
Y

Y⊥
φ⊥ +

Y‖

Y
φ‖

)
. (1.8)

Somiya et al. re-derived φ‖ and φ⊥ following a different route (Somiya, 2009))
and shew that the formulas in (1.3) are valid in the limit of vanishing Poisson
ratios6. This suggests that eq. (1.8) could be a more consistent choice for use
together with (1.3).

1.3 Minimum Noise Coatings

It is seen from (1.1) that coating Brownian noise can be reduced, in principle
by i) reducing temperature T - note that this requires suitable modeling of the
temperature dependence of the material loss angles entering in the formula for
φc (see Chs. 4 and 8 in this book); ii) increasing the beam-width w (see the
broad discussions in (O’Shaughnessy, 2006; Galdi et al., 2007), and Ch. 13 of
Harry et al (2012)); iii) reducing the coating loss angle, by selecting and/or
synthesizing low-loss materials (see Chs. 4 and 6 of this book), and/or optimiz-
ing the coating layers’ thicknesses, under a prescribed reflectance (Agresti et
al., 2006). More radical alternative mirror-design potentially capable of yield-
ing substantial noise reduction, e.g., cavity-backed mirrors (Khalili, 2005) and
coating free mirrors (Gössler et al., 2007) are still under investigation.
All these strategies (which are not mutually exclusive) have been explored dur-
ing the last few years with varying degree of success, and are discussed in detail

5This limiting form appears in (Harry et al., 2002), eq. (23) with a misprint, an omitted
⊥ suffix on the denominator of the second term in round brackets.

6Another derivation, where the coating materials (assumed isotropic) are characterized in
terms of their complex shear and bulk moduli has been proposed by Y. Chen et al. (Hong et
al., 2009).
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in the companion Chapters of this Book.
Attention will be focused here on coating layers’ thickness optimization, which
has been experimentally demonstrated (Villar et al., 2010), and offers perhaps
the best tradeoff to date between technological challenges/cost, and noise re-
duction.

1.3.1 Materials Downselection

Materials downselection has involved a considerable number of potential can-
didates, both for the substrate (SiO2, Al2O3), and the coating (Al2O3, SiO2,
ZrO2, Ta2O5, Nb2O5, TiO2). The material downselection process eventually
led to the present choice of fused Silica for the substrate (better than Sapphire
in terms of thermoelastic noise). An important pre-requisite for coating mate-
rials are low optical losses. Among low-loss materials, the Silica-Tantala choice
yields the best tradeoff between the desirable competing requirements of high-
contrast and low mechanical losses, needed for low noise. See, e.g., (Crooks et
al., 2006) for a discussion.
The possible use of glassy mixtures for the high-index coating material has also
been investigated, with good results obtained from Ta2O5 :: TiO2 co-sputtered
formulas (Harry et al., 2007).

1.3.2 Blind Coating Thickness Optimization

Adopting a controlled ignorance attitude, genetic optimization7 was used to
find the structure of minimal noise coatings under a prescribed transmittance
constraint, treating the total number of layers and the thicknesses of each layer
as free independent parameters (Agresti et al., 2006). Genetic optimization was
chosen in view of its known ability to handle non-convex optimization problems
(Charbonneau, 2002).
The main result of this investigation was that optimized coatings display a neat
tendency (as the number of optimization cycles is increased) toward configu-
rations consisting of stacked identical low-high index doublets, except for the
terminal (first/last) layers (Agresti et al., 2006). These doublets, are not quarter
wavelength (QWL), as in the standard design. In the optimized coatings, the
amount of Tantala (the noisier material) is reduced, while the number of dou-
blets is slightly increased. On the basis of these findings, attention was focused
on the analysis and optimization of coatings consisting of identical stacked-
doublets.

1.3.3 Stacked Doublet Coatings

Stacked-doublet coatings (sketched in Figure 1) are (the simplest case of) trun-
cated periodic multilayers using only two different dielectrics. Each elementary

7In particular, we used PIKAIA, a public domain genetic optimization engine. The PIKAIA
SW is freely available at http://www.hao.ucar.edu/modeling/pikaia/pikaia.php.
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doublet is described by the transmission matrix

D = TL ·TH (1.9)

where 

D11 = cosψL cosψH − (nH/nL) sinψL sinψH

D12 = ı[(nL)−1 cosψH sinψL + (nH)−1 cosψL sinψH ]

D21 = ı[nL cosψH sinψL + nH cosψL sinψH ]

D22 = cosψL cosψH − (nL/nH) sinψL sinψH

. (1.10)

The whole coating consisting of Nd doublets is accordingly described by the
transmission matrix

T = DNd =

 D11 −
ΨNd−2(Θ)

ΨNd−1(Θ)
D12

D21 D22 −
ΨNd−2(Θ)

ΨNd−1(Θ)

ΨNd−1(Θ), (1.11)

where

ΨN (Θ) =
sin[(N + 1)Θ]

sin Θ
, Θ=cos−1

[
Tr(D)

2

]
, (1.12)

and

Tr(D)=2 cosψ1cosψ2−
(
nH
nL

+
nL
nH

)
sinψ1sinψ2 (1.13)

is the trace of the doublet matrix.
The second equality in (1.11) follows from a well known property of unimodular
matrices (see, e.g. Born and Wolf, 2005). For computational purposes it helps
to recognize that8

ΨN (Θ) = UN

[
Tr(D)

2

]
(1.14)

UN being the Chebychev polynomial of the second kind.

1.3.4 Stacked Doublet Coatings Loss Angle

Equation (1.8) for the coating loss angle can be easily rewritten in terms of the
low/high index medium parameters. Letting

zL,H =
nL,H
λ0

dL,H (1.15)

8It also helps noting that exp(±ıΘ) are the (Bloch) eigenvalues of D, the corresponding
eigenvectors being {D12, exp(±ıΘ)−D11}. The reflection bands of the coating thus correspond
to the forbidden bands of the infinite periodic structure.
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the layer thicknesses in units of the local wavalength, we may write

φc = φ0 (zL + γzH) , (1.16)

where:

φ0 =
Ndλ0√
πw

φL
nL

(
YL
Y

+
Y

YL

)
, (1.17)

and:

γ =
φH
φL

nL
nH

(
YH
Y

+
Y

YH

)
(
YL
Y

+
Y

YL

) . (1.18)

According to (1.16) the loss angle per unit thickness (scaled to the local wave-
length) of the high-index material is γ times larger than that of the low-index
material. For SiO2/Ta2O5 doublets, γ ≈ 7.

1.3.5 Minimal Noise Stacked Doublet Coatings

Figure 3 shows a number of constant-loss-angle contours (the straight lines),
together with a number of iso-reflectance contours (the closed curves), in the
(zL, zH) plane9.
It is seen that the QWL design (the point zL = zH = 0.25) yields the largest
reflectance at the corresponding fixed coating loss angle level. On the other
hand, the design yielding the minimal coating loss angle for a prescribed trans-
mittance corresponds to the point where the pertinent iso-reflectance contour
is tangent (from above) to a constant φc contour. Such a point is the white
marker in Figure 2. When the number of doublets becomes large (as implied
by the large reflectances in order), the iso-reflectance contours squeeze unto the
zL + zH = 1/2 line (the dashed line in Figure 2), and little error is made by
taking the intersection between this latter and the iso-reflectance contour (the
black marker in Figure 2) as the minimal noise design. Adopting this reasonable
approximation10, amounts to letting

zH =
1

4
− ξ, zL=

1

4
+ ξ, ξ ∈ (0, 1/4) (1.19)

which leaves only two free coating design parameters, namely, the number of
doublets Nd and the quantity ξ in (1.19). This leads to the simple optimization
algorithm below (Agresti et al., 2006; Villar et al., 2010):

1) start from the QWL design getting closest to the desired

9The former are obtained from (1.16) - (1.18); the latter from (1.55) - (1.57) and (1.11) -
(1.13) .

10Kondratiev and Gorodetsky (Gorodetsky, 2010) derived a simple (implicit) formula yield-
ing the lowest order correction in the dielectric contrast to the mentioned approximation. The
added accuracy, hower, may be easily blurred by uncertainties and tolerances in the material
parameters values.
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transmittance, for which ξ = 0 and Nd = N
(min)
d ;

2) add one doublet, and adjust ξ until the same transmittance

is recovered;

3) calculate φc of the current coating configuration using

eqs. (1.16)-(1.19);

4) repeat steps 2)-3) until the minimum of φc is reached.

The results of this procedure are illustrated in Figure 3, for the special case11 of
a Silica/Tantala coating with a transmittance of 287ppm @ 1064nm. Increasing
the number of doublets (and in parallel increasing ξ, to keep the transmittance
fixed) has a twofold effect: the fraction of higher-index (lossier) material (Tan-
tala) is reduced, while the fraction of lower-index (less lossy) material (Silica)
is increased. The coating loss angle φc in Figure 3 has a minimum for Nd = 17,
corresponding to the tradeoff between these competing effects.
Note that the minimum in Figure 3 is rather shallow. This is nice, both in view
of present uncertainties about the actual value of γ, and of possible variations
due manufacturing tolerances.
As a matter of fact, the φc reduction featured by the optimal design with
Nd = 17, compared to the QWL design, is changed by less than 2% when
γ is allowed to vary between 5 and 10.
As already mentioned, the genetically optimized coatings differ from pure stacked-
doublet configurations, because the terminal layers are different.
This suggests to modify the optimizationprocedure, by implementing a final step
which consists in tweaking the terminal layers as follows (Villar et al., 2010):

1) tweak the top layer thickness so as to maximize the coat-

ing reflectance;

2) tweak the bottom layer thickness so as to bring back the

reflectance to the design value.

Numerical experiments indicate that tweaking successive layers beyond the ter-
minal ones does not yield any appreciable further noise reduction. Also, we
found no advantage in seeking for a minimum of the coating loss angle (at pre-
scribed reflectance) using Nd, ξ, and the thicknesses of the top and bottom layer
as free parameters, compared to the simplest sequential strategy where one first
finds the optimal values of Nd and ξ for a pure stacked-doublet geometry, and
subsequently tweaks the terminal layers, keeping Nd and ξ unchanged (Villar et
al., 2010).

1.3.6 Optimized Prototypes

Optimized coating prototypes designed according to the above recipe were man-
ufactured at the Laboratoire des Materiaux Avancees of CNRS (LMA, Lyon,

11These are the coating design figures for the Caltech Thermal Noise Interferometer mirrors
(Black et al., 2004).
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FR). Their noise PSD was measured using the Caltech Thermal Noise Interfer-
ometer ((Black et al., 2004), and Ch. 5 of Harry et al (2012)), and compared
to that of a QWL coating having the same transmittance (287ppm@1064nm).
See (Villar et al., 2010) for details.
A visual comparison between the (smoothed) noise PSD of the QWL and opti-
mized coatings is shown in Figure 5, in a spectral region around 3 kHz, which
is approximately at the center of the coating-dominated TNI noise spectrum.
The separation between the noise spectra is apparent12. The loss angles can be
estimated from the measured PSD, and are shown in Figure 5, toghether with
the associated uncertainties, for a batch of runs13. The mean loss angles and
their uncertainties are φopt = (6.9±0.2)×10−6 and φQWL = (8.4±0.3)×10−6,
for the optimized and reference (QWL) coatings. The ratio of the means is
r = 0.82± 0.04, to be compared to the predicted value of 0.843 (for γ = 7), well
within the uncertainty of the measured ratio (Villar et al., 2010). It is important
to remind that the predicted loss-angle reduction ratio changes by less than 2%
when γ is allowed to vary between 5 and 10.
It is worh mentioning at this point that simpler coating optimization strategies,
based on the use of a single ”compensating” layer, either within (Kimble et
al., 2008) or on top (Gorodetsky, 2008) of the coating do not yield significant
reductions in the coating loss angle (Kondratiev et al., 2011).

We conclude this Section by noting that the above analysis does not include the
effects of the finite (transverse) size of the mirrors. Finite-size corrections for
the mirror noise-components have been discussed in (Liu and Thorne, 2000) for
the substrate noises, in (Somiya and Yamamoto, 2009) for the coating Brown-
ian noise, and in (Braginsky and Vyatchanin, 2003) for the thermoelastic noise.
These corrections do not affect or hinder the proposed coating optimization
strategy to any sensible extent.

1.4 Dichroic Coatings

The latest AdLIGO design added the requirement of dual-wavelength operation
for the cavity mirrors, both at the reference laser wavelength (1064nm) and its
second harmonic (532nm), which will be used by the new locking system14.
Traditional dichroic designs, using truncated bi-periodic structures (Lee et al.,
1993; Lovering, 1996) is best suited to the case where comparable reflectances

12Note that there is no superposition between the confidence intervals of the fits (the dashed
lines in Figure 4) since the error of the fits is much smaller than the standard deviation of the
residuals.

13To be conservative, the standard deviation of each set of loss angles was used to set the
uncertainties of the estimated means, rather than the usual standard deviation divided by the
square root of the number of measurements made for each coating, which would be appropriate
for Gaussian fluctuations (Villar et al., 2010).

14Further allowance for sufficient (loosely specified) reflectance at some (yet to be chosen)
additional laser-friendly wavelength (e.g., 670, 946, 980, 1319 or 1550nm), used for Hartmann
sensors and optical levers (see, e.g. Armandula et al., 2010) is requested.
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on both bands are needed. In the LIGO case, the prescribed transmittances are
quite different, the target values being 0.05 at 532nm and 5.5 · 10−6 at 1064nm.
A basic dichroic design consists in putting a stack of (λ/4, λ/4) doublets on top
of another stack of (3λ/8, λ/8) doublets, λ being the reference wavelength in the
material. At 532nm the top stack yields total transmission, the bottom stack
is effectively QWL, and the number of its doublets can be chosen so as to yield
the prescribed reflectance at that wavelength.
At the reference wavelength, 1064nm, the topmost stack is QWL, and the num-
ber of its doublets can be chosen to supply the needed extra reflectance.
This design, originally proposed for AdLIGO, ignores material dispersion, which
largely impairs its operation, and is by no means the minimal-noise design
(Principe et al., 2008).
Blind genetic optimization can be used as a guide to identify the structure of
minimal-noise coatings also for the dichroic case.
Similar to the single-wavelength case, genetically optimized minimal noise coat-
ings subject to the mentioned (dichroic) transmittance constraints display a neat
tendency (as the number of optimization cycles is increased) toward configura-
tions consisting of identical low-high index doublets, except for the terminal
layers (Pierro et al., 2009). The main difference with the single-wavelength case
is that the phase thickness of each doublet is no longer π.
A minimal-noise dichroic stacked-doublet design can be accordingly sought by
letting

zL =
1

4
+ ξL, zH =

1

4
− ξH , (1.20)

where now ξL 6= ξH , and using the total number of doublets Nd and the quan-
tities ξL, ξH as the coating design parameters.
Figure 6 shows the coating loss-angle density plot computed by (1.16) in the
(ξL, ξH) plane, together with the iso-transmittance/iso-reflectance contours cor-
responding to the prescribed transmittance/reflectance values at 1064nm and
532nm, for a stacked doublet Silica/Tantala coating with Nd = 18. Clearly, two
designs are possible fulfilling both transmittance/reflectance constraints, corre-
sponding to the intersections between the two curves; the one corresponding to
the white marker in Figure 6 yields the smaller loss angle.
Depending on Nd, the isoreflectance/isotransmittance curves corresponding to
the target values may have two, one, or no common point (whenever there are
two, one should select the one corresponding to the lower loss angle). For each
Nd we accordingly get a {ξL, ξH} pair and an associated loss-angle.
The optimization algorithm can be accordingly summarized as follows:

1) start from the minimum value of Nd for which the prescribed

isotransmittance curves have a single common point;

2) add one doublet. Of the two isotransmittance curves intersect-

ions take the lower noise one;

3) repeat step 2) until the loss angle φc reaches a minimum.

Tweaking the terminal (first and last) layer is again in order, and can be used
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in particular so as to satisfy the additional requirement of minimizing the to-
tal electric field at the mirror surface, while keeping the target transmittances
unchanged. Prototype dichroic mirrors designed using the above recipe were
manufactured by LMA, and successfully tested (Villar et al., 2009).

1.5 More Coating Noises

In this section we shall briefly overview additional coating noise terms, poten-
tially affecting the operation of interferometric GW detectors. Within the limits
of present day technologies, Brownian noise is by far the dominant coating noise
term, but progresses in optical materials and coating design may change the sit-
uation in a few years.

1.5.1 Thermo Optic Noise

Fluctuations in the coating temperature may have a twofold origin: thermody-
namic and photothermal. The latter stem from fluctuations in the laser inten-
sity, resulting into fluctuations of the power dissipated in the coating. The power
spectral density of both kinds of temperature fluctuations have been computed
in (Braginsky et al., 2000) and (Braginsky et al., 1999), and are, respectively

S
(Θ)
∆T (f) =

kBT
2

π3/2r2
0

√
fχSCSρS

, (1.21)

S
(Φ)
∆T (f) =

PabsEλ
4π3r4

0χSρSCSf
, (1.22)

where, as usual, kB is Boltzmann’s constant, T the temperature, r0 the beam
radius, χS , ρS and CS are the thermal conductivity, density, and heat capacity
of the substrate, Pabs is the power dissipated in the coating due to optical losses,
Eλ the beam photon energy, and f the frequency.
The underlying mechanisms being independent, the thermodynamic and pho-
tothermal fluctuations are uncorrelated, and their power spectral densities add
incoherently to form the power spectral density of the coating temperature fluc-
tuations

S∆T (f) = S
(Θ)
∆T (f) + S

(Φ)
∆T (f). (1.23)

Temperature fluctuations in the end mirrors imply fluctuations in the cavity
phase length, via thermal expansion (thermoelastic noise), and temperature
dependence of the refraction index of the coating materials (thermorefractive
effect).
It is expedient to define the quantities15. αeff , βeff

∆z(TE)

dtot
= αeff∆T (1.24)

15In general, eqs. (1.24), (1.25) should be understood as being written in the spectral
domain, αeff and βeff representing frequency-dependent complex transfer functions.

11



∆z(TR)

λ0
= −βeff∆T (1.25)

relating, respectively, the (actual or equivalent) displacement of the mirror front
face to a temperature change ∆T , with dtot = Nd(dL+dH) the total thickness
of the coating, and λ0 the beam wavelength .
The superscripts TE and TR in (1.24), (1.25) identify the thermoelastic and
thermorefractive displacement components, and the quantities αeff and βeff
are the coating thermoelastic and thermorefractive coefficients.
The power spectral densities of the thermoelastic and/or thermorefractive dis-
placements can be simply obtained thereafter, by Wiener-Khinchin theorem ,

Sz(f) = Fτ→f 〈∆z(t)∆z(t+ τ)〉t = |H∆z|2 S∆T (f) (1.26)

where F is the Fourier transform operator, the angle-brackets denote (integral)
time-averaging, and H∆z denotes the spectral transfer function connecting ∆z
to ∆T .

1.5.2 Thermoelastic Coefficient

A formula for αeff was first derived in (Braginsky and Vyatchanin, 2003) (the
post-publication version of this paper (v5) available in ArXiv contains important
fixes and additions) and indipendently obtained in (Fejer et al., 2004). Merging
those results, it is possible to write

αeff = αL
dL

dL + dH
+ αH

dH
dL + dH

(1.27)

where

αL,H =2(1+σS)

{
αL,H

2(1−σL,H)

[
1+σL,H
1+σS

+(1−2σS)
YL,H
YS

]
−αS

CL,H
CS

}
·

·
(
g(ω)

g(0)

)1/2

Ξ
1/2
fsm (1.28)

all symbols having the usual meaning. The frequency dependent factor g(ω)
was introduced in (Fejer et al., 2004), and is

g(ω) = Im

{
− sinh[(ıωτf )1/2]

(ıωτf )1/2
[
cosh[(ıωτf )1/2] +R sinh[(ıωτf )1/2]

]} (1.29)

with

τf =
(dL+dH)Cf

χf
, R =

(
χfCf
χSCS

)1/2

, (1.30)

and

χf = (dL+dH)

(
dL
χL

+
dH
χH

)−1

= 〈χi〉R,

Cf =
dLCL+dHCH

dL+dH
= 〈Ci〉V

. (1.31)
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The factor Ξfsm(ω), accounting for the finite size of the mirror, has been first
derived in (Braginsky and Vyatchanin, 2003), and can be written

Ξfsm = r̄0
(Π/2)1/2

Λ(1 + νS)
. (1.32)

where r̄0 = r0/Rm, Rm being the mirror radius. The quantities Λ and Π in
(1.32) are given by (Braginsky and Vyatchanin, 2003)

Λ =
∑
i=L,H

di
dL + dH

[
− Ci
CS

+
αi(1 + νi)

2αS(1− νi)(1 + νS)
+
Yi(1− 2νS)

YS(1− νi)

]
(1.33)

and
Π = [U + V S1]

2
+ S2 (1.34)

where16

U =
∑
i=L,H

di
dL + dH

[
αS
αi

(
1 + νi
1− νi

− 2νSYi
ES(1− νi)

)
− Ci
CS

]
(1.35)

V =
∑
i=L,H

di
dL + dH

(
Ci
CS
− αiYi(1− νs)
αSYs(1− νi)

)
(1.36)

S1 = 12h̄−2
∞∑
m=0

exp(−ζ(1)
m r̄2

0/4)

(ζ
(1)
m )2J0(ζ

(1)
m )

(1.37)

S2 =

∞∑
m=1

Λ2
m

exp[−(ζ
(1)
m r̄0)2/2]

J2
0 (ζ

(1)
m )

(1.38)

In (1.37), (1.38) ζ
(1)
m the m-th zero of Bessel function J1, h̄ = Hm/Rm, Hm

being the mirror height, and

Λm = A+BΥm (1.39)

with

A =
∑
i=L,H

di
dL + dH

[
αi(1 + νi)

αS(1− νi)
− 1 + νS

1− νi

]
(1.40)

B =
∑
i=L,H

di
dL + dH

[
αiYi(1− 2νS)

αSYS(1− νi)
+

1

1− νi
− 2

Ci
CS

]
(1.41)

and

Υm =
(1 + νS)[1− exp(−2ζ

(1)
m r̄0)]

[1− exp(−2ζ
(1)
m r̄0)]− 4(ζ

(1)
m h̄)2 exp(−2ζ

(1)
m r̄0)

. (1.42)

16The infinite sums in S1,2 converge rapidly: 30 terms are sufficient to achieve 16 figures
precision.
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1.5.3 Thermorefractive Coefficient

A simple closed form expression for the thermorefractive coefficient βeff valid
for QWL coatings was given (Braginsky et al., 2000), based on a self consis-
tency argument valid for high reflection stacked doublet coatings, for which the
addition of a further doublet does not change appreciably the coating input
impedance:

βeff =
n2
HβL + n2

LβH
4(n2

H − n2
L)

(1.43)

the same formula was obtained in (Principe et al., 2007) using a different route
(complete induction), disproving an alternative formula in [Braginsky et al.,
2003b].
Equation (1.43) was generalized in (Principe et al., 2007) to general stacked-
doublet coatings. The resulting expression is

βeff =
1

2πı

Ẏc

1− Yc
2 (1.44)

where Yc is the coating input admittance (normalized to the vaccum one), and

the dot denotes derivative with respect to temperature. Both Ẏc and Yc can be
written in terms of the doublet matrix elements in (1.10) as follows (Principe
et al., 2007)

Yc = −
(D11 −D22) +

√
(D11 −D22)2 − 4D12D21

2D12
. (1.45)

Ẏc =
Ḋ21 + Yc(Ḋ22 − Ḋ11)− Yc

2
Ḋ12

D11 −D22 + 2YcḊ12

(1.46)

Both the thermoelastic and thermorefractive coefficients can be minimized by
reducing the relative amount of high index (more noisy) material in the coating.
This is similar to the Brownian case, and suggests that even if thermoelastic
and/or thermorefractive noise were comparable to Brownian noise, one may still
use the optimization strategy discussed in Section 1.3.5 to minimize the total
coating noise.

1.5.4 Thermooptic Noise Cancellation

It is expected on physical grounds (coating thickness and field build-up time are
much smaller than the corresponding decorrelation scales of the temperature
fluctuations) that thermoelastic and thermorefractive displacements should be
added coherently17, so that

|H∆z|2 = |dtotαeff − λ0βeff |2 . (1.47)

17In the extreme opposite case where thermoelastic and thermorefractive displacements
were totally incorrelated,

|H∆z |2 =
∣∣dtotαeff

∣∣2 +
∣∣λ0βeff

∣∣2.
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in (1.26). As shown in (Evans et al., 2008), adding coherently the thermoelastic
and thermorefractive terms with the right relative signs18 entails partial cancel-
lation between the two terms. Experimental checks of this cancellation using
the TNI are underway (Ogin, 2009).
Exact cancellation may occur (assuming positive values for the αi and the βi)
for some specific (non-QWL) coating configuration, in a frequency dependent
way (Castaldi et al., 2008), due to the ω-dependent factor in the thermoelastic
coefficient (1.28).
Luckily, coating designs optimized for minimal Brownian noise are also nearly
optimized, throughout the spectral band of interest for GW observations, when
thermooptic noise is included (Castaldi et al., 2008).

1.6 Optical Properties of Coatings

In this section we summarize the basic formulas on which optical coating charac-
terization is based. The interested Reader will find a compact ab-initio deriva-
tion of these results in Appendix-A of Chapter 12 in Harry et al (2012).
Coatings are modeled as stacks of planar layers terminated on both sides by ho-
mogeneous half spaces; the relevant geometry and notation is sketched in Figure
1. Layers are identified by an index i=1, 2, . . . ,NL. It is understood that i=0
and i=NL+1 correspond to the left halfspace and the substrate, respectively.
It is convenient to introduce a local coordinate system (x, y, zi) for each layer,
so that the internal layers i = 1, 2, . . . , NL correspond to −di≤ zi≤ 0, the left
halfspace is defined by −∞<z0≤0, and the substrate by 0≤zNL+1<∞.
Plane wave incidence from the leftmost halfspace is assumed. An exp(ıωt) time
dependence of the field is understood and omitted.

1.6.1 Singlet Matrix

Consider normal incidence first, where the field in each layer is a linearly polar-
ized plane wave whose wave vector is normal to the (planar, parallel) interfaces.
The properties of a singlet, i.e., a planar homogeneous layer with finite thickness
di and (complex) refractive index n(i) are described by the transmission matrix

Ti =

[
cosψi ı(n(i))−1 sinψi

ın(i) sinψi cosψi

]
(1.48)

where

ψi =
2π

λ0
n(i)di, (1.49)

is the phase-thickness of the layer, λ0 being the light wavelength in vacuum.
The matrix (1.48) relates the nonzero transverse components of the electric and

18In Castaldi et al. (2007) the coherent superposition was computed with a wrong relative
sign.
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magnetic field at the singlet terminal planes as follows[
E(i)

Z0H
(i)

]
zi=−di

= Ti ·
[

E(i)

Z0H
(i)

]
zi=0

. (1.50)

A vacuum characteristic impedance Z0 = (µ0/ε0)1/2 factor is inserted in front
of the magnetic fields in (1.50) so as to make the transmission matrix dimen-
sionless. The singlet matrix (1.48) is unimodular, i.e., det Ti = 1.
Maxwell equations require the transverse field components to be continuous
across the layer interfaces. Hence[

E
(i)
t

Z0H
(i)
t

]
zi=−di

=

[
E

(i−1)
t

Z0H
(i−1)
t

]
zi−1=0

. (1.51)

Accordingly, [
E(1)

Z0H
(1)

]
z1=−d1

= T ·
[

E(NL)

Z0H
(NL)

]
zNL

=0

, (1.52)

where
T = T1 ·T2 · . . . ·TNL

(1.53)

is the whole multi-layer transmission matrix.
In the substrate only a forward propagating plane wave exists, so that

E(NL+1) = Z(NL+1)H(NL+1) = (n(NL+1))−1Z0H
(NL+1), (1.54)

Z(NL+1) =: ZS and n(NL+1) =: nS being the substrate characteristic impedance
and refraction index, respectively. From (1.52) and (1.54) it is possible to com-
pute the input impedance Zc of the whole substrate-terminated coating, and its
effective refractive index nc

E(1)

Z0H(1)
=:

Zc
Z0

= (nc)
−1 =

T11 + nST12

T21 + nST22
. (1.55)

The (complex) coating reflection coefficient is thus

Γc =
n(0) − nc
n(0) + nc

, (1.56)

and the power transmittance is

τp = 1− |Γc|2. (1.57)

Alternatively19, the coating reflection coefficient can be retrieved from the Airy-
Schur formula:

Γi−1 =
γi−1,i + Γi exp(−2ıψi)

1 + γi−1,i Γi exp(−2ıψi)
, (1.58)

19Equations (1.53)-(1.56) and (1.58) have different error propagation properties. When
dealing with truncated-periodic multilayers, using (1.53)-(1.56) yields better accuracy.
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where Γi is the ratio between the (complex) forward and backward wave ampli-
tudes at zi = 0, and

γi−1,i =
n(i−1) − n(i)

n(i−1) + n(i)
(1.59)

is the reflection coefficient fro a wave incident at the interface from a half space
with n = n(i−1) to a half-space with n = n(i).
The coating reflection coefficient is obtained by iterating (1.58) from i = NL,
where ΓNL

= γNL,NL+1 down to i = 1. where Γ1 =Γc.

1.6.2 Oblique Incidence

The normal-incidence results in the previous section are readily extended to
the case of a general elliptically polarized obliquely incident plane wave. Such
a wave can be always decomposed into the superposition of linearly polarized
transverse-electric (TE) and transverse-magnetic (TM) plane waves, where, re-
spectively, the electric field and the magnetic field is orthogonal to the incidence
plane, defined by the normal to the interface(s) and the incident field wave-
vector (the xz plane in Figure 1).
Equations (1.48)-(1.50) are still valid, provided the transverse fields components
in (1.50) are identified as follows:

(Et, Ht) =

{
(Ey,−Hx), for TE incidence
(Ex, Hy), for TM incidence

, (1.60)

once the following formal substitution are made,

n(i) −→ n
(i)
T =

{
n(i) cos θi, for TE incidence
n(i)/cos θi, for TM incidence

, (1.61)

and the phase thickness formula (1.49) is replaced by

ψi =
2π

λ0
n(i)di cos θi, (1.62)

The quantities nT and ZT = Z0/nT are referred to as the transverse refraction
index and characteristic impedance, respectively.
The angles θi (i = 1, 2, . . . , Ns) and θsub needed to compute the transverse
indexes (1.61) and the phase thickness (1.62) are obtained from the incidence
angle θ0 by repeated application of Snell’s law,

n(0)sin θ0 =n(1)sin θ1 = . . .=n(NL)sin θNL
=n(NL+1)sin θNL+1. (1.63)

For orthogonal incidence θ0 =0, the TE and TM cases are physically equivalent

(except for an irrelevant rotation around the z-axis), all θi are zero, and n
(i)
T =

n(i).
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1.6.3 Optical Losses

Lossy materials are characterized by complex refraction indexes

ñ(i) = n(i) − ıκ(i). (1.64)

κ > 0 being known as the extinction coefficient. All equations (1.48)-(1.63)
remain valid, after the analytic continuation n→ ñ.
Snell’s law (1.63) yields now complex values for the sin θi, and the root sign in

cos θi = (1− sin θ2
i ) =

[
1−

(
ñ(i−1)

ñ(i)
sin θi−1

)2
]1/2

. (1.65)

should be chosen so that
Im(cos θi) ≤ 0. (1.66)

The average power (per unit area) absorbed in all coating layers with i ≥ m,
including the substrate, is

P[i≥m] =
1

2
Re
(
~Et

(m−1)
× ~Ht

(m−1)∗
· ẑ
)
zm−1=0

(1.67)

where the asterisk denotes complex conjugation. The power absorbed in layer
i = m is thus

Pm = P[i≥m] − P[i≥m+1]. (1.68)

For m = 1

E
(0)
t = E

(0),+
t (1 + Γc), Z0H

(0)
t = ñ

(0)
T E

(0),+
t (1− Γc), (1.69)

at z0 = 0, and hence (assuming κ(0) = 0)

P[i≥1] = n
(0)
T P

(0),+(1− |Γc|2), (1.70)

where E
(0),+
t is the known (complex) amplitude of the incident plane wave at

the coating interface, and

P(0),+ =
1

2Z0

∣∣∣E(0),+
t

∣∣∣2 (1.71)

is the related (known) power density per unit area in vacuum.
Using the inverse of (1.50), viz.[

Et(m)

Z0H
(m)
t

]
zm=0

= T−1
m ·

[
E

(m−1)
t

Z0H
(m−1)
t

]
zm−1=0

, (1.72)

equations (1.67) and (1.68) allow to compute recursively, starting from m = 1,
the power (per unit cross section) dissipated in each layer of the coating.
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1.7 Material Parameters

Noise calculations, and coating design optimization are obviously dependent on
the availability of reliable values for the pertinent material parameters.
In this section we shall limit our discussion to the coating materials presently
in use for GW interferometers (SiO2, Ta2O5, TiO2).
The coating loss angle of SiO2 thin films has been measured to high accuracy
(Penn et al., 2010), yielding φ = (5 ± 2) · 10−5. The loss angle for Ta2O5

and Ta2O5 :: TiO2 has been recently estimated (A. Villar et al., 2010b) from
TNI-based direct measurements of the loss angle in a number of coating pro-
totypes using different geometries and materials. The estimated values are
(4.7 ± 0.5) · 10−4 for Ta2O5 and (3.7 ± 0.3) · 10−4 for Ta2O5 :: TiO2 (LMA
”formula V”). These values differ somewhat from those obtained by measuring
the damping constant of cantilever or membrane shaped specimens, for reasons
yet to be understood. Note that the values presently in use for all other relevant
parameters (elastic modulus Y , poisson ratio σ, etc.) are fiducially assumed as
being equal to their bulk counterparts.
Thermoelastic and thermorefractive coefficients are presently known with much
less accuracy. For Ta2O5, values of α ranging from −(4.43 ± 0.05) · 10−4 K−1

(Naci Inci and Yoshino, 2000) to (5.±2.)·10−6 K−1 (Braginsky and Vyatchanin,
2003) and values for β ranging from (2.3± 2.) · 10−6 K−1 (Braginsky and Vy-
atchanin, 2003) to (1.2± 2.) · 10−4 K−1 (Naci Inci, 2004) have been reported.
Luckily, as already mentioned, uncertainties in the thermo/optic coefficients
have almost no impact on total coating noise, and coating design optimization.
Reliable numbers are expected from ongoing direct measurements on actual
coating prototypes (Gretarsson, 2009). These measurements face the basic dif-
ficulty of disentangling the thermoelastic and thermorefractive contributions.
Measurements taken at different wavelengths could do the job, provided a suit-
able model for the wavelength dependence of the α, β parameters is assumed.
Concerning Ta2O5 :: TiO2 mixtures, it is worth noting that sputtered TiO2

films are known to exhibit a negative thermorefractive coefficient β (Xie et al.,
2008). Co-sputtered mixtures involving Titania may thus be expected to ex-
hibit positive or negative β, depending on Titania concentration. This has been
observed, eg., in Silica::Titania mixtures (Hirota al., 2005).
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Figure 1 – Advanced LIGO noise budget.  



Figure 2 – Stacked – doublet coating geometry, showing
the relevant notation for the layer thicknesses
and refractionn indexes



Figure 3 – Contours of constant reflectance and contours
of constant Brownian noise in a  5 - doublets
coating, as functions of the optical thickness
of the low and high index layers.



Figure 4 – Coating loss angle of   iso - reflective coatings
consisting of  a   different number of   Bragg
doublets, with different thickness ratios   .௅ݖ/ுݖ

௅ݖ/ுݖ , ሺݖ௅൅ݖு ൌ 1/2)



Figure 5 – Coating loss angle of  QWL  and  optimized
coating measured at TNI  (A. Villar et al., 2010)



Figure 6 – Stacked doublet dichroic mirror. Constant
reflectance contours and constant noise den-
sity vs. doublet thickness (M. Principe et al.,
LIGO G1000380). 
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