Newtonian Calibrator Calibration Review, March 2024

F. Aubin, E. Dangelser, B. Mours, A. Syx, P. Van Hove

March 8, 2024

Current calibration systems uncertainties

PCal: developed by LIGO and Virgo

- Push the mirror with an auxiliary laser
- Uncertainties: see <u>LIGO-P2300412-v7</u>
- Virgo PCal currently at 0.6 % (VIR-0107A-24)
 - Dominated by optical losses uncertainties

Table 3. Relative standard uncertainties (%) in displacement factors and contributing parameters (indented) the LHO and Virgo end station Rx sensor outputs. Parameters that are NOT common to both end stations are in blue text.

LHO					Virgo		
Parameter		X-End	Y-End	Туре	Ends	Туре	
X_x^c and X_y^c		0.29	0.29	U_{rel}			
	X/Y corr. fact.	0.26	0.26	$u_{rel, comb.}$	—		
	X_X and X_Y	0.44	0.37	U_{rel}	0.40	U_{rel}	
	Deform. mod.	_	_	_	0.30	$u_{rel,comb.}$	
	Inc. angle	0.03	0.03	$u_{rel, TypeB}$	0.16	$u_{rel,TypeB}$	
	ETM mass	0.01	0.01	$u_{rel,TypeB}$	0.05	$u_{rel,TypeB}$	
	Rotation	0.41	0.31	$u_{rel, TypeB}$	0.09	$u_{rel,TypeB}$	
	Optical eff.	0.03	0.10	$u_{rel, TypeB}$	0.10	$u_{rel,TypeB}$	
	Rx responsiv.	0.14	0.17	$u_{rel, comb.}$	0.15	$u_{rel,comb.}$	

- NCal developed in Virgo since O2
 - Push the mirror with a variable gravitational field
 - Preliminary uncertainty for O4b around 0.2 % (see details later)

NCal principle

- Rotor made of two masses
 - Center of mass is not moving
 - The non-linear Newtonian force creates the signal
 - Signal at twice the rotor frequency
 - Signal goes as $1/d^4 \rightarrow Mirror$ to NCal distance is critical
- Expected benefits
 - Signal depends mainly on the rotor geometry, mass & position
 - Replace power measurements (PCal) by distance measurement (NCal)
 - Mass of the mirror cancels out
 - No aging effect of the signal
 - Simple interface with the detector (no viewports)
- Challenges:
 - Metrology
 - Fast rotation
 - Parasitic couplings
 - Reliability

O4b NCal system

- 6 NCals around the NE mirror
- 2 couples of NCals along the north-south axis
 - Remove mirror-NCal distance uncertainty (at first order)
 - Near NCal at 1.7 m with PVC rotors
 - Far NCal at 2.1 m with Aluminum rotors
- East setup dedicated to:
 - Parasitic coupling studies
 - Frequency scan
- Maximum operating frequency:
 - I20-I50 Hz in h(t) for Al rotors
- Permanent operation since last August
 - PVC rotors installed in February

Detector Monitoring System for NCal

$\leftarrow \rightarrow $ G	https://dms.virgo-	gw.eu				*	\bigtriangledown \pm	: 1 1 =		
🌣 Les plus visités 🛛 ᡇ DeepL Traductio	n – 🗋 LVK_meeting 🔶 Por	rtail Ego Login to 🗋 VIRGO_	Operation 🗋 VIRGO_Ope_IPH	C 🗋 VIRGO_else 🗋 IPHC	Administration CNRS	ConseilLabo 🦳 Biblio 🦳	Lectures 🏳 Séminaire 🚿	C Autres marque-pages		
DMS ITF Mode: Commissioning (1d 1h 37m 57s)					Warning cond		Error cond			
Injection	ML SLC_Ba_MC_Temp	SL MC_Power	PMC PSTAB	LaserA IMC_AA		_				
Detection	PD	PD_RF QPD_I	31p QPD_B2	QPD_B4	ν(Hz)		<= 5		<=	
ISC	PR_parking		SR_parking	DC						
ALS	NE_ALS_Laser		IE_ALS_ARM	WE_ALS			> - 2		> − Γ	
	SIB1_IP	SIB1_BENCH	SIB1_BR	SIB1_	v-v _{set} (m⊓z)		>= 2		>= 5	
	MC_IP MC_PAY		MC_BR	MC_\	<u>N</u>					
	SDB1_IP	SDB1_LC	SDB1_BR	SDB1_	phase (mrad)		>= 5		>= 40	
	BS_IP	BS_F7	BS_PAY	BS_BR					- 10	
Suspensions	NI_IP	NI_F7	NI_PAY	NI_BR	Box_T (°C)		>=35			
	NE_IP	NE_F7	NE_PAY	NE_BR					>=40	
	PR_IP	<u>PR_F7</u>	PR_PAY	PR_BR						
	SR_IP	SR_F7	SR_PAY	SR_BR		>=35				
	WE ID	VV1_F7			Motor_I (°C)			>=40		
			S ZODOS			Vity Seismon	BBMSMon	ONP		
Environment	INJ_Area	DET_Area E		Room MeteoSt	ations DeadCha	nnel FlatChannel_	EN Lights	SeaActivity	N	
Infrastructures	ACS_CB_HallACS_ ⁻	TCS_CH ACS_TB	ACS_DAQ_RCACS	EE_Rool ACS_	MC ACS_INJ	ACS_DET A	CS_NE ACS_WA	B ACS_FCIM		
	UPS_TB UPS_CB UPS_MC UPS_NE UPS_WE IPS FlatChanneExistChane Sensors ACS_WE ACS_CB_CACS_COB ACS_FCEM PyHVAC									
SBE	EIB SIB2	2_SBE SIB2_LC	SPRB_SBE S	PRB_LC SDB2_	_SBE SDB2_LC	SNEB_SBE SI	NEB_LC SWEB_SI	BE SWEB_LC		
	SQB1_SBE SQB1_LC SQB2_SBE SQB2_LC FCIM_SBE					FCIM_LC	FCEM_SBE	FCEM_LC		
TCS	NE_RH WE	E_RH SR_RH	NI_CO2_LaseWI_	CO2_Las(NI_AUX	_LaseWI_AUX_La	se Chrocc_SR Ch	rocc_PR Chillers	TCS_Electr		
QNR	LFC		R_GALVO EQB1_A		EQBIShu	tters QNR_SQ2		SQZ_INJ		
Vacuum	LargeValves Cl									
	DetectorSEnvir Con	htrolRoom Minitor	vers ISC	Squeezer	Injection	TCS Suspe	nsion Vacuum	Metatron		
VPM	DetectorMonitoring	NewtonNoise	DataCollection	Storage	DataAccess	Automation	DetChar	Calibration-		
DAQ-Computing	Latency			Timing_rtpc	Timing_dsp	Fast_DAC	ADCs_TE	Daq_Boxes_TE		
Calib Hrec	CalNorth Cal	West CalBS	CalPR	CalSR PCalN	orth PCalWest		ET Bias NCAL	LuiseInjectio	-	
	Temperatures		HumidityAl		stAl TestMasses			GIGGINGCUG		

Alert mails are sent on error conditions to IPHC NCal group.

NCal in Virgo Interferometer Monitor

6

NCal in Virgo Interferometer Monitor

7

Comparing Virgo PCal and NCal (Preliminary)

Far/Near Fluctuations in full agreement with predicted uncertainties of 0.19% (0.24%) for Near (Far) NCal → See Antoine Syx presentation for details